Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression
Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting pas...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 117; H. 6; S. 3326 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
11.02.2020
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of
expression and low endothelium expression of repressive cldn5-related transcription factor
are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and
as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued
expression in the NAc and promoted resilience. Importantly, we confirmed changes in
expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious
-related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience. |
|---|---|
| AbstractList | Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of cldn5 expression and low endothelium expression of repressive cldn5-related transcription factor foxo1 are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and hdac1 as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued cldn5 expression in the NAc and promoted resilience. Importantly, we confirmed changes in HDAC1 expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious CLDN5-related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience.Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of cldn5 expression and low endothelium expression of repressive cldn5-related transcription factor foxo1 are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and hdac1 as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued cldn5 expression in the NAc and promoted resilience. Importantly, we confirmed changes in HDAC1 expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious CLDN5-related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience. Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of expression and low endothelium expression of repressive cldn5-related transcription factor are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued expression in the NAc and promoted resilience. Importantly, we confirmed changes in expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious -related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience. |
| Author | Dudek, Katarzyna A Menard, Caroline Tamminga, Carol Mechawar, Naguib Tuck, Ellen LeClair, Katherine Labrecque, Simon Golden, Sam A Ferrer Perez, Carmen Dion-Albert, Laurence Russo, Scott J Turecki, Gustavo Lebel, Manon |
| Author_xml | – sequence: 1 givenname: Katarzyna A orcidid: 0000-0003-4894-5268 surname: Dudek fullname: Dudek, Katarzyna A organization: CERVO Brain Research Center, Quebec, QC G1J 2G3, Canada – sequence: 2 givenname: Laurence orcidid: 0000-0002-7051-6390 surname: Dion-Albert fullname: Dion-Albert, Laurence organization: CERVO Brain Research Center, Quebec, QC G1J 2G3, Canada – sequence: 3 givenname: Manon orcidid: 0000-0003-1649-1214 surname: Lebel fullname: Lebel, Manon organization: CERVO Brain Research Center, Quebec, QC G1J 2G3, Canada – sequence: 4 givenname: Katherine surname: LeClair fullname: LeClair, Katherine organization: Center for Affective Neuroscience, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674 – sequence: 5 givenname: Simon surname: Labrecque fullname: Labrecque, Simon organization: CERVO Brain Research Center, Quebec, QC G1J 2G3, Canada – sequence: 6 givenname: Ellen orcidid: 0000-0001-6997-8056 surname: Tuck fullname: Tuck, Ellen organization: Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland – sequence: 7 givenname: Carmen surname: Ferrer Perez fullname: Ferrer Perez, Carmen organization: Department of Psychobiology, University of Valencia, 46010 Valencia, Spain – sequence: 8 givenname: Sam A surname: Golden fullname: Golden, Sam A organization: Department of Biological Structure, University of Washington, Seattle, WA 98195 – sequence: 9 givenname: Carol surname: Tamminga fullname: Tamminga, Carol organization: Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 – sequence: 10 givenname: Gustavo surname: Turecki fullname: Turecki, Gustavo organization: Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada – sequence: 11 givenname: Naguib surname: Mechawar fullname: Mechawar, Naguib organization: Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada – sequence: 12 givenname: Scott J orcidid: 0000-0002-6470-1805 surname: Russo fullname: Russo, Scott J organization: Center for Affective Neuroscience, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674 – sequence: 13 givenname: Caroline orcidid: 0000-0001-8202-7378 surname: Menard fullname: Menard, Caroline email: Caroline.Menard@fmed.ulaval.ca organization: CERVO Brain Research Center, Quebec, QC G1J 2G3, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31974313$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUE1LxDAUDLLifujZm-TopWs-2_Qoi1-w4mUvnspr-oqRtqlJK_jvjbiClzfDMDMMb00Wgx-QkEvOtpwV8mYcIG55yVWuNefFCVlxVvIsVyVb_ONLso7xnTFWasPOyFLyslCSyxV5ffYd2rmDQKGBcYLJ-SFS39LpDWnded9kdQA30BpCcBjoGHzvJ6RxChgjTcd1DgeL9DNuaYPjj5xKzslpC13EiyNuyOH-7rB7zPYvD0-7231mtdJTlreFSdOZQFSGS221gLyxSrHWALclt6ZGbaVIFBQwYwWHJjfGKiwMig25_q1Nuz5mjFPVu2ix62BAP8dKSKVEYVIgWa-O1rnusanG4HoIX9XfN8Q3AxFkig |
| CitedBy_id | crossref_primary_10_3390_ijms23010308 crossref_primary_10_3389_fnbeh_2022_1006836 crossref_primary_10_1007_s44192_023_00057_y crossref_primary_10_1073_pnas_2205576120 crossref_primary_10_1051_medsci_2025066 crossref_primary_10_3233_JAD_221175 crossref_primary_10_1016_j_biopsych_2021_04_012 crossref_primary_10_1016_j_neuroscience_2024_11_072 crossref_primary_10_1186_s40035_025_00478_5 crossref_primary_10_1016_j_bbi_2023_10_011 crossref_primary_10_1016_j_bbi_2023_10_010 crossref_primary_10_1016_j_pnpbp_2022_110558 crossref_primary_10_1186_s12987_025_00639_8 crossref_primary_10_1007_s12035_024_04205_5 crossref_primary_10_1016_j_cclet_2025_111524 crossref_primary_10_3390_ijms242015351 crossref_primary_10_1016_j_bbih_2021_100347 crossref_primary_10_3389_fphar_2022_773537 crossref_primary_10_3389_fimmu_2023_1281567 crossref_primary_10_1097_YCO_0000000000000664 crossref_primary_10_1016_j_brainresbull_2025_111374 crossref_primary_10_1038_s41380_025_02993_3 crossref_primary_10_1111_jcpp_13961 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105149 crossref_primary_10_1039_D2FO02780A crossref_primary_10_1093_cvr_cvab198 crossref_primary_10_1002_adtp_202200150 crossref_primary_10_1016_j_bbr_2022_113815 crossref_primary_10_1016_j_bbii_2024_100092 crossref_primary_10_1016_j_addr_2025_115645 crossref_primary_10_1016_j_neubiorev_2022_104718 crossref_primary_10_1016_j_tins_2024_08_015 crossref_primary_10_1016_j_bcp_2021_114532 crossref_primary_10_1039_D3FO00270E crossref_primary_10_1007_s12640_024_00693_4 crossref_primary_10_1111_cns_14091 crossref_primary_10_1016_j_bbi_2022_11_005 crossref_primary_10_1016_j_bbih_2023_100690 crossref_primary_10_3390_ijms25010276 crossref_primary_10_1016_j_tins_2020_12_002 crossref_primary_10_1002_ptr_7551 crossref_primary_10_3390_cells14090629 crossref_primary_10_3389_fnins_2021_672526 crossref_primary_10_1016_j_biopsych_2021_01_015 crossref_primary_10_1016_j_nbd_2022_105926 crossref_primary_10_1503_jpn_220218 crossref_primary_10_3390_nu14091882 crossref_primary_10_1016_j_mcn_2020_103525 crossref_primary_10_1124_jpet_120_266205 crossref_primary_10_1186_s12865_024_00653_9 crossref_primary_10_1016_j_neures_2021_11_004 crossref_primary_10_1002_brb3_70478 crossref_primary_10_1038_s41598_022_15461_7 crossref_primary_10_1016_j_jad_2024_08_062 crossref_primary_10_1002_jcp_30357 crossref_primary_10_1016_j_semcdb_2023_07_004 crossref_primary_10_1002_da_23257 crossref_primary_10_1016_j_neuron_2024_05_001 crossref_primary_10_1124_pharmrev_120_000043 crossref_primary_10_1002_glia_23994 crossref_primary_10_3390_cells12111521 crossref_primary_10_1055_s_0045_1804893 crossref_primary_10_1007_s12264_023_01063_4 crossref_primary_10_1016_j_pnpbp_2024_110998 crossref_primary_10_1016_j_bbi_2023_01_015 crossref_primary_10_1038_s41392_023_01519_z crossref_primary_10_1186_s12987_021_00258_z crossref_primary_10_3389_fpsyt_2021_640963 crossref_primary_10_1016_j_neures_2024_12_006 crossref_primary_10_3390_cells10071630 crossref_primary_10_1016_j_biopsych_2022_11_004 crossref_primary_10_3389_fimmu_2022_845678 crossref_primary_10_1186_s13287_020_01874_6 crossref_primary_10_3390_nu14153099 crossref_primary_10_1016_j_intimp_2023_109840 crossref_primary_10_3390_cells14171346 crossref_primary_10_3389_fncel_2021_691067 crossref_primary_10_1016_j_biopha_2020_110822 crossref_primary_10_1080_15622975_2020_1779344 crossref_primary_10_1111_ejn_15567 crossref_primary_10_1016_j_biopha_2023_114852 crossref_primary_10_1016_j_bbi_2025_05_023 crossref_primary_10_3389_fncel_2025_1645437 crossref_primary_10_1016_j_yfrne_2022_100989 crossref_primary_10_1016_j_biopsych_2021_11_012 crossref_primary_10_1038_s41398_022_01855_8 crossref_primary_10_1016_j_jaci_2023_07_025 crossref_primary_10_1503_jpn_210036 crossref_primary_10_3233_JAD_200679 crossref_primary_10_1007_s12035_022_03074_0 crossref_primary_10_1007_s12264_022_00977_9 crossref_primary_10_1016_j_phrs_2024_107541 crossref_primary_10_1111_jnc_70172 crossref_primary_10_1016_j_jad_2024_09_073 crossref_primary_10_1186_s12974_025_03408_4 crossref_primary_10_1161_STROKEAHA_125_050839 crossref_primary_10_1016_j_bpsgos_2023_04_007 crossref_primary_10_1002_advs_202101090 crossref_primary_10_1177_00912174251334309 crossref_primary_10_1161_HYPERTENSIONAHA_122_19586 crossref_primary_10_3389_fendo_2025_1506560 crossref_primary_10_1093_ijnp_pyac079 crossref_primary_10_1097_gscm_0000000000000031 crossref_primary_10_1002_dneu_22846 crossref_primary_10_1007_s12640_021_00431_0 crossref_primary_10_1016_j_bbih_2020_100169 crossref_primary_10_1016_j_neuropharm_2020_108368 crossref_primary_10_1182_bloodadvances_2021005317 crossref_primary_10_1080_20008198_2020_1822064 crossref_primary_10_1515_revneuro_2020_0077 crossref_primary_10_1016_j_ynstr_2025_100758 crossref_primary_10_1016_j_tins_2023_01_005 crossref_primary_10_1016_j_bbi_2022_10_022 crossref_primary_10_1016_j_pscychresns_2023_111761 crossref_primary_10_1007_s11883_024_01223_5 crossref_primary_10_3389_fnmol_2022_1027942 crossref_primary_10_1073_pnas_2120489119 crossref_primary_10_1016_j_biopsych_2021_02_003 crossref_primary_10_1007_s13577_024_01132_4 crossref_primary_10_1016_j_brainresbull_2025_111548 crossref_primary_10_1111_ejn_15239 crossref_primary_10_1038_s41380_020_00965_3 crossref_primary_10_3389_fncel_2022_839396 crossref_primary_10_3390_biomedicines11020550 crossref_primary_10_1038_s41398_021_01744_6 crossref_primary_10_1186_s12974_024_03312_3 crossref_primary_10_1016_j_phrs_2023_106833 crossref_primary_10_1038_s41575_023_00890_0 crossref_primary_10_2174_0113816128285578231218102020 crossref_primary_10_1186_s13041_025_01231_9 crossref_primary_10_3389_fpsyt_2023_1138110 crossref_primary_10_3390_brainsci12101267 crossref_primary_10_1007_s12264_025_01514_0 crossref_primary_10_1016_j_phrs_2020_105226 crossref_primary_10_1002_brb3_2075 crossref_primary_10_1016_j_ccr_2025_216806 crossref_primary_10_3390_life12010043 crossref_primary_10_1016_j_phymed_2024_156057 crossref_primary_10_1016_j_tice_2023_102031 crossref_primary_10_1016_j_biopsych_2025_06_012 crossref_primary_10_5498_wjp_v11_i11_997 crossref_primary_10_1038_s41593_025_01891_9 crossref_primary_10_1016_j_jnha_2025_100574 crossref_primary_10_1016_j_bbr_2024_115286 crossref_primary_10_1016_j_neuropharm_2024_110021 crossref_primary_10_3390_nu15214635 crossref_primary_10_1016_j_bbi_2021_03_004 crossref_primary_10_3389_fphar_2024_1439811 crossref_primary_10_1186_s13195_023_01299_2 crossref_primary_10_1016_j_phymed_2024_155510 crossref_primary_10_1038_s12276_025_01488_z crossref_primary_10_1016_j_bbr_2023_114443 crossref_primary_10_1124_jpet_120_266163 crossref_primary_10_1016_j_lfs_2021_119765 crossref_primary_10_1016_j_rmr_2021_03_004 crossref_primary_10_3389_fnagi_2021_749026 crossref_primary_10_1016_j_jneuroim_2025_578736 crossref_primary_10_1007_s12035_025_05152_5 crossref_primary_10_1016_j_biopha_2025_118599 crossref_primary_10_1159_000527182 crossref_primary_10_3389_fendo_2023_1221043 crossref_primary_10_1096_fj_202201348R crossref_primary_10_1016_j_neuroscience_2025_06_037 crossref_primary_10_1016_j_biopsych_2020_04_024 crossref_primary_10_1016_j_jpha_2024_101097 crossref_primary_10_3389_fncel_2024_1455606 crossref_primary_10_1016_j_jneuroim_2022_577951 crossref_primary_10_1016_j_cobeha_2024_101403 crossref_primary_10_3389_fpubh_2025_1530513 crossref_primary_10_1186_s12974_024_03152_1 crossref_primary_10_1186_s12987_023_00424_5 crossref_primary_10_1080_15294145_2023_2240340 crossref_primary_10_1038_s41380_022_01618_3 crossref_primary_10_1007_s00403_025_04023_2 crossref_primary_10_3390_ijms231911111 crossref_primary_10_1134_S0022093022030188 crossref_primary_10_1038_s42003_024_06898_9 crossref_primary_10_1212_WNL_0000000000213874 crossref_primary_10_1186_s12987_024_00563_3 crossref_primary_10_1016_j_cell_2023_02_036 crossref_primary_10_1016_j_nsa_2024_104081 crossref_primary_10_3389_fpsyt_2022_871997 crossref_primary_10_1523_JNEUROSCI_0984_22_2022 crossref_primary_10_1080_21688370_2021_1908109 crossref_primary_10_1111_odi_14549 crossref_primary_10_1016_j_arr_2023_102070 crossref_primary_10_3389_fnmol_2024_1415567 crossref_primary_10_3390_biomedicines10081947 crossref_primary_10_1016_j_bbih_2023_100684 crossref_primary_10_3390_ijms222413427 crossref_primary_10_1038_s44325_025_00059_5 crossref_primary_10_1111_jnc_15509 crossref_primary_10_3389_fnins_2025_1539867 crossref_primary_10_1111_eci_14319 crossref_primary_10_1007_s10822_023_00525_1 crossref_primary_10_1038_s41583_023_00729_2 crossref_primary_10_1134_S0362119723700664 crossref_primary_10_3390_ijms22084061 crossref_primary_10_1152_physrev_00042_2023 crossref_primary_10_1097_MD_0000000000032991 crossref_primary_10_1117_1_NPh_10_4_044410 crossref_primary_10_1177_09567976221079633 crossref_primary_10_1007_s43440_021_00274_8 crossref_primary_10_1016_j_neuron_2022_01_033 crossref_primary_10_1038_s41598_022_22437_0 crossref_primary_10_1016_j_bbi_2022_02_030 crossref_primary_10_1016_j_bbih_2024_100729 crossref_primary_10_1016_j_bbi_2023_08_025 crossref_primary_10_3390_pharmaceutics13111779 crossref_primary_10_1016_j_pnpbp_2024_110939 crossref_primary_10_1016_j_bbih_2024_100843 crossref_primary_10_1016_j_phrs_2022_106145 crossref_primary_10_3389_fimmu_2021_689453 crossref_primary_10_1016_j_bbrc_2025_151650 crossref_primary_10_1136_spcare_2024_005144 crossref_primary_10_1038_s41467_021_27604_x crossref_primary_10_1016_j_bbi_2022_01_002 crossref_primary_10_1007_s12035_024_04522_9 crossref_primary_10_1016_j_jad_2024_06_032 crossref_primary_10_1186_s11671_021_03477_3 crossref_primary_10_1038_s41593_025_01892_8 crossref_primary_10_1016_j_bbi_2021_10_002 crossref_primary_10_1111_ejn_15180 crossref_primary_10_14336_AD_2024_0239 crossref_primary_10_1186_s13578_025_01444_4 crossref_primary_10_1038_s41398_020_01054_3 crossref_primary_10_1523_JNEUROSCI_2209_24_2025 crossref_primary_10_1016_j_bbr_2023_114472 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 the Author(s). Published by PNAS. |
| Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1914655117 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 31974313 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: P50 MH096890 – fundername: NIDA NIH HHS grantid: R00 DA045662 – fundername: NIMH NIH HHS grantid: R01 MH104559 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c545t-6f7851102ee48135c52a6dc440f8a1c91c8be5c32c91a4a08c21ad688c4e78e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 249 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513898000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 08:33:58 EDT 2025 Thu Apr 03 06:53:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | epigenetic inflammation vascular mood disorders antidepressant |
| Language | English |
| License | Copyright © 2020 the Author(s). Published by PNAS. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-6f7851102ee48135c52a6dc440f8a1c91c8be5c32c91a4a08c21ad688c4e78e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6470-1805 0000-0001-6997-8056 0000-0001-8202-7378 0000-0003-1649-1214 0000-0002-7051-6390 0000-0003-4894-5268 |
| OpenAccessLink | https://www.pnas.org/content/pnas/117/6/3326.full.pdf |
| PMID | 31974313 |
| PQID | 2344278688 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2344278688 pubmed_primary_31974313 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-11 |
| PublicationDateYYYYMMDD | 2020-02-11 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2020 |
| SSID | ssj0009580 |
| Score | 2.6827106 |
| Snippet | Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3326 |
| SubjectTerms | Animals Antidepressive Agents - pharmacology Antidepressive Agents - therapeutic use Blood-Brain Barrier - metabolism Claudin-5 - metabolism Depression - drug therapy Depression - metabolism Depressive Disorder, Major - metabolism Disease Models, Animal Epigenesis, Genetic - drug effects Epigenesis, Genetic - physiology Histone Deacetylase 1 - metabolism Humans Inflammation - metabolism Male Mice Mice, Inbred C57BL Nucleus Accumbens - metabolism Signal Transduction - drug effects Signal Transduction - physiology Stress, Psychological - metabolism |
| Title | Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31974313 https://www.proquest.com/docview/2344278688 |
| Volume | 117 |
| WOSCitedRecordID | wos000513898000077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED0BZWABymf5kpEYYHBJbCe2J4QQFUurDh3KFDmOI1VCSWhKfz924gADAxKL5cWR4ztfnn2X9wBujEyzMJMUSyIMZtxQrOKIYKJFGhjh2CvzRmyCTyZiPpdTf-FW-7LKLiY2gTortbsjvyeUOVWIWIiH6h071SiXXfUSGpvQoxbKOK_mc_GDdFe0bAQyxDGTQUftw-l9Vah66LjNYgsZvFrZr_iy-c6M9v47w33Y9QgTPbYu0YcNUxxA3-_hGt16oum7Q3gdd9q4SGWqapPyNSpzZFEhakvaUychgVK1dMp2qGqK9wxq_zBBtlm8Nc9F63qIvqpqiyOYjZ5nTy_YSy1gbSHUCsc5d9ArIMYwEdJIR0TFmWYsyIUKtQyt6UykKbFdxVQgNAlVZl9VM8OFIcewVZSFOQUkc6mpO2RaSzNjY1iU8yhV1A7PFOViANfd6iXWk116QhWm_KiT7_UbwElrgqRqKTcSGygc1KFnfxh9DjvEHYqdakt4Ab3c7mNzCdt6vVrUy6vGRWw7mY4_AbJ7xtA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+adaptations+of+the+blood-brain+barrier+promote+stress+resilience+vs.+depression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dudek%2C+Katarzyna+A&rft.au=Dion-Albert%2C+Laurence&rft.au=Lebel%2C+Manon&rft.au=LeClair%2C+Katherine&rft.date=2020-02-11&rft.eissn=1091-6490&rft.volume=117&rft.issue=6&rft.spage=3326&rft_id=info:doi/10.1073%2Fpnas.1914655117&rft_id=info%3Apmid%2F31974313&rft_id=info%3Apmid%2F31974313&rft.externalDocID=31974313 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |