Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulatio...
Uložené v:
| Vydané v: | Statistics and computing Ročník 25; číslo 5; s. 1023 - 1037 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2015
|
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter
α
. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54,
2007
) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186,
2008
). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models,
2008
) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57,
2011
). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on
α
. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498,
2010
) application, where we demonstrate good mixing behaviour for both synthetic and real examples. |
|---|---|
| AbstractList | We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter \(\alpha \). This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on \(\alpha \). We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples. We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter $$\alpha $$ α. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on $$\alpha $$ α. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples. We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54, 2007 ) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186, 2008 ). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008 ) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57, 2011 ). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on α . We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498, 2010 ) application, where we demonstrate good mixing behaviour for both synthetic and real examples. We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples. We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples. |
| Author | Richardson, Sylvia Liverani, Silvia Hastie, David I. |
| Author_xml | – sequence: 1 givenname: David I. surname: Hastie fullname: Hastie, David I. organization: Imperial College London – sequence: 2 givenname: Silvia surname: Liverani fullname: Liverani, Silvia organization: Imperial College London, MRC Biostatistics Unit – sequence: 3 givenname: Sylvia surname: Richardson fullname: Richardson, Sylvia email: sylvia.richardson@mrc-bsu.cam.ac.uk organization: MRC Biostatistics Unit |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26321800$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkjtvFDEUhS0URDaBH0CDXNIM-G0PBRIK4SFFogBqy-u5s-swYw_2DIEuPx0vkyCgCJULn-_4XN9zgo5iioDQY0qeUUL080IpY6whVDSt0LTh99CGSs0byrU8QhvSKtJwqsUxOinlkhBKFRcP0DFTnFFDyAZdf3TjNIS4w31OI34dcvD7AWY85eShFDyG7_OSAY-pg6HgqzDv8RK_xHQVsU_RQ5yzm0OKeHLZjTBDfnGADpahlAUKDhEPLu8Ad252ONT3YKzYL6o8RPd7NxR4dHOeos9vzj-dvWsuPrx9f_bqovFSyLlRYIxWvSG9NG3ruJdGKCU0N4L5tgPpeNv5XvZq25ltrzvFOtcZ6VrhvFOMn6KXq--0bEfo1tyDnXIYXf5hkwv275sY9naXvlkhJWGtqgZPbwxy-lrHmu0YiodhcBHSUiw1TCmmCJP_l2pR12UI1VX65M9Yv_PcbqgK9CrwOZWSobc-rF9XU4bBUmIPXbBrF2ztgj10wfJK0n_IW_O7GLYypWrjDrK9TEuOdTF3QD8BuJbJ-A |
| CitedBy_id | crossref_primary_10_1214_19_BA1179 crossref_primary_10_1007_s00180_020_01000_3 crossref_primary_10_1080_10618600_2021_2000870 crossref_primary_10_1016_j_sste_2016_04_003 crossref_primary_10_1093_jrsssc_qlad097 crossref_primary_10_1080_24694452_2019_1586516 crossref_primary_10_1051_0004_6361_202039551 crossref_primary_10_1111_rssc_12599 crossref_primary_10_1111_insr_12595 crossref_primary_10_1002_bimj_201900146 crossref_primary_10_1089_cmb_2022_0273 crossref_primary_10_1080_10618600_2025_2526413 crossref_primary_10_2147_JIR_S297329 crossref_primary_10_3389_fpubh_2020_557006 crossref_primary_10_1080_01621459_2023_2279707 crossref_primary_10_1177_09622802221129044 crossref_primary_10_1111_rssc_12469 crossref_primary_10_1111_rssc_12546 crossref_primary_10_1007_s11222_017_9786_y crossref_primary_10_1016_j_envint_2024_108943 crossref_primary_10_1016_j_socscimed_2021_114543 crossref_primary_10_1002_sim_7572 crossref_primary_10_1016_j_spl_2023_109930 crossref_primary_10_1371_journal_pone_0233542 crossref_primary_10_1007_s10518_021_01312_9 crossref_primary_10_1109_TSG_2022_3171499 crossref_primary_10_1007_s10811_017_1326_9 crossref_primary_10_3847_1538_3881_aae263 crossref_primary_10_1080_01621459_2019_1665528 crossref_primary_10_1002_wics_1535 crossref_primary_10_1016_j_csda_2022_107565 crossref_primary_10_1016_j_amar_2022_100231 crossref_primary_10_1109_ACCESS_2024_3523340 |
| Cites_doi | 10.1080/01621459.1995.10476550 10.1198/1061860043001 10.1214/07-BA219 10.1198/jasa.2009.0001 10.1214/aos/1176342360 10.1198/016214501750332758 10.1111/j.1467-9868.2010.00756.x 10.1289/ehp.1002118 10.1002/gepi.21661 10.1214/088342305000000016 10.1080/03610910601096262 10.1198/016214508000001039 10.1214/09-BA414 10.1111/1467-9868.00095 10.1186/1471-2288-13-129 10.1214/aop/1024404422 10.1214/aos/1176342372 10.1007/s11222-009-9150-y 10.1109/LSP.2010.2072919 10.1093/biomet/asp021 10.1093/biostatistics/kxq013 10.1214/aos/1176342871 10.2307/1390653 10.1021/es104017x 10.1093/biomet/asm086 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 |
| Copyright_xml | – notice: The Author(s) 2014 |
| DBID | C6C AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1007/s11222-014-9471-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| EndPage | 1037 |
| ExternalDocumentID | PMC4550296 26321800 10_1007_s11222_014_9471_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UP_0801/1 – fundername: Medical Research Council grantid: G1002319 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c545t-6e8876f80f5899a3c58466473842c9de5a39dcf5f6bd8bf7d62dad85a94aca623 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358784100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 |
| IngestDate | Tue Nov 04 01:57:50 EST 2025 Fri Sep 05 07:03:53 EDT 2025 Sun Nov 09 10:09:15 EST 2025 Mon Jul 21 05:58:50 EDT 2025 Sat Nov 29 03:32:41 EST 2025 Tue Nov 18 21:15:50 EST 2025 Fri Feb 21 02:34:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Mixture model Profile regression Dirichlet process Bayesian clustering |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-6e8876f80f5899a3c58466473842c9de5a39dcf5f6bd8bf7d62dad85a94aca623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s11222-014-9471-3 |
| PMID | 26321800 |
| PQID | 1744718017 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4550296 proquest_miscellaneous_1826626025 proquest_miscellaneous_1744718017 pubmed_primary_26321800 crossref_citationtrail_10_1007_s11222_014_9471_3 crossref_primary_10_1007_s11222_014_9471_3 springer_journals_10_1007_s11222_014_9471_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationTitleAlternate | Stat Comput |
| PublicationYear | 2015 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Molitor, Papathomas, Jerrett, Richardson (CR16) 2010; 11 Dunson, Herring, Siega-Riz (CR5) 2008; 103 Fritsch, Ickstadt (CR8) 2009; 4 Hastie, Liverani, Azizi, Richardson, Stücker (CR9) 2013; 13 Papathomas, Molitor, Hoggart, Hastie, Richardson (CR22) 2012; 6 Bigelow, Dunson (CR2) 2009; 104 Jain, Neal (CR11) 2004; 13 CR19 CR18 CR17 Blackwell, MacQueen (CR3) 1973; 1 CR15 Walker (CR28) 2007; 36 Pitman, Yor (CR23) 1997; 25 Richardson, Green (CR25) 1997; 59 Ulker, Gunsel, Cegil (CR27) 2011; 18 Antoniak (CR1) 1974; 2 Ferguson (CR7) 1973; 1 Kalli, Griffin, Walker (CR14) 2011; 21 Papathomas, Molitor, Richardson, Riboli, Vineis (CR21) 2011; 119 Yau, Papaspiliopoulos, Roberts, Holmes (CR29) 2011; 73 Sethuraman (CR26) 1994; 4 Jasra, Holmes, Stephens (CR13) 2005; 20 Ishwaran, James (CR10) 2001; 96 Dunson (CR4) 2009; 96 CR24 CR20 Escobar, West (CR6) 1995; 90 Jain, Neal (CR12) 2007; 2 DI Hastie (9471_CR9) 2013; 13 CE Antoniak (9471_CR1) 1974; 2 SG Walker (9471_CR28) 2007; 36 9471_CR18 S Jain (9471_CR11) 2004; 13 9471_CR19 J Pitman (9471_CR23) 1997; 25 H Ishwaran (9471_CR10) 2001; 96 D Blackwell (9471_CR3) 1973; 1 9471_CR24 J Molitor (9471_CR16) 2010; 11 S Richardson (9471_CR25) 1997; 59 S Jain (9471_CR12) 2007; 2 9471_CR20 DB Dunson (9471_CR4) 2009; 96 JL Bigelow (9471_CR2) 2009; 104 MD Escobar (9471_CR6) 1995; 90 C Yau (9471_CR29) 2011; 73 A Fritsch (9471_CR8) 2009; 4 J Sethuraman (9471_CR26) 1994; 4 9471_CR15 TS Ferguson (9471_CR7) 1973; 1 A Jasra (9471_CR13) 2005; 20 9471_CR17 M Papathomas (9471_CR21) 2011; 119 Y Ulker (9471_CR27) 2011; 18 M Kalli (9471_CR14) 2011; 21 DB Dunson (9471_CR5) 2008; 103 M Papathomas (9471_CR22) 2012; 6 |
| References_xml | – volume: 90 start-page: 577 issue: 430 year: 1995 end-page: 588 ident: CR6 article-title: Bayesian density estimation and inference using mixtures publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476550 – volume: 13 start-page: 158 year: 2004 end-page: 182 ident: CR11 article-title: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860043001 – ident: CR18 – volume: 2 start-page: 445 issue: 3 year: 2007 end-page: 472 ident: CR12 article-title: Splitting and merging components of a nonconjugate dirichlet process mixture model publication-title: Bayesian Anal. doi: 10.1214/07-BA219 – volume: 104 start-page: 26 issue: 485 year: 2009 end-page: 36 ident: CR2 article-title: Bayesian semiparametric joint models for functional predictors publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0001 – volume: 1 start-page: 209 issue: 2 year: 1973 end-page: 230 ident: CR7 article-title: A Bayesian analysis of some nonparametric problems publication-title: Ann. Stat. doi: 10.1214/aos/1176342360 – volume: 96 start-page: 161 issue: 453 year: 2001 end-page: 173 ident: CR10 article-title: Gibbs sampling methods for stick-breaking priors publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501750332758 – volume: 4 start-page: 639 year: 1994 end-page: 650 ident: CR26 article-title: A constructive definition of Dirichlet priors publication-title: Stat. Sin. – volume: 73 start-page: 37 year: 2011 end-page: 57 ident: CR29 article-title: Bayesian non-parametric hidden Markov models with applications in genomics publication-title: J. Royal Stat. Soc., Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2010.00756.x – volume: 119 start-page: 84 year: 2011 end-page: 91 ident: CR21 article-title: Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in non-smokers publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1002118 – volume: 6 start-page: 663 issue: 36 year: 2012 end-page: 674 ident: CR22 article-title: Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process : application to searching for gene gene patterns publication-title: Genet. Epidemiol. doi: 10.1002/gepi.21661 – volume: 20 start-page: 50 issue: 1 year: 2005 end-page: 67 ident: CR13 article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling publication-title: Stat. Sci. doi: 10.1214/088342305000000016 – ident: CR19 – volume: 36 start-page: 45 year: 2007 end-page: 54 ident: CR28 article-title: Sampling the Dirichlet mixture model with slices publication-title: Commun. Stat. - Simul. Comput. doi: 10.1080/03610910601096262 – volume: 103 start-page: 1508 issue: 484 year: 2008 end-page: 1517 ident: CR5 article-title: Bayesian inference on changes in response densities over predictor clusters publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000001039 – ident: CR15 – volume: 4 start-page: 367 issue: 2 year: 2009 end-page: 391 ident: CR8 article-title: Improved criteria for clustering based on the posterior similarity matrix publication-title: Bayesian anal. doi: 10.1214/09-BA414 – ident: CR17 – volume: 59 start-page: 731 issue: 4 year: 1997 end-page: 792 ident: CR25 article-title: On Bayesian analysis of mixtures with an unknown number of components publication-title: J. Royal Stat. Soc., Ser. B Methodol. doi: 10.1111/1467-9868.00095 – volume: 13 start-page: 129 year: 2013 ident: CR9 article-title: A semi-parametric approach to estimate risk functions associated with multidimensional exposure profiles: application to smoking and lung cancer publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-13-129 – volume: 25 start-page: 855 issue: 2 year: 1997 end-page: 900 ident: CR23 article-title: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator publication-title: Ann. Probab. doi: 10.1214/aop/1024404422 – volume: 1 start-page: 353 issue: 2 year: 1973 end-page: 355 ident: CR3 article-title: Ferguson distributions via Polya Urn Schemes publication-title: Ann. Stat. doi: 10.1214/aos/1176342372 – volume: 21 start-page: 93 issue: 1 year: 2011 end-page: 105 ident: CR14 article-title: Slice sampling mixture models publication-title: Stat. Comput. doi: 10.1007/s11222-009-9150-y – volume: 18 start-page: 3 year: 2011 end-page: 6 ident: CR27 article-title: Annealed SMC samplers for nonparametric Bayesian mixture models publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2072919 – volume: 96 start-page: 249 issue: 2 year: 2009 end-page: 262 ident: CR4 article-title: Nonparametric Bayes local partition models for random effects publication-title: Biometrika doi: 10.1093/biomet/asp021 – ident: CR24 – volume: 11 start-page: 484 issue: 3 year: 2010 end-page: 498 ident: CR16 article-title: Bayesian profile regression with an application to the National Survey of Children’s Health publication-title: Biostatistics doi: 10.1093/biostatistics/kxq013 – volume: 2 start-page: 1152 issue: 6 year: 1974 end-page: 1174 ident: CR1 article-title: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems publication-title: Ann. Stat. doi: 10.1214/aos/1176342871 – ident: CR20 – volume: 90 start-page: 577 issue: 430 year: 1995 ident: 9471_CR6 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476550 – volume: 18 start-page: 3 year: 2011 ident: 9471_CR27 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2072919 – volume: 103 start-page: 1508 issue: 484 year: 2008 ident: 9471_CR5 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000001039 – ident: 9471_CR19 – volume: 96 start-page: 249 issue: 2 year: 2009 ident: 9471_CR4 publication-title: Biometrika doi: 10.1093/biomet/asp021 – ident: 9471_CR15 – volume: 36 start-page: 45 year: 2007 ident: 9471_CR28 publication-title: Commun. Stat. - Simul. Comput. doi: 10.1080/03610910601096262 – volume: 4 start-page: 367 issue: 2 year: 2009 ident: 9471_CR8 publication-title: Bayesian anal. doi: 10.1214/09-BA414 – volume: 96 start-page: 161 issue: 453 year: 2001 ident: 9471_CR10 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501750332758 – volume: 6 start-page: 663 issue: 36 year: 2012 ident: 9471_CR22 publication-title: Genet. Epidemiol. doi: 10.1002/gepi.21661 – volume: 59 start-page: 731 issue: 4 year: 1997 ident: 9471_CR25 publication-title: J. Royal Stat. Soc., Ser. B Methodol. doi: 10.1111/1467-9868.00095 – volume: 21 start-page: 93 issue: 1 year: 2011 ident: 9471_CR14 publication-title: Stat. Comput. doi: 10.1007/s11222-009-9150-y – volume: 73 start-page: 37 year: 2011 ident: 9471_CR29 publication-title: J. Royal Stat. Soc., Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2010.00756.x – volume: 4 start-page: 639 year: 1994 ident: 9471_CR26 publication-title: Stat. Sin. – ident: 9471_CR24 – volume: 119 start-page: 84 year: 2011 ident: 9471_CR21 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1002118 – volume: 1 start-page: 209 issue: 2 year: 1973 ident: 9471_CR7 publication-title: Ann. Stat. doi: 10.1214/aos/1176342360 – volume: 2 start-page: 1152 issue: 6 year: 1974 ident: 9471_CR1 publication-title: Ann. Stat. doi: 10.1214/aos/1176342871 – volume: 25 start-page: 855 issue: 2 year: 1997 ident: 9471_CR23 publication-title: Ann. Probab. doi: 10.1214/aop/1024404422 – ident: 9471_CR18 doi: 10.2307/1390653 – volume: 11 start-page: 484 issue: 3 year: 2010 ident: 9471_CR16 publication-title: Biostatistics doi: 10.1093/biostatistics/kxq013 – volume: 2 start-page: 445 issue: 3 year: 2007 ident: 9471_CR12 publication-title: Bayesian Anal. doi: 10.1214/07-BA219 – volume: 1 start-page: 353 issue: 2 year: 1973 ident: 9471_CR3 publication-title: Ann. Stat. doi: 10.1214/aos/1176342372 – ident: 9471_CR17 doi: 10.1021/es104017x – volume: 13 start-page: 129 year: 2013 ident: 9471_CR9 publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-13-129 – ident: 9471_CR20 doi: 10.1093/biomet/asm086 – volume: 104 start-page: 26 issue: 485 year: 2009 ident: 9471_CR2 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0001 – volume: 13 start-page: 158 year: 2004 ident: 9471_CR11 publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860043001 – volume: 20 start-page: 50 issue: 1 year: 2005 ident: 9471_CR13 publication-title: Stat. Sci. doi: 10.1214/088342305000000016 |
| SSID | ssj0011634 |
| Score | 2.3359146 |
| Snippet | We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter
α
.... We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1023 |
| SubjectTerms | Algorithms Artificial Intelligence Computation Computer simulation Dirichlet problem Mathematical models Mathematics and Statistics Probability and Statistics in Computer Science Sampling Source code Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
| Title | Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations |
| URI | https://link.springer.com/article/10.1007/s11222-014-9471-3 https://www.ncbi.nlm.nih.gov/pubmed/26321800 https://www.proquest.com/docview/1744718017 https://www.proquest.com/docview/1826626025 https://pubmed.ncbi.nlm.nih.gov/PMC4550296 |
| Volume | 25 |
| WOSCitedRecordID | wos000358784100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Journals customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6R0AM9NDRAa17aSj0VWXL8WK-5IUTEBYRIW-Vmrde7xRLZRJhUPfand8YvlFIilXN2187u7Mw3nplvAD4bzX0pPOoBqNFBCVXsZlyT46oyE2pivaubTcTX12I6TW6aOu6yzXZvQ5KVpn4qdhuhLcNFQjdBjeoGPdhEayeoX8Pt5HsXOkCAUXFGITRHBROHbSjzX0usGqNnCPN5ouRf0dLKCI0Hr3r9bXjXYE52VgvJe9jQdgiDtp8Da673EN5edRyu5RC2CIfWNM478HsiKfXc_mBUj8JQURbqDo-cLepCAzYrflEsglWddUpGn3fZ0tIXO8sUlUbahp-XEdn4jJJwTmkSLVmdfckKy-4pL51R1iorZm1me3UzduHb-OLr-aXbNG9wFYKyR5drVF_cCM9E6NLJQBHS4WEciNBXSa4jGSS5MpHhWS4yE-fcz2UuIpmEUkkEZXvQt3OrPwIbidwEMvONJ2SYSV9wyfFIkoCPODWAd8BrTzFVDbM5Ndi4T584mWnzU9z8lDY_DRz40k1Z1LQe6wZ_akUjxctHERVp9XxZpiheZNxRq60Zgw4ceY1-5MCHWpy6RxJZPk73HIhXBK0bQOTfq7_Y4q4iAadqdD_hDpy04pY22qd8-Z_s_9foA9hCeBjVGXWH0H98WOojeKN-ovA9HEMvnorj6u79AcrAK10 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RWqlwALp9EPrAlXpqFSmbOI7DDVUgqsKqKrTiZjmOXSKxBhG26pGfzkxeaMtDas9rO1l7PPNNZuYbgA_OiljLiHoAWnRQuMnCQlhyXE3huCXWu7bZRDaZyOPj_FtXx1332e59SLLR1DfFbmO0ZbgID3PUqGHyCB5zNFhEmP_98OcQOkCA0XBGITRHBZPxPpR51xLzxugWwrydKPlXtLQxQrur__X6a7DSYU623QrJM1iwfgSrfT8H1l3vESwfDByu9QiWCIe2NM7P4epQU-q5_8WoHoWhoqzMCR45O28LDdi0-kOxCNZ01qkZfd5lM09f7DwzVBrpO35eRmTjU0rC2aJJtGRz9jWrPDulvHRGWausmvaZ7c3NeAE_dneOPu-FXfOG0CAouwyFRfUlnIxcii6dTgwhHcGzRPLY5KVNdZKXxqVOFKUsXFaKuNSlTHXOtdEIyl7Coj_zdh3YWJYu0UXsIql5oWMptMAjyRMxFtQAPoCoP0VlOmZzarBxqm44mWnzFW6-os1XSQAfhynnLa3HQ4Pf96Kh8PJRREV7ezarFYoXGXfUag-MQQeOvMY4DeBVK07DI4ksH6dHAWRzgjYMIPLv-V98ddKQgFM1epyLAD714qY67VPf_082_mn0JjzdOzrYV_tfJl9fwxJCxbTNrnsDi5cXM_sWnpjfKIgX75obeA3LUS1Z |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFqFyoLAUSClgJE6gqNnEcRxuiHYFAlaVCqg3y3FsGqnrrppdxJGf3pl8VUuhUsV5ba_iPI_fZGbeALxyVsRaRtQD0KKDwk0WFsKS42oKxy2p3rXNJrLpVB4f54ddn9O6z3bvQ5JtTQOpNPnF3rx0e5eFb2O813BBHuZoXcPkFmxwyqMnd_3o-xBGQLLR6EchTUdjk_E-rPm3JVYvpits82rS5B-R0-ZCmmz996Pch3sdF2XvWvA8gDXrR7DV93lg3bEfwd0vg7ZrPYJN4qetvPND-H2kKSXd_2BUp8LQgFbmBKHA5m0BAptVvyhGwZqOOzWjz75s6elLnmeGSiZ9p9vLSIR8Rsk5b2kSLdlgomaVZ6eUr84om5VVsz7jvTkx2_BtcvD1_Yewa-oQGiRri1BYNGvCycil6OrpxBADEjxLJI9NXtpUJ3lpXOpEUcrCZaWIS13KVOdcG41k7RGs-zNvnwAby9IluohdJDUvdCyFFvh68kSMBTWGDyDq36gyneI5Nd44VZdazbT5Cjdf0earJIDXw5R5K_dx3eCXPUwUHkqKtGhvz5a1QqjRpY_W7pox6NiRNxmnATxuoTX8JYno4_QogGwFdMMAEgVf_cVXJ404OFWpx7kI4E0PPdVZpfrfT7Jzo9Ev4M7h_kR9_jj99BQ2kUGmbdLdLqwvzpf2Gdw2PxGH58-bw3gBtLE2PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+from+Dirichlet+process+mixture+models+with+unknown+concentration+parameter%3A+mixing+issues+in+large+data+implementations&rft.jtitle=Statistics+and+computing&rft.au=Hastie%2C+David+I&rft.au=Liverani%2C+Silvia&rft.au=Richardson%2C+Sylvia&rft.date=2015-09-01&rft.issn=0960-3174&rft.volume=25&rft.issue=5&rft.spage=1023&rft_id=info:doi/10.1007%2Fs11222-014-9471-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |