Live imaging of root-bacteria interactions in a microfluidics setup

Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluid...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 114; číslo 17; s. 4549
Hlavní autoři: Massalha, Hassan, Korenblum, Elisa, Malitsky, Sergey, Shapiro, Orr H, Aharoni, Asaph
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.04.2017
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled as it colonizes the root of within the TRIS device. Our results show a distinct chemotactic behavior of toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of cells from the root surface after colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.
AbstractList Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.
Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled as it colonizes the root of within the TRIS device. Our results show a distinct chemotactic behavior of toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of cells from the root surface after colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.
Author Shapiro, Orr H
Malitsky, Sergey
Aharoni, Asaph
Massalha, Hassan
Korenblum, Elisa
Author_xml – sequence: 1
  givenname: Hassan
  surname: Massalha
  fullname: Massalha, Hassan
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Elisa
  surname: Korenblum
  fullname: Korenblum, Elisa
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Sergey
  surname: Malitsky
  fullname: Malitsky, Sergey
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Orr H
  surname: Shapiro
  fullname: Shapiro, Orr H
  email: orr@agri.gov.il, asaph.aharoni@weizmann.ac.il
  organization: Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel
– sequence: 5
  givenname: Asaph
  surname: Aharoni
  fullname: Aharoni, Asaph
  email: orr@agri.gov.il, asaph.aharoni@weizmann.ac.il
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; orr@agri.gov.il asaph.aharoni@weizmann.ac.il
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28348235$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA9du5Ms3XTMbW6aZCmDLyi4mX1JmnSItE1tWsF_b8ERXJ1z4OPAtyWrPvaekFtge2CSPwy9SXsoQAmFAHhBNsA0ZAVqtvrX12Sb0gdjTAvFrsg6VxxVzsWGHMrw5WnozCn0JxobOsY4ZdbUkx-DoaFfchkh9mkZ1NAu1GNs2jm4UCea_DQP1-SyMW3yN-fckePz0_HwmpXvL2-HxzKrBYopE-CZQ2RoJFquCnBOWqy5hkYLW9gCC28MKseF1Dlgg7lXynLpFkS4fEfuf2-HMX7OPk1VF1Lt29b0Ps6pAqVAStAoFvTujM62864axsVw_K7-vPMf1ONbbg
CitedBy_id crossref_primary_10_1016_j_gde_2018_03_007
crossref_primary_10_1111_pce_70010
crossref_primary_10_1093_forsci_fxab050
crossref_primary_10_1016_j_tibtech_2020_07_008
crossref_primary_10_1093_femsre_fuae008
crossref_primary_10_1038_s41579_019_0212_7
crossref_primary_10_1128_AEM_01026_20
crossref_primary_10_1111_tpj_16405
crossref_primary_10_1007_s00284_020_01971_y
crossref_primary_10_1016_j_isci_2023_107925
crossref_primary_10_1002_biot_201900279
crossref_primary_10_1371_journal_pcbi_1010533
crossref_primary_10_3389_fmicb_2020_548037
crossref_primary_10_1007_s11356_022_21480_8
crossref_primary_10_1186_s40538_021_00244_5
crossref_primary_10_1016_j_procbio_2024_10_004
crossref_primary_10_1134_S1064229321120024
crossref_primary_10_1128_spectrum_00032_24
crossref_primary_10_3389_fpls_2019_01741
crossref_primary_10_1080_07388551_2022_2034733
crossref_primary_10_1038_s41396_022_01277_w
crossref_primary_10_3390_biology10060496
crossref_primary_10_1038_s41378_021_00331_5
crossref_primary_10_1007_s13206_022_00067_y
crossref_primary_10_1128_msystems_00765_21
crossref_primary_10_3390_app15137127
crossref_primary_10_1111_pce_70004
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_1128_spectrum_01982_24
crossref_primary_10_1038_s42003_025_07811_8
crossref_primary_10_1016_j_chom_2017_07_004
crossref_primary_10_1002_adhm_202301586
crossref_primary_10_3389_fpls_2021_621276
crossref_primary_10_1086_706198
crossref_primary_10_3389_fmicb_2019_02163
crossref_primary_10_1002_agg2_70169
crossref_primary_10_1016_j_pmpp_2025_102818
crossref_primary_10_1007_s11104_018_3692_8
crossref_primary_10_1016_j_pmpp_2023_102029
crossref_primary_10_1016_j_soilbio_2024_109456
crossref_primary_10_1111_tpj_13543
crossref_primary_10_1016_j_csbj_2020_05_023
crossref_primary_10_1016_j_jbiotec_2022_03_014
crossref_primary_10_1002_anie_202419510
crossref_primary_10_3389_fpls_2024_1440728
crossref_primary_10_1111_1462_2920_15747
crossref_primary_10_1016_j_cej_2023_147311
crossref_primary_10_1039_C7CS00343A
crossref_primary_10_3390_agronomy9110764
crossref_primary_10_1038_s41592_019_0465_0
crossref_primary_10_1038_s41522_022_00327_7
crossref_primary_10_1073_pnas_2013925118
crossref_primary_10_1016_j_pbi_2023_102369
crossref_primary_10_1146_annurev_anchem_061417_125635
crossref_primary_10_1016_j_geoderma_2021_115563
crossref_primary_10_1093_femsre_fuy014
crossref_primary_10_1111_1758_2229_12934
crossref_primary_10_1042_EBC20190002
crossref_primary_10_1016_j_rhisph_2022_100561
crossref_primary_10_1093_femsre_fuab038
crossref_primary_10_1111_jen_12842
crossref_primary_10_3389_fpls_2024_1388384
crossref_primary_10_1038_s41598_019_45167_2
crossref_primary_10_1002_adhm_202001856
crossref_primary_10_1016_j_chemosphere_2023_137860
crossref_primary_10_1002_adbi_201800048
crossref_primary_10_1016_j_jia_2025_05_008
crossref_primary_10_1016_j_tplants_2025_06_002
crossref_primary_10_1016_j_ncrops_2023_11_002
crossref_primary_10_1139_cjss_2019_0146
crossref_primary_10_1002_ange_202419510
crossref_primary_10_1103_PhysRevE_111_024411
crossref_primary_10_3389_fmicb_2020_585443
crossref_primary_10_3389_fmicb_2025_1570235
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_1186_s13007_019_0459_z
crossref_primary_10_3389_fpls_2020_00408
crossref_primary_10_1016_j_apsoil_2024_105351
crossref_primary_10_1093_jambio_lxaf090
crossref_primary_10_1111_1462_2920_14472
crossref_primary_10_1099_mic_0_001477
crossref_primary_10_3390_plants11131654
crossref_primary_10_3390_plants8070236
crossref_primary_10_1002_adma_201900284
crossref_primary_10_1093_jxb_erac184
crossref_primary_10_3389_fpls_2023_1132824
crossref_primary_10_1002_adfm_201804773
crossref_primary_10_1039_D4EN00936C
crossref_primary_10_1093_plcell_koac163
crossref_primary_10_1094_MPMI_04_19_0115_CR
crossref_primary_10_3390_molecules28186735
crossref_primary_10_1038_s41467_023_37188_3
crossref_primary_10_1016_j_tplants_2017_09_003
crossref_primary_10_1038_s41378_021_00309_3
crossref_primary_10_3389_fmicb_2021_625752
crossref_primary_10_3390_app11199182
crossref_primary_10_1073_pnas_2109176118
crossref_primary_10_1016_j_pbi_2020_09_004
crossref_primary_10_1016_j_rhisph_2018_02_003
crossref_primary_10_1139_cjb_2019_0093
crossref_primary_10_3390_plants11162127
crossref_primary_10_1007_s42832_019_0017_7
crossref_primary_10_1186_s40168_023_01660_5
crossref_primary_10_1038_s41378_020_0164_0
crossref_primary_10_1016_j_tim_2022_09_016
crossref_primary_10_1073_pnas_1912130117
crossref_primary_10_1111_tpj_15511
crossref_primary_10_3390_plants8010014
crossref_primary_10_1088_1478_3975_ab0946
crossref_primary_10_1016_j_heliyon_2024_e40522
crossref_primary_10_3390_microorganisms12112290
crossref_primary_10_1007_s12223_025_01301_4
crossref_primary_10_1038_s41579_021_00540_9
crossref_primary_10_1016_j_soilbio_2025_109944
crossref_primary_10_1111_pce_14237
crossref_primary_10_3389_fmicb_2021_651891
crossref_primary_10_1146_annurev_phyto_021622_100127
crossref_primary_10_1016_j_copbio_2019_09_001
crossref_primary_10_1111_tpj_14781
crossref_primary_10_1093_plphys_kiae605
crossref_primary_10_1038_s41589_023_01462_8
crossref_primary_10_1007_s11104_025_07495_3
crossref_primary_10_1016_j_mib_2023_102283
crossref_primary_10_1007_s00374_022_01683_4
crossref_primary_10_1016_j_mib_2017_12_004
crossref_primary_10_3389_fbioe_2024_1395959
crossref_primary_10_1007_s11274_024_03903_5
crossref_primary_10_1007_s11356_021_15838_7
crossref_primary_10_1073_pnas_2403122121
crossref_primary_10_1242_jcs_209270
crossref_primary_10_3389_fpls_2018_01205
crossref_primary_10_1016_j_tifs_2022_07_014
crossref_primary_10_1186_s13059_025_03739_8
crossref_primary_10_1007_s11356_020_10471_2
crossref_primary_10_1038_s41598_019_51624_9
crossref_primary_10_1016_j_soilbio_2018_12_012
crossref_primary_10_1038_s41598_021_89569_7
crossref_primary_10_1016_j_scitotenv_2023_167774
crossref_primary_10_1038_s41467_021_26005_4
crossref_primary_10_3390_ijms22157880
crossref_primary_10_1146_annurev_arplant_083123_082752
crossref_primary_10_3389_fpls_2019_00862
crossref_primary_10_1002_pld3_207
crossref_primary_10_3389_fmicb_2018_00853
crossref_primary_10_1146_annurev_arplant_050718_100038
crossref_primary_10_1371_journal_ppat_1011175
crossref_primary_10_1111_1462_2920_16164
crossref_primary_10_1016_j_pbi_2017_04_023
crossref_primary_10_1038_s41598_024_56443_1
crossref_primary_10_1093_jxb_erad122
crossref_primary_10_1002_sae2_12060
crossref_primary_10_1007_s10452_025_10185_y
crossref_primary_10_3390_jof11010077
crossref_primary_10_1007_s10265_019_01124_8
crossref_primary_10_1016_j_soilbio_2020_108078
crossref_primary_10_3389_fmicb_2022_829717
crossref_primary_10_1002_ecy_4030
crossref_primary_10_1016_j_apsoil_2024_105390
crossref_primary_10_1371_journal_pcbi_1010916
crossref_primary_10_1002_adma_202007429
crossref_primary_10_1038_s41579_019_0182_9
crossref_primary_10_1039_D5LC00348B
crossref_primary_10_1093_pcp_pcab067
crossref_primary_10_1073_pnas_1703800114
crossref_primary_10_1186_s40168_020_00997_5
crossref_primary_10_1016_j_tibtech_2021_04_008
crossref_primary_10_1111_tpj_16039
crossref_primary_10_1094_PHYTO_07_19_0243_R
crossref_primary_10_3389_fpls_2022_987112
crossref_primary_10_1186_s13007_022_00875_1
crossref_primary_10_3389_fpls_2021_690567
crossref_primary_10_1016_j_copbio_2018_08_004
crossref_primary_10_1139_cjm_2021_0355
crossref_primary_10_1186_s40694_019_0071_z
crossref_primary_10_1016_j_csbj_2023_10_055
crossref_primary_10_1073_pnas_2408711121
crossref_primary_10_1007_s10886_021_01337_z
crossref_primary_10_1111_pce_15311
crossref_primary_10_1038_s41477_018_0139_4
crossref_primary_10_1016_j_cub_2024_09_071
crossref_primary_10_3390_agriengineering3040049
crossref_primary_10_1038_nrmicro_2017_171
crossref_primary_10_1016_j_soilbio_2023_109253
crossref_primary_10_1111_nph_14887
crossref_primary_10_3389_fcimb_2022_896149
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1618584114
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 28348235
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-51e0d4404a74b3861dd7b4c391f95b6b646eaa48d3579214f42e88b37d3915d2
IEDL.DBID 7X8
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399995600076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 11:03:28 EST 2025
Thu Apr 03 07:11:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords live-imaging microscopy
root–bacteria interaction
microbial community dynamics
Bacillus subtilis
TRIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-51e0d4404a74b3861dd7b4c391f95b6b646eaa48d3579214f42e88b37d3915d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/114/17/4549.full.pdf
PMID 28348235
PQID 1881771945
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1881771945
pubmed_primary_28348235
PublicationCentury 2000
PublicationDate 2017-04-25
PublicationDateYYYYMMDD 2017-04-25
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
References 9194713 - Mol Microbiol. 1997 May;24(4):869-78
18789693 - Trends Microbiol. 2008 Oct;16(10):463-71
12356720 - EMBO J. 2002 Oct 1;21(19):5036-46
24982600 - Arabidopsis Book. 2014 Jun 25;12:e0172
23736285 - MBio. 2013 Jun 04;4(3):e00314-13
21711399 - Plant J. 2011 Oct;68(2):377-85
20404797 - J Vis Exp. 2010 Apr 19;(38):null
26305938 - Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20
21478901 - Nat Rev Microbiol. 2011 May;9(5):344-55
18829985 - Plant Physiol. 2008 Dec;148(4):2021-49
1768108 - Appl Environ Microbiol. 1991 Aug;57(8):2392-4
25350154 - ISME J. 2015 Mar 17;9(4):980-9
22859207 - Nature. 2012 Aug 2;488(7409):91-5
19395683 - Plant Cell. 2009 Apr;21(4):1080-94
27899502 - MBio. 2016 Nov 29;7(6):null
23569226 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17 ):E1621-30
24773019 - Annu Rev Biophys. 2014;43:65-91
22186371 - Plant Cell. 2011 Dec;23(12):4234-40
16391098 - Appl Environ Microbiol. 2006 Jan;72(1):612-21
26645910 - Lab Chip. 2016 Jan 21;16(2):228-41
23476065 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1232-41
17953605 - J Appl Microbiol. 2007 Nov;103(5):1950-9
25457500 - Phytochemistry. 2014 Dec;108:35-46
10589676 - Cell. 1999 Nov 24;99(5):473-83
26184915 - Science. 2015 Aug 21;349(6250):860-4
22934605 - Environ Microbiol. 2013 Feb;15(2):487-501
23373698 - Annu Rev Plant Biol. 2013;64:807-38
26002145 - Mol Plant. 2015 Aug;8(8):1188-200
20544086 - Lab Chip. 2010 Aug 21;10(16):2147-53
21551032 - Science. 2011 May 27;332(6033):1097-100
24984591 - Lab Chip. 2014 Sep 7;14(17):3262-74
20676081 - Nat Methods. 2010 Aug;7(8):603-14
25807888 - Mol Microbiol. 2015 Jun;96(6):1272-82
25909975 - ISME J. 2015 Nov;9(11):2349-59
25232638 - Nat Commun. 2014 Sep 18;5:4950
15639628 - Trends Microbiol. 2005 Jan;13(1):20-6
19327979 - Curr Opin Biotechnol. 2009 Apr;20(2):248-54
21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807
19343338 - Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53
28377510 - Proc Natl Acad Sci U S A. 2017 Apr 25;114(17 ):4281-4283
24196324 - ISME J. 2014 Apr;8(4):790-803
19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
24510109 - Lab Chip. 2014 Apr 7;14(7):1281-93
27019743 - Nat Plants. 2015;1(6):null
9468659 - Microbiol Res. 1997 Dec;152(4):359-65
26940983 - Nat Commun. 2016 Mar 04;7:10860
20480162 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1895-905
20201804 - Recent Pat Biotechnol. 2010 Jan;4(1):81-95
15845853 - Science. 2005 Apr 22;308(5721):554-7
12039728 - Appl Environ Microbiol. 2002 Jun;68(6):2737-44
26734056 - Front Plant Sci. 2015 Dec 24;6:1178
22859206 - Nature. 2012 Aug 2;488(7409):86-90
18820082 - Plant Physiol. 2008 Nov;148(3):1547-56
References_xml – reference: 27019743 - Nat Plants. 2015;1(6):null
– reference: 23373698 - Annu Rev Plant Biol. 2013;64:807-38
– reference: 25232638 - Nat Commun. 2014 Sep 18;5:4950
– reference: 12356720 - EMBO J. 2002 Oct 1;21(19):5036-46
– reference: 16391098 - Appl Environ Microbiol. 2006 Jan;72(1):612-21
– reference: 20201804 - Recent Pat Biotechnol. 2010 Jan;4(1):81-95
– reference: 23569226 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17 ):E1621-30
– reference: 15845853 - Science. 2005 Apr 22;308(5721):554-7
– reference: 27899502 - MBio. 2016 Nov 29;7(6):null
– reference: 19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
– reference: 12039728 - Appl Environ Microbiol. 2002 Jun;68(6):2737-44
– reference: 19395683 - Plant Cell. 2009 Apr;21(4):1080-94
– reference: 21711399 - Plant J. 2011 Oct;68(2):377-85
– reference: 22186371 - Plant Cell. 2011 Dec;23(12):4234-40
– reference: 20480162 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1895-905
– reference: 18829985 - Plant Physiol. 2008 Dec;148(4):2021-49
– reference: 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807
– reference: 9468659 - Microbiol Res. 1997 Dec;152(4):359-65
– reference: 22859207 - Nature. 2012 Aug 2;488(7409):91-5
– reference: 28377510 - Proc Natl Acad Sci U S A. 2017 Apr 25;114(17 ):4281-4283
– reference: 15639628 - Trends Microbiol. 2005 Jan;13(1):20-6
– reference: 18820082 - Plant Physiol. 2008 Nov;148(3):1547-56
– reference: 9194713 - Mol Microbiol. 1997 May;24(4):869-78
– reference: 22934605 - Environ Microbiol. 2013 Feb;15(2):487-501
– reference: 21551032 - Science. 2011 May 27;332(6033):1097-100
– reference: 26184915 - Science. 2015 Aug 21;349(6250):860-4
– reference: 21478901 - Nat Rev Microbiol. 2011 May;9(5):344-55
– reference: 19327979 - Curr Opin Biotechnol. 2009 Apr;20(2):248-54
– reference: 1768108 - Appl Environ Microbiol. 1991 Aug;57(8):2392-4
– reference: 19343338 - Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53
– reference: 25350154 - ISME J. 2015 Mar 17;9(4):980-9
– reference: 26002145 - Mol Plant. 2015 Aug;8(8):1188-200
– reference: 23476065 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1232-41
– reference: 24196324 - ISME J. 2014 Apr;8(4):790-803
– reference: 17953605 - J Appl Microbiol. 2007 Nov;103(5):1950-9
– reference: 20676081 - Nat Methods. 2010 Aug;7(8):603-14
– reference: 20544086 - Lab Chip. 2010 Aug 21;10(16):2147-53
– reference: 25807888 - Mol Microbiol. 2015 Jun;96(6):1272-82
– reference: 26940983 - Nat Commun. 2016 Mar 04;7:10860
– reference: 18789693 - Trends Microbiol. 2008 Oct;16(10):463-71
– reference: 24510109 - Lab Chip. 2014 Apr 7;14(7):1281-93
– reference: 20404797 - J Vis Exp. 2010 Apr 19;(38):null
– reference: 26305938 - Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5013-20
– reference: 26645910 - Lab Chip. 2016 Jan 21;16(2):228-41
– reference: 24982600 - Arabidopsis Book. 2014 Jun 25;12:e0172
– reference: 24984591 - Lab Chip. 2014 Sep 7;14(17):3262-74
– reference: 26734056 - Front Plant Sci. 2015 Dec 24;6:1178
– reference: 25909975 - ISME J. 2015 Nov;9(11):2349-59
– reference: 10589676 - Cell. 1999 Nov 24;99(5):473-83
– reference: 25457500 - Phytochemistry. 2014 Dec;108:35-46
– reference: 23736285 - MBio. 2013 Jun 04;4(3):e00314-13
– reference: 22859206 - Nature. 2012 Aug 2;488(7409):86-90
– reference: 24773019 - Annu Rev Biophys. 2014;43:65-91
SSID ssj0009580
Score 2.626255
Snippet Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4549
Title Live imaging of root-bacteria interactions in a microfluidics setup
URI https://www.ncbi.nlm.nih.gov/pubmed/28348235
https://www.proquest.com/docview/1881771945
Volume 114
WOSCitedRecordID wos000399995600076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwHMeDOg9e1PmcLyJ40ENc0yZNchIZDg9z7LDDbiVPKLh2rpt_v0nboRdB8FLooVB-_B7fJL98fgDccUJ81NAYWU00Ir6EIJkajISk3mVYRJyqkfkjNh7z2UxM2g23qm2r3OTEOlGbUoc98j7mHDPml9z0afGBwtSocLrajtDYBp3ES5nQ0sVm_Ad0lzc0AoFRSkS0QfuwpL8oZPUYYPG-AONwhec3fVnXmeHBf__wEOy3ChM-Ny7RBVu2OALdNoYreN-Cph-OwWDkUx3M5_WgIlg66FX0CqmG3yxhIEksm3sPlX-BEs5D9557X-cm1xWs7Gq9OAHT4ct08IraoQpIe7G0QhTbyAQooGREJTzFxjBFdCKwE1SlKiWplZJwk1AmYkwciS3nKmEmoORNfAp2irKw5wBqlUisnXWRkn6R7aRV2kZCi5RY6rjpgduNnTLvs-EgQha2XFfZt6V64KwxdrZo4BqZlzuExwm9-MPXl2AvDlU2IiimV6DjfMTaa7CrP1d5tbypncE_x5O3L2kkvwc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Live+imaging+of+root-bacteria+interactions+in+a+microfluidics+setup&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Massalha%2C+Hassan&rft.au=Korenblum%2C+Elisa&rft.au=Malitsky%2C+Sergey&rft.au=Shapiro%2C+Orr+H&rft.date=2017-04-25&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=4549&rft_id=info:doi/10.1073%2Fpnas.1618584114&rft_id=info%3Apmid%2F28348235&rft_id=info%3Apmid%2F28348235&rft.externalDocID=28348235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon