Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations

We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 25; číslo 5; s. 1023 - 1037
Hlavní autori: Hastie, David I., Liverani, Silvia, Richardson, Sylvia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2015
Predmet:
ISSN:0960-3174, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54, 2007 ) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186, 2008 ). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008 ) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57, 2011 ). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on α . We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498, 2010 ) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
AbstractList We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter \(\alpha \). This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on \(\alpha \). We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter $$\alpha $$ α. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on $$\alpha $$ α. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α . This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45–54, 2007 ) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169–186, 2008 ). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008 ) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37–57, 2011 ). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on α . We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484–498, 2010 ) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Papaspiliopoulos and Roberts (Biometrika 95(1):169-186, 2008). Our general algorithm is implemented as efficient open source C++ software, available as an R package, and is based on a blocking strategy similar to that suggested by Papaspiliopoulos (A note on posterior sampling from Dirichlet mixture models, 2008) and implemented by Yau et al. (Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73:37-57, 2011). We discuss the difficulties of achieving good mixing in MCMC samplers of this nature in large data sets and investigate sensitivity to initialisation. We additionally consider the challenges when an additional layer of hierarchy is added such that joint inference is to be made on [Formula: see text]. We introduce a new label-switching move and compute the marginal partition posterior to help to surmount these difficulties. Our work is illustrated using a profile regression (Molitor et al. Biostatistics 11(3):484-498, 2010) application, where we demonstrate good mixing behaviour for both synthetic and real examples.
Author Richardson, Sylvia
Liverani, Silvia
Hastie, David I.
Author_xml – sequence: 1
  givenname: David I.
  surname: Hastie
  fullname: Hastie, David I.
  organization: Imperial College London
– sequence: 2
  givenname: Silvia
  surname: Liverani
  fullname: Liverani, Silvia
  organization: Imperial College London, MRC Biostatistics Unit
– sequence: 3
  givenname: Sylvia
  surname: Richardson
  fullname: Richardson, Sylvia
  email: sylvia.richardson@mrc-bsu.cam.ac.uk
  organization: MRC Biostatistics Unit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26321800$$D View this record in MEDLINE/PubMed
BookMark eNqFkjtvFDEUhS0URDaBH0CDXNIM-G0PBRIK4SFFogBqy-u5s-swYw_2DIEuPx0vkyCgCJULn-_4XN9zgo5iioDQY0qeUUL080IpY6whVDSt0LTh99CGSs0byrU8QhvSKtJwqsUxOinlkhBKFRcP0DFTnFFDyAZdf3TjNIS4w31OI34dcvD7AWY85eShFDyG7_OSAY-pg6HgqzDv8RK_xHQVsU_RQ5yzm0OKeHLZjTBDfnGADpahlAUKDhEPLu8Ad252ONT3YKzYL6o8RPd7NxR4dHOeos9vzj-dvWsuPrx9f_bqovFSyLlRYIxWvSG9NG3ruJdGKCU0N4L5tgPpeNv5XvZq25ltrzvFOtcZ6VrhvFOMn6KXq--0bEfo1tyDnXIYXf5hkwv275sY9naXvlkhJWGtqgZPbwxy-lrHmu0YiodhcBHSUiw1TCmmCJP_l2pR12UI1VX65M9Yv_PcbqgK9CrwOZWSobc-rF9XU4bBUmIPXbBrF2ztgj10wfJK0n_IW_O7GLYypWrjDrK9TEuOdTF3QD8BuJbJ-A
CitedBy_id crossref_primary_10_1214_19_BA1179
crossref_primary_10_1007_s00180_020_01000_3
crossref_primary_10_1080_10618600_2021_2000870
crossref_primary_10_1016_j_sste_2016_04_003
crossref_primary_10_1093_jrsssc_qlad097
crossref_primary_10_1080_24694452_2019_1586516
crossref_primary_10_1051_0004_6361_202039551
crossref_primary_10_1111_rssc_12599
crossref_primary_10_1111_insr_12595
crossref_primary_10_1002_bimj_201900146
crossref_primary_10_1089_cmb_2022_0273
crossref_primary_10_1080_10618600_2025_2526413
crossref_primary_10_2147_JIR_S297329
crossref_primary_10_3389_fpubh_2020_557006
crossref_primary_10_1080_01621459_2023_2279707
crossref_primary_10_1177_09622802221129044
crossref_primary_10_1111_rssc_12469
crossref_primary_10_1111_rssc_12546
crossref_primary_10_1007_s11222_017_9786_y
crossref_primary_10_1016_j_envint_2024_108943
crossref_primary_10_1016_j_socscimed_2021_114543
crossref_primary_10_1002_sim_7572
crossref_primary_10_1016_j_spl_2023_109930
crossref_primary_10_1371_journal_pone_0233542
crossref_primary_10_1007_s10518_021_01312_9
crossref_primary_10_1109_TSG_2022_3171499
crossref_primary_10_1007_s10811_017_1326_9
crossref_primary_10_3847_1538_3881_aae263
crossref_primary_10_1080_01621459_2019_1665528
crossref_primary_10_1002_wics_1535
crossref_primary_10_1016_j_csda_2022_107565
crossref_primary_10_1016_j_amar_2022_100231
crossref_primary_10_1109_ACCESS_2024_3523340
Cites_doi 10.1080/01621459.1995.10476550
10.1198/1061860043001
10.1214/07-BA219
10.1198/jasa.2009.0001
10.1214/aos/1176342360
10.1198/016214501750332758
10.1111/j.1467-9868.2010.00756.x
10.1289/ehp.1002118
10.1002/gepi.21661
10.1214/088342305000000016
10.1080/03610910601096262
10.1198/016214508000001039
10.1214/09-BA414
10.1111/1467-9868.00095
10.1186/1471-2288-13-129
10.1214/aop/1024404422
10.1214/aos/1176342372
10.1007/s11222-009-9150-y
10.1109/LSP.2010.2072919
10.1093/biomet/asp021
10.1093/biostatistics/kxq013
10.1214/aos/1176342871
10.2307/1390653
10.1021/es104017x
10.1093/biomet/asm086
ContentType Journal Article
Copyright The Author(s) 2014
Copyright_xml – notice: The Author(s) 2014
DBID C6C
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1007/s11222-014-9471-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1037
ExternalDocumentID PMC4550296
26321800
10_1007_s11222_014_9471_3
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UP_0801/1
– fundername: Medical Research Council
  grantid: G1002319
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c545t-6e8876f80f5899a3c58466473842c9de5a39dcf5f6bd8bf7d62dad85a94aca623
IEDL.DBID RSV
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358784100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Tue Nov 04 01:57:50 EST 2025
Fri Sep 05 07:03:53 EDT 2025
Sun Nov 09 10:09:15 EST 2025
Mon Jul 21 05:58:50 EDT 2025
Sat Nov 29 03:32:41 EST 2025
Tue Nov 18 21:15:50 EST 2025
Fri Feb 21 02:34:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Mixture model
Profile regression
Dirichlet process
Bayesian clustering
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-6e8876f80f5899a3c58466473842c9de5a39dcf5f6bd8bf7d62dad85a94aca623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s11222-014-9471-3
PMID 26321800
PQID 1744718017
PQPubID 23500
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4550296
proquest_miscellaneous_1826626025
proquest_miscellaneous_1744718017
pubmed_primary_26321800
crossref_citationtrail_10_1007_s11222_014_9471_3
crossref_primary_10_1007_s11222_014_9471_3
springer_journals_10_1007_s11222_014_9471_3
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationTitleAlternate Stat Comput
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Molitor, Papathomas, Jerrett, Richardson (CR16) 2010; 11
Dunson, Herring, Siega-Riz (CR5) 2008; 103
Fritsch, Ickstadt (CR8) 2009; 4
Hastie, Liverani, Azizi, Richardson, Stücker (CR9) 2013; 13
Papathomas, Molitor, Hoggart, Hastie, Richardson (CR22) 2012; 6
Bigelow, Dunson (CR2) 2009; 104
Jain, Neal (CR11) 2004; 13
CR19
CR18
CR17
Blackwell, MacQueen (CR3) 1973; 1
CR15
Walker (CR28) 2007; 36
Pitman, Yor (CR23) 1997; 25
Richardson, Green (CR25) 1997; 59
Ulker, Gunsel, Cegil (CR27) 2011; 18
Antoniak (CR1) 1974; 2
Ferguson (CR7) 1973; 1
Kalli, Griffin, Walker (CR14) 2011; 21
Papathomas, Molitor, Richardson, Riboli, Vineis (CR21) 2011; 119
Yau, Papaspiliopoulos, Roberts, Holmes (CR29) 2011; 73
Sethuraman (CR26) 1994; 4
Jasra, Holmes, Stephens (CR13) 2005; 20
Ishwaran, James (CR10) 2001; 96
Dunson (CR4) 2009; 96
CR24
CR20
Escobar, West (CR6) 1995; 90
Jain, Neal (CR12) 2007; 2
DI Hastie (9471_CR9) 2013; 13
CE Antoniak (9471_CR1) 1974; 2
SG Walker (9471_CR28) 2007; 36
9471_CR18
S Jain (9471_CR11) 2004; 13
9471_CR19
J Pitman (9471_CR23) 1997; 25
H Ishwaran (9471_CR10) 2001; 96
D Blackwell (9471_CR3) 1973; 1
9471_CR24
J Molitor (9471_CR16) 2010; 11
S Richardson (9471_CR25) 1997; 59
S Jain (9471_CR12) 2007; 2
9471_CR20
DB Dunson (9471_CR4) 2009; 96
JL Bigelow (9471_CR2) 2009; 104
MD Escobar (9471_CR6) 1995; 90
C Yau (9471_CR29) 2011; 73
A Fritsch (9471_CR8) 2009; 4
J Sethuraman (9471_CR26) 1994; 4
9471_CR15
TS Ferguson (9471_CR7) 1973; 1
A Jasra (9471_CR13) 2005; 20
9471_CR17
M Papathomas (9471_CR21) 2011; 119
Y Ulker (9471_CR27) 2011; 18
M Kalli (9471_CR14) 2011; 21
DB Dunson (9471_CR5) 2008; 103
M Papathomas (9471_CR22) 2012; 6
References_xml – volume: 90
  start-page: 577
  issue: 430
  year: 1995
  end-page: 588
  ident: CR6
  article-title: Bayesian density estimation and inference using mixtures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476550
– volume: 13
  start-page: 158
  year: 2004
  end-page: 182
  ident: CR11
  article-title: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860043001
– ident: CR18
– volume: 2
  start-page: 445
  issue: 3
  year: 2007
  end-page: 472
  ident: CR12
  article-title: Splitting and merging components of a nonconjugate dirichlet process mixture model
  publication-title: Bayesian Anal.
  doi: 10.1214/07-BA219
– volume: 104
  start-page: 26
  issue: 485
  year: 2009
  end-page: 36
  ident: CR2
  article-title: Bayesian semiparametric joint models for functional predictors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0001
– volume: 1
  start-page: 209
  issue: 2
  year: 1973
  end-page: 230
  ident: CR7
  article-title: A Bayesian analysis of some nonparametric problems
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342360
– volume: 96
  start-page: 161
  issue: 453
  year: 2001
  end-page: 173
  ident: CR10
  article-title: Gibbs sampling methods for stick-breaking priors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501750332758
– volume: 4
  start-page: 639
  year: 1994
  end-page: 650
  ident: CR26
  article-title: A constructive definition of Dirichlet priors
  publication-title: Stat. Sin.
– volume: 73
  start-page: 37
  year: 2011
  end-page: 57
  ident: CR29
  article-title: Bayesian non-parametric hidden Markov models with applications in genomics
  publication-title: J. Royal Stat. Soc., Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2010.00756.x
– volume: 119
  start-page: 84
  year: 2011
  end-page: 91
  ident: CR21
  article-title: Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in non-smokers
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1002118
– volume: 6
  start-page: 663
  issue: 36
  year: 2012
  end-page: 674
  ident: CR22
  article-title: Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process : application to searching for gene gene patterns
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21661
– volume: 20
  start-page: 50
  issue: 1
  year: 2005
  end-page: 67
  ident: CR13
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Stat. Sci.
  doi: 10.1214/088342305000000016
– ident: CR19
– volume: 36
  start-page: 45
  year: 2007
  end-page: 54
  ident: CR28
  article-title: Sampling the Dirichlet mixture model with slices
  publication-title: Commun. Stat. - Simul. Comput.
  doi: 10.1080/03610910601096262
– volume: 103
  start-page: 1508
  issue: 484
  year: 2008
  end-page: 1517
  ident: CR5
  article-title: Bayesian inference on changes in response densities over predictor clusters
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000001039
– ident: CR15
– volume: 4
  start-page: 367
  issue: 2
  year: 2009
  end-page: 391
  ident: CR8
  article-title: Improved criteria for clustering based on the posterior similarity matrix
  publication-title: Bayesian anal.
  doi: 10.1214/09-BA414
– ident: CR17
– volume: 59
  start-page: 731
  issue: 4
  year: 1997
  end-page: 792
  ident: CR25
  article-title: On Bayesian analysis of mixtures with an unknown number of components
  publication-title: J. Royal Stat. Soc., Ser. B Methodol.
  doi: 10.1111/1467-9868.00095
– volume: 13
  start-page: 129
  year: 2013
  ident: CR9
  article-title: A semi-parametric approach to estimate risk functions associated with multidimensional exposure profiles: application to smoking and lung cancer
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-13-129
– volume: 25
  start-page: 855
  issue: 2
  year: 1997
  end-page: 900
  ident: CR23
  article-title: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404422
– volume: 1
  start-page: 353
  issue: 2
  year: 1973
  end-page: 355
  ident: CR3
  article-title: Ferguson distributions via Polya Urn Schemes
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342372
– volume: 21
  start-page: 93
  issue: 1
  year: 2011
  end-page: 105
  ident: CR14
  article-title: Slice sampling mixture models
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9150-y
– volume: 18
  start-page: 3
  year: 2011
  end-page: 6
  ident: CR27
  article-title: Annealed SMC samplers for nonparametric Bayesian mixture models
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2072919
– volume: 96
  start-page: 249
  issue: 2
  year: 2009
  end-page: 262
  ident: CR4
  article-title: Nonparametric Bayes local partition models for random effects
  publication-title: Biometrika
  doi: 10.1093/biomet/asp021
– ident: CR24
– volume: 11
  start-page: 484
  issue: 3
  year: 2010
  end-page: 498
  ident: CR16
  article-title: Bayesian profile regression with an application to the National Survey of Children’s Health
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq013
– volume: 2
  start-page: 1152
  issue: 6
  year: 1974
  end-page: 1174
  ident: CR1
  article-title: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342871
– ident: CR20
– volume: 90
  start-page: 577
  issue: 430
  year: 1995
  ident: 9471_CR6
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476550
– volume: 18
  start-page: 3
  year: 2011
  ident: 9471_CR27
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2072919
– volume: 103
  start-page: 1508
  issue: 484
  year: 2008
  ident: 9471_CR5
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000001039
– ident: 9471_CR19
– volume: 96
  start-page: 249
  issue: 2
  year: 2009
  ident: 9471_CR4
  publication-title: Biometrika
  doi: 10.1093/biomet/asp021
– ident: 9471_CR15
– volume: 36
  start-page: 45
  year: 2007
  ident: 9471_CR28
  publication-title: Commun. Stat. - Simul. Comput.
  doi: 10.1080/03610910601096262
– volume: 4
  start-page: 367
  issue: 2
  year: 2009
  ident: 9471_CR8
  publication-title: Bayesian anal.
  doi: 10.1214/09-BA414
– volume: 96
  start-page: 161
  issue: 453
  year: 2001
  ident: 9471_CR10
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501750332758
– volume: 6
  start-page: 663
  issue: 36
  year: 2012
  ident: 9471_CR22
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21661
– volume: 59
  start-page: 731
  issue: 4
  year: 1997
  ident: 9471_CR25
  publication-title: J. Royal Stat. Soc., Ser. B Methodol.
  doi: 10.1111/1467-9868.00095
– volume: 21
  start-page: 93
  issue: 1
  year: 2011
  ident: 9471_CR14
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9150-y
– volume: 73
  start-page: 37
  year: 2011
  ident: 9471_CR29
  publication-title: J. Royal Stat. Soc., Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2010.00756.x
– volume: 4
  start-page: 639
  year: 1994
  ident: 9471_CR26
  publication-title: Stat. Sin.
– ident: 9471_CR24
– volume: 119
  start-page: 84
  year: 2011
  ident: 9471_CR21
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1002118
– volume: 1
  start-page: 209
  issue: 2
  year: 1973
  ident: 9471_CR7
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342360
– volume: 2
  start-page: 1152
  issue: 6
  year: 1974
  ident: 9471_CR1
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342871
– volume: 25
  start-page: 855
  issue: 2
  year: 1997
  ident: 9471_CR23
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1024404422
– ident: 9471_CR18
  doi: 10.2307/1390653
– volume: 11
  start-page: 484
  issue: 3
  year: 2010
  ident: 9471_CR16
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq013
– volume: 2
  start-page: 445
  issue: 3
  year: 2007
  ident: 9471_CR12
  publication-title: Bayesian Anal.
  doi: 10.1214/07-BA219
– volume: 1
  start-page: 353
  issue: 2
  year: 1973
  ident: 9471_CR3
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176342372
– ident: 9471_CR17
  doi: 10.1021/es104017x
– volume: 13
  start-page: 129
  year: 2013
  ident: 9471_CR9
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-13-129
– ident: 9471_CR20
  doi: 10.1093/biomet/asm086
– volume: 104
  start-page: 26
  issue: 485
  year: 2009
  ident: 9471_CR2
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0001
– volume: 13
  start-page: 158
  year: 2004
  ident: 9471_CR11
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860043001
– volume: 20
  start-page: 50
  issue: 1
  year: 2005
  ident: 9471_CR13
  publication-title: Stat. Sci.
  doi: 10.1214/088342305000000016
SSID ssj0011634
Score 2.3359146
Snippet We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter α ....
We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1023
SubjectTerms Algorithms
Artificial Intelligence
Computation
Computer simulation
Dirichlet problem
Mathematical models
Mathematics and Statistics
Probability and Statistics in Computer Science
Sampling
Source code
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations
URI https://link.springer.com/article/10.1007/s11222-014-9471-3
https://www.ncbi.nlm.nih.gov/pubmed/26321800
https://www.proquest.com/docview/1744718017
https://www.proquest.com/docview/1826626025
https://pubmed.ncbi.nlm.nih.gov/PMC4550296
Volume 25
WOSCitedRecordID wos000358784100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6R0AM9NDRAa17aSj0VWXL8WK-5IUTEBYRIW-Vmrde7xRLZRJhUPfand8YvlFIilXN2187u7Mw3nplvAD4bzX0pPOoBqNFBCVXsZlyT46oyE2pivaubTcTX12I6TW6aOu6yzXZvQ5KVpn4qdhuhLcNFQjdBjeoGPdhEayeoX8Pt5HsXOkCAUXFGITRHBROHbSjzX0usGqNnCPN5ouRf0dLKCI0Hr3r9bXjXYE52VgvJe9jQdgiDtp8Da673EN5edRyu5RC2CIfWNM478HsiKfXc_mBUj8JQURbqDo-cLepCAzYrflEsglWddUpGn3fZ0tIXO8sUlUbahp-XEdn4jJJwTmkSLVmdfckKy-4pL51R1iorZm1me3UzduHb-OLr-aXbNG9wFYKyR5drVF_cCM9E6NLJQBHS4WEciNBXSa4jGSS5MpHhWS4yE-fcz2UuIpmEUkkEZXvQt3OrPwIbidwEMvONJ2SYSV9wyfFIkoCPODWAd8BrTzFVDbM5Ndi4T584mWnzU9z8lDY_DRz40k1Z1LQe6wZ_akUjxctHERVp9XxZpiheZNxRq60Zgw4ceY1-5MCHWpy6RxJZPk73HIhXBK0bQOTfq7_Y4q4iAadqdD_hDpy04pY22qd8-Z_s_9foA9hCeBjVGXWH0H98WOojeKN-ovA9HEMvnorj6u79AcrAK10
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RWqlwALp9EPrAlXpqFSmbOI7DDVUgqsKqKrTiZjmOXSKxBhG26pGfzkxeaMtDas9rO1l7PPNNZuYbgA_OiljLiHoAWnRQuMnCQlhyXE3huCXWu7bZRDaZyOPj_FtXx1332e59SLLR1DfFbmO0ZbgID3PUqGHyCB5zNFhEmP_98OcQOkCA0XBGITRHBZPxPpR51xLzxugWwrydKPlXtLQxQrur__X6a7DSYU623QrJM1iwfgSrfT8H1l3vESwfDByu9QiWCIe2NM7P4epQU-q5_8WoHoWhoqzMCR45O28LDdi0-kOxCNZ01qkZfd5lM09f7DwzVBrpO35eRmTjU0rC2aJJtGRz9jWrPDulvHRGWausmvaZ7c3NeAE_dneOPu-FXfOG0CAouwyFRfUlnIxcii6dTgwhHcGzRPLY5KVNdZKXxqVOFKUsXFaKuNSlTHXOtdEIyl7Coj_zdh3YWJYu0UXsIql5oWMptMAjyRMxFtQAPoCoP0VlOmZzarBxqm44mWnzFW6-os1XSQAfhynnLa3HQ4Pf96Kh8PJRREV7ezarFYoXGXfUag-MQQeOvMY4DeBVK07DI4ksH6dHAWRzgjYMIPLv-V98ddKQgFM1epyLAD714qY67VPf_082_mn0JjzdOzrYV_tfJl9fwxJCxbTNrnsDi5cXM_sWnpjfKIgX75obeA3LUS1Z
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFqFyoLAUSClgJE6gqNnEcRxuiHYFAlaVCqg3y3FsGqnrrppdxJGf3pl8VUuhUsV5ba_iPI_fZGbeALxyVsRaRtQD0KKDwk0WFsKS42oKxy2p3rXNJrLpVB4f54ddn9O6z3bvQ5JtTQOpNPnF3rx0e5eFb2O813BBHuZoXcPkFmxwyqMnd_3o-xBGQLLR6EchTUdjk_E-rPm3JVYvpits82rS5B-R0-ZCmmz996Pch3sdF2XvWvA8gDXrR7DV93lg3bEfwd0vg7ZrPYJN4qetvPND-H2kKSXd_2BUp8LQgFbmBKHA5m0BAptVvyhGwZqOOzWjz75s6elLnmeGSiZ9p9vLSIR8Rsk5b2kSLdlgomaVZ6eUr84om5VVsz7jvTkx2_BtcvD1_Yewa-oQGiRri1BYNGvCycil6OrpxBADEjxLJI9NXtpUJ3lpXOpEUcrCZaWIS13KVOdcG41k7RGs-zNvnwAby9IluohdJDUvdCyFFvh68kSMBTWGDyDq36gyneI5Nd44VZdazbT5Cjdf0earJIDXw5R5K_dx3eCXPUwUHkqKtGhvz5a1QqjRpY_W7pox6NiRNxmnATxuoTX8JYno4_QogGwFdMMAEgVf_cVXJ404OFWpx7kI4E0PPdVZpfrfT7Jzo9Ev4M7h_kR9_jj99BQ2kUGmbdLdLqwvzpf2Gdw2PxGH58-bw3gBtLE2PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+from+Dirichlet+process+mixture+models+with+unknown+concentration+parameter%3A+mixing+issues+in+large+data+implementations&rft.jtitle=Statistics+and+computing&rft.au=Hastie%2C+David+I&rft.au=Liverani%2C+Silvia&rft.au=Richardson%2C+Sylvia&rft.date=2015-09-01&rft.issn=0960-3174&rft.volume=25&rft.issue=5&rft.spage=1023&rft_id=info:doi/10.1007%2Fs11222-014-9471-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon