Live imaging of root-bacteria interactions in a microfluidics setup
Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluid...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 17; p. 4549 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
25.04.2017
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled
as it colonizes the root of
within the TRIS device. Our results show a distinct chemotactic behavior of
toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of
cells from the root surface after
colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research. |
|---|---|
| AbstractList | Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled
as it colonizes the root of
within the TRIS device. Our results show a distinct chemotactic behavior of
toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of
cells from the root surface after
colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research. Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research. |
| Author | Shapiro, Orr H Malitsky, Sergey Aharoni, Asaph Massalha, Hassan Korenblum, Elisa |
| Author_xml | – sequence: 1 givenname: Hassan surname: Massalha fullname: Massalha, Hassan organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 2 givenname: Elisa surname: Korenblum fullname: Korenblum, Elisa organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 3 givenname: Sergey surname: Malitsky fullname: Malitsky, Sergey organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 4 givenname: Orr H surname: Shapiro fullname: Shapiro, Orr H email: orr@agri.gov.il, asaph.aharoni@weizmann.ac.il organization: Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel – sequence: 5 givenname: Asaph surname: Aharoni fullname: Aharoni, Asaph email: orr@agri.gov.il, asaph.aharoni@weizmann.ac.il organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; orr@agri.gov.il asaph.aharoni@weizmann.ac.il |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28348235$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA9du5Ms3XTMbW6aZCmDLyi4mX1JmnSItE1tWsF_b8ERXJ1z4OPAtyWrPvaekFtge2CSPwy9SXsoQAmFAHhBNsA0ZAVqtvrX12Sb0gdjTAvFrsg6VxxVzsWGHMrw5WnozCn0JxobOsY4ZdbUkx-DoaFfchkh9mkZ1NAu1GNs2jm4UCea_DQP1-SyMW3yN-fckePz0_HwmpXvL2-HxzKrBYopE-CZQ2RoJFquCnBOWqy5hkYLW9gCC28MKseF1Dlgg7lXynLpFkS4fEfuf2-HMX7OPk1VF1Lt29b0Ps6pAqVAStAoFvTujM62864axsVw_K7-vPMf1ONbbg |
| CitedBy_id | crossref_primary_10_1016_j_gde_2018_03_007 crossref_primary_10_1111_pce_70010 crossref_primary_10_1093_forsci_fxab050 crossref_primary_10_1016_j_tibtech_2020_07_008 crossref_primary_10_1093_femsre_fuae008 crossref_primary_10_1038_s41579_019_0212_7 crossref_primary_10_1128_AEM_01026_20 crossref_primary_10_1111_tpj_16405 crossref_primary_10_1007_s00284_020_01971_y crossref_primary_10_1016_j_isci_2023_107925 crossref_primary_10_1002_biot_201900279 crossref_primary_10_1371_journal_pcbi_1010533 crossref_primary_10_3389_fmicb_2020_548037 crossref_primary_10_1007_s11356_022_21480_8 crossref_primary_10_1186_s40538_021_00244_5 crossref_primary_10_1016_j_procbio_2024_10_004 crossref_primary_10_1134_S1064229321120024 crossref_primary_10_1128_spectrum_00032_24 crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_1080_07388551_2022_2034733 crossref_primary_10_1038_s41396_022_01277_w crossref_primary_10_3390_biology10060496 crossref_primary_10_1038_s41378_021_00331_5 crossref_primary_10_1007_s13206_022_00067_y crossref_primary_10_1128_msystems_00765_21 crossref_primary_10_3390_app15137127 crossref_primary_10_1111_pce_70004 crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_1128_spectrum_01982_24 crossref_primary_10_1038_s42003_025_07811_8 crossref_primary_10_1016_j_chom_2017_07_004 crossref_primary_10_1002_adhm_202301586 crossref_primary_10_3389_fpls_2021_621276 crossref_primary_10_1086_706198 crossref_primary_10_3389_fmicb_2019_02163 crossref_primary_10_1002_agg2_70169 crossref_primary_10_1016_j_pmpp_2025_102818 crossref_primary_10_1007_s11104_018_3692_8 crossref_primary_10_1016_j_pmpp_2023_102029 crossref_primary_10_1016_j_soilbio_2024_109456 crossref_primary_10_1111_tpj_13543 crossref_primary_10_1016_j_csbj_2020_05_023 crossref_primary_10_1016_j_jbiotec_2022_03_014 crossref_primary_10_1002_anie_202419510 crossref_primary_10_3389_fpls_2024_1440728 crossref_primary_10_1111_1462_2920_15747 crossref_primary_10_1016_j_cej_2023_147311 crossref_primary_10_1039_C7CS00343A crossref_primary_10_3390_agronomy9110764 crossref_primary_10_1038_s41592_019_0465_0 crossref_primary_10_1038_s41522_022_00327_7 crossref_primary_10_1073_pnas_2013925118 crossref_primary_10_1016_j_pbi_2023_102369 crossref_primary_10_1146_annurev_anchem_061417_125635 crossref_primary_10_1016_j_geoderma_2021_115563 crossref_primary_10_1093_femsre_fuy014 crossref_primary_10_1111_1758_2229_12934 crossref_primary_10_1042_EBC20190002 crossref_primary_10_1016_j_rhisph_2022_100561 crossref_primary_10_1093_femsre_fuab038 crossref_primary_10_1111_jen_12842 crossref_primary_10_3389_fpls_2024_1388384 crossref_primary_10_1038_s41598_019_45167_2 crossref_primary_10_1002_adhm_202001856 crossref_primary_10_1016_j_chemosphere_2023_137860 crossref_primary_10_1002_adbi_201800048 crossref_primary_10_1016_j_jia_2025_05_008 crossref_primary_10_1016_j_tplants_2025_06_002 crossref_primary_10_1016_j_ncrops_2023_11_002 crossref_primary_10_1139_cjss_2019_0146 crossref_primary_10_1002_ange_202419510 crossref_primary_10_1103_PhysRevE_111_024411 crossref_primary_10_3389_fmicb_2020_585443 crossref_primary_10_3389_fmicb_2025_1570235 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1186_s13007_019_0459_z crossref_primary_10_3389_fpls_2020_00408 crossref_primary_10_1016_j_apsoil_2024_105351 crossref_primary_10_1093_jambio_lxaf090 crossref_primary_10_1111_1462_2920_14472 crossref_primary_10_1099_mic_0_001477 crossref_primary_10_3390_plants11131654 crossref_primary_10_3390_plants8070236 crossref_primary_10_1002_adma_201900284 crossref_primary_10_1093_jxb_erac184 crossref_primary_10_3389_fpls_2023_1132824 crossref_primary_10_1002_adfm_201804773 crossref_primary_10_1039_D4EN00936C crossref_primary_10_1093_plcell_koac163 crossref_primary_10_1094_MPMI_04_19_0115_CR crossref_primary_10_3390_molecules28186735 crossref_primary_10_1038_s41467_023_37188_3 crossref_primary_10_1016_j_tplants_2017_09_003 crossref_primary_10_1038_s41378_021_00309_3 crossref_primary_10_3389_fmicb_2021_625752 crossref_primary_10_3390_app11199182 crossref_primary_10_1073_pnas_2109176118 crossref_primary_10_1016_j_pbi_2020_09_004 crossref_primary_10_1016_j_rhisph_2018_02_003 crossref_primary_10_1139_cjb_2019_0093 crossref_primary_10_3390_plants11162127 crossref_primary_10_1007_s42832_019_0017_7 crossref_primary_10_1186_s40168_023_01660_5 crossref_primary_10_1038_s41378_020_0164_0 crossref_primary_10_1016_j_tim_2022_09_016 crossref_primary_10_1073_pnas_1912130117 crossref_primary_10_1111_tpj_15511 crossref_primary_10_3390_plants8010014 crossref_primary_10_1088_1478_3975_ab0946 crossref_primary_10_1016_j_heliyon_2024_e40522 crossref_primary_10_3390_microorganisms12112290 crossref_primary_10_1007_s12223_025_01301_4 crossref_primary_10_1038_s41579_021_00540_9 crossref_primary_10_1016_j_soilbio_2025_109944 crossref_primary_10_1111_pce_14237 crossref_primary_10_3389_fmicb_2021_651891 crossref_primary_10_1146_annurev_phyto_021622_100127 crossref_primary_10_1016_j_copbio_2019_09_001 crossref_primary_10_1111_tpj_14781 crossref_primary_10_1093_plphys_kiae605 crossref_primary_10_1038_s41589_023_01462_8 crossref_primary_10_1007_s11104_025_07495_3 crossref_primary_10_1016_j_mib_2023_102283 crossref_primary_10_1007_s00374_022_01683_4 crossref_primary_10_1016_j_mib_2017_12_004 crossref_primary_10_3389_fbioe_2024_1395959 crossref_primary_10_1007_s11274_024_03903_5 crossref_primary_10_1007_s11356_021_15838_7 crossref_primary_10_1073_pnas_2403122121 crossref_primary_10_1242_jcs_209270 crossref_primary_10_3389_fpls_2018_01205 crossref_primary_10_1016_j_tifs_2022_07_014 crossref_primary_10_1186_s13059_025_03739_8 crossref_primary_10_1007_s11356_020_10471_2 crossref_primary_10_1038_s41598_019_51624_9 crossref_primary_10_1016_j_soilbio_2018_12_012 crossref_primary_10_1038_s41598_021_89569_7 crossref_primary_10_1016_j_scitotenv_2023_167774 crossref_primary_10_1038_s41467_021_26005_4 crossref_primary_10_3390_ijms22157880 crossref_primary_10_1146_annurev_arplant_083123_082752 crossref_primary_10_3389_fpls_2019_00862 crossref_primary_10_1002_pld3_207 crossref_primary_10_3389_fmicb_2018_00853 crossref_primary_10_1146_annurev_arplant_050718_100038 crossref_primary_10_1371_journal_ppat_1011175 crossref_primary_10_1111_1462_2920_16164 crossref_primary_10_1016_j_pbi_2017_04_023 crossref_primary_10_1038_s41598_024_56443_1 crossref_primary_10_1093_jxb_erad122 crossref_primary_10_1002_sae2_12060 crossref_primary_10_1007_s10452_025_10185_y crossref_primary_10_3390_jof11010077 crossref_primary_10_1007_s10265_019_01124_8 crossref_primary_10_1016_j_soilbio_2020_108078 crossref_primary_10_3389_fmicb_2022_829717 crossref_primary_10_1002_ecy_4030 crossref_primary_10_1016_j_apsoil_2024_105390 crossref_primary_10_1371_journal_pcbi_1010916 crossref_primary_10_1002_adma_202007429 crossref_primary_10_1038_s41579_019_0182_9 crossref_primary_10_1039_D5LC00348B crossref_primary_10_1093_pcp_pcab067 crossref_primary_10_1073_pnas_1703800114 crossref_primary_10_1186_s40168_020_00997_5 crossref_primary_10_1016_j_tibtech_2021_04_008 crossref_primary_10_1111_tpj_16039 crossref_primary_10_1094_PHYTO_07_19_0243_R crossref_primary_10_3389_fpls_2022_987112 crossref_primary_10_1186_s13007_022_00875_1 crossref_primary_10_3389_fpls_2021_690567 crossref_primary_10_1016_j_copbio_2018_08_004 crossref_primary_10_1139_cjm_2021_0355 crossref_primary_10_1186_s40694_019_0071_z crossref_primary_10_1016_j_csbj_2023_10_055 crossref_primary_10_1073_pnas_2408711121 crossref_primary_10_1007_s10886_021_01337_z crossref_primary_10_1111_pce_15311 crossref_primary_10_1038_s41477_018_0139_4 crossref_primary_10_1016_j_cub_2024_09_071 crossref_primary_10_3390_agriengineering3040049 crossref_primary_10_1038_nrmicro_2017_171 crossref_primary_10_1016_j_soilbio_2023_109253 crossref_primary_10_1111_nph_14887 crossref_primary_10_3389_fcimb_2022_896149 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1618584114 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 28348235 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c545t-51e0d4404a74b3861dd7b4c391f95b6b646eaa48d3579214f42e88b37d3915d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399995600076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Nov 09 11:03:28 EST 2025 Thu Apr 03 07:11:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | live-imaging microscopy root–bacteria interaction microbial community dynamics Bacillus subtilis TRIS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-51e0d4404a74b3861dd7b4c391f95b6b646eaa48d3579214f42e88b37d3915d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/114/17/4549.full.pdf |
| PMID | 28348235 |
| PQID | 1881771945 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1881771945 pubmed_primary_28348235 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-25 |
| PublicationDateYYYYMMDD | 2017-04-25 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2017 |
| References | 9194713 - Mol Microbiol. 1997 May;24(4):869-78 18789693 - Trends Microbiol. 2008 Oct;16(10):463-71 12356720 - EMBO J. 2002 Oct 1;21(19):5036-46 24982600 - Arabidopsis Book. 2014 Jun 25;12:e0172 23736285 - MBio. 2013 Jun 04;4(3):e00314-13 21711399 - Plant J. 2011 Oct;68(2):377-85 20404797 - J Vis Exp. 2010 Apr 19;(38):null 26305938 - Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20 21478901 - Nat Rev Microbiol. 2011 May;9(5):344-55 18829985 - Plant Physiol. 2008 Dec;148(4):2021-49 1768108 - Appl Environ Microbiol. 1991 Aug;57(8):2392-4 25350154 - ISME J. 2015 Mar 17;9(4):980-9 22859207 - Nature. 2012 Aug 2;488(7409):91-5 19395683 - Plant Cell. 2009 Apr;21(4):1080-94 27899502 - MBio. 2016 Nov 29;7(6):null 23569226 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17 ):E1621-30 24773019 - Annu Rev Biophys. 2014;43:65-91 22186371 - Plant Cell. 2011 Dec;23(12):4234-40 16391098 - Appl Environ Microbiol. 2006 Jan;72(1):612-21 26645910 - Lab Chip. 2016 Jan 21;16(2):228-41 23476065 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1232-41 17953605 - J Appl Microbiol. 2007 Nov;103(5):1950-9 25457500 - Phytochemistry. 2014 Dec;108:35-46 10589676 - Cell. 1999 Nov 24;99(5):473-83 26184915 - Science. 2015 Aug 21;349(6250):860-4 22934605 - Environ Microbiol. 2013 Feb;15(2):487-501 23373698 - Annu Rev Plant Biol. 2013;64:807-38 26002145 - Mol Plant. 2015 Aug;8(8):1188-200 20544086 - Lab Chip. 2010 Aug 21;10(16):2147-53 21551032 - Science. 2011 May 27;332(6033):1097-100 24984591 - Lab Chip. 2014 Sep 7;14(17):3262-74 20676081 - Nat Methods. 2010 Aug;7(8):603-14 25807888 - Mol Microbiol. 2015 Jun;96(6):1272-82 25909975 - ISME J. 2015 Nov;9(11):2349-59 25232638 - Nat Commun. 2014 Sep 18;5:4950 15639628 - Trends Microbiol. 2005 Jan;13(1):20-6 19327979 - Curr Opin Biotechnol. 2009 Apr;20(2):248-54 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807 19343338 - Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53 28377510 - Proc Natl Acad Sci U S A. 2017 Apr 25;114(17 ):4281-4283 24196324 - ISME J. 2014 Apr;8(4):790-803 19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13 24510109 - Lab Chip. 2014 Apr 7;14(7):1281-93 27019743 - Nat Plants. 2015;1(6):null 9468659 - Microbiol Res. 1997 Dec;152(4):359-65 26940983 - Nat Commun. 2016 Mar 04;7:10860 20480162 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1895-905 20201804 - Recent Pat Biotechnol. 2010 Jan;4(1):81-95 15845853 - Science. 2005 Apr 22;308(5721):554-7 12039728 - Appl Environ Microbiol. 2002 Jun;68(6):2737-44 26734056 - Front Plant Sci. 2015 Dec 24;6:1178 22859206 - Nature. 2012 Aug 2;488(7409):86-90 18820082 - Plant Physiol. 2008 Nov;148(3):1547-56 |
| References_xml | – reference: 27019743 - Nat Plants. 2015;1(6):null – reference: 23373698 - Annu Rev Plant Biol. 2013;64:807-38 – reference: 25232638 - Nat Commun. 2014 Sep 18;5:4950 – reference: 12356720 - EMBO J. 2002 Oct 1;21(19):5036-46 – reference: 16391098 - Appl Environ Microbiol. 2006 Jan;72(1):612-21 – reference: 20201804 - Recent Pat Biotechnol. 2010 Jan;4(1):81-95 – reference: 23569226 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17 ):E1621-30 – reference: 15845853 - Science. 2005 Apr 22;308(5721):554-7 – reference: 27899502 - MBio. 2016 Nov 29;7(6):null – reference: 19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13 – reference: 12039728 - Appl Environ Microbiol. 2002 Jun;68(6):2737-44 – reference: 19395683 - Plant Cell. 2009 Apr;21(4):1080-94 – reference: 21711399 - Plant J. 2011 Oct;68(2):377-85 – reference: 22186371 - Plant Cell. 2011 Dec;23(12):4234-40 – reference: 20480162 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1895-905 – reference: 18829985 - Plant Physiol. 2008 Dec;148(4):2021-49 – reference: 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807 – reference: 9468659 - Microbiol Res. 1997 Dec;152(4):359-65 – reference: 22859207 - Nature. 2012 Aug 2;488(7409):91-5 – reference: 28377510 - Proc Natl Acad Sci U S A. 2017 Apr 25;114(17 ):4281-4283 – reference: 15639628 - Trends Microbiol. 2005 Jan;13(1):20-6 – reference: 18820082 - Plant Physiol. 2008 Nov;148(3):1547-56 – reference: 9194713 - Mol Microbiol. 1997 May;24(4):869-78 – reference: 22934605 - Environ Microbiol. 2013 Feb;15(2):487-501 – reference: 21551032 - Science. 2011 May 27;332(6033):1097-100 – reference: 26184915 - Science. 2015 Aug 21;349(6250):860-4 – reference: 21478901 - Nat Rev Microbiol. 2011 May;9(5):344-55 – reference: 19327979 - Curr Opin Biotechnol. 2009 Apr;20(2):248-54 – reference: 1768108 - Appl Environ Microbiol. 1991 Aug;57(8):2392-4 – reference: 19343338 - Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53 – reference: 25350154 - ISME J. 2015 Mar 17;9(4):980-9 – reference: 26002145 - Mol Plant. 2015 Aug;8(8):1188-200 – reference: 23476065 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1232-41 – reference: 24196324 - ISME J. 2014 Apr;8(4):790-803 – reference: 17953605 - J Appl Microbiol. 2007 Nov;103(5):1950-9 – reference: 20676081 - Nat Methods. 2010 Aug;7(8):603-14 – reference: 20544086 - Lab Chip. 2010 Aug 21;10(16):2147-53 – reference: 25807888 - Mol Microbiol. 2015 Jun;96(6):1272-82 – reference: 26940983 - Nat Commun. 2016 Mar 04;7:10860 – reference: 18789693 - Trends Microbiol. 2008 Oct;16(10):463-71 – reference: 24510109 - Lab Chip. 2014 Apr 7;14(7):1281-93 – reference: 20404797 - J Vis Exp. 2010 Apr 19;(38):null – reference: 26305938 - Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20 – reference: 26645910 - Lab Chip. 2016 Jan 21;16(2):228-41 – reference: 24982600 - Arabidopsis Book. 2014 Jun 25;12:e0172 – reference: 24984591 - Lab Chip. 2014 Sep 7;14(17):3262-74 – reference: 26734056 - Front Plant Sci. 2015 Dec 24;6:1178 – reference: 25909975 - ISME J. 2015 Nov;9(11):2349-59 – reference: 10589676 - Cell. 1999 Nov 24;99(5):473-83 – reference: 25457500 - Phytochemistry. 2014 Dec;108:35-46 – reference: 23736285 - MBio. 2013 Jun 04;4(3):e00314-13 – reference: 22859206 - Nature. 2012 Aug 2;488(7409):86-90 – reference: 24773019 - Annu Rev Biophys. 2014;43:65-91 |
| SSID | ssj0009580 |
| Score | 2.6262028 |
| Snippet | Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4549 |
| Title | Live imaging of root-bacteria interactions in a microfluidics setup |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28348235 https://www.proquest.com/docview/1881771945 |
| Volume | 114 |
| WOSCitedRecordID | wos000399995600076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7qPHhR58_5iwge9BBtmrRJTyLD4WGOHYbsNvKrMHBtXTv_fl_aDr0IgpdAD4HyePnel-Tl-xC6YVInUNcZ8W5ThMeBJEqFjqg0BfBziRZ1b87bUIxGcjpNxu2BW9m2Va4xsQZqmxt_Rv5ApaRCwJY7eiw-iHeN8rerrYXGJuowoDK-pUtM5Q_RXdmoESSUxDwJ1tI-gj0UmSrvvVg8FGDqn_D8xi_rOjPY--8f7qPdlmHipyYlumjDZQeo267hEt-2QtN3h6g_BKjD80VtVITzFAOLrohu9JsV9koSy-bdQwkfWOGF795L31dzOzclLl21Ko7QZPA86b-Q1lSBGCBLFYmoC6wXBVSCayZjaq3Q3LCEpkmkYx3z2CnFpWWRSELKUx46KTUT1kvJ2_AYbWV55k4RTh2QP8Anww3nYRArQbW1sF-TxgBMuB66XsdpBjnrLyJU5vJVOfuOVA-dNMGeFY24xgzoDpchi87-MPsc7YS-ygachNEF6qSwYt0l2jaf1bxcXtXJAONo_PoFvGm9mQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Live+imaging+of+root-bacteria+interactions+in+a+microfluidics+setup&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Massalha%2C+Hassan&rft.au=Korenblum%2C+Elisa&rft.au=Malitsky%2C+Sergey&rft.au=Shapiro%2C+Orr+H&rft.date=2017-04-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=4549&rft_id=info:doi/10.1073%2Fpnas.1618584114&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |