Muscarinic receptor regulates extracellular signal regulated kinase by two modes of arrestin binding

Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 114; H. 28; S. E5579
Hauptverfasser: Jung, Seung-Ryoung, Kushmerick, Christopher, Seo, Jong Bae, Koh, Duk-Su, Hille, Bertil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 11.07.2017
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M muscarinic acetylcholine receptors (M Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.
AbstractList Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M muscarinic acetylcholine receptors (M Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.
Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M1 muscarinic acetylcholine receptors (M1Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M1 receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M1R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M1 muscarinic acetylcholine receptors (M1Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M1 receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M1R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.
Author Koh, Duk-Su
Jung, Seung-Ryoung
Hille, Bertil
Kushmerick, Christopher
Seo, Jong Bae
Author_xml – sequence: 1
  givenname: Seung-Ryoung
  surname: Jung
  fullname: Jung, Seung-Ryoung
  email: jsr007@uw.edu, hille@uw.edu
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195; jsr007@uw.edu hille@uw.edu
– sequence: 2
  givenname: Christopher
  surname: Kushmerick
  fullname: Kushmerick, Christopher
  organization: Departamento Fisiologia e Biofisica, ICB Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
– sequence: 3
  givenname: Jong Bae
  surname: Seo
  fullname: Seo, Jong Bae
  organization: Department of Medicine, University of California, San Diego, CA 92093
– sequence: 4
  givenname: Duk-Su
  surname: Koh
  fullname: Koh, Duk-Su
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
– sequence: 5
  givenname: Bertil
  orcidid: 0000-0002-7266-1671
  surname: Hille
  fullname: Hille, Bertil
  email: jsr007@uw.edu, hille@uw.edu
  organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195; jsr007@uw.edu hille@uw.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28652372$$D View this record in MEDLINE/PubMed
BookMark eNpNULlOxDAQtdAi9oCaDrmkyeIzR4lWXBKIBurIx2RlSJxgJ4L9e7xiQVTznubNvDezRDPfe0DonJI1JQW_GryKa1oQwjmlVByhBSUVzXJRkdk_PEfLGN8IIZUsyQmaszKXjBdsgezTFI0KzjuDAxgYxj4ksJ1aNULE8DUGZaBtEw84uq1X7V_b4neX_AHrHR4_e9z1No30DVYhQBydx9p56_z2FB03qo1wdqgr9Hp787K5zx6f7x4214-ZkUKOGWW6ICUp9ufkRueQGy61znnZyJIKoSRtmAErEpMSbANJCERay4UqgLIVuvzZO4T-Y0oR6s7FfXrloZ9iTSsqWEUEr5L04iCddAe2HoLrVNjVv59h37hXaOc
CitedBy_id crossref_primary_10_1016_j_ceb_2018_10_005
crossref_primary_10_1038_s41467_022_33307_8
crossref_primary_10_1016_j_conb_2021_09_011
crossref_primary_10_1038_s41586_018_0077_3
crossref_primary_10_1038_s41598_020_73674_0
crossref_primary_10_1155_2017_5125624
crossref_primary_10_1038_s41467_023_43694_1
crossref_primary_10_3389_fimmu_2018_00415
crossref_primary_10_3390_ijms23021000
crossref_primary_10_1016_j_jep_2023_117192
crossref_primary_10_1073_pnas_1918736117
crossref_primary_10_1016_j_jmb_2022_167465
crossref_primary_10_1016_j_coemr_2020_09_006
crossref_primary_10_1111_bph_15982
crossref_primary_10_1016_j_cell_2020_11_014
crossref_primary_10_1016_j_ijbiomac_2024_137217
crossref_primary_10_3390_ijms25116284
crossref_primary_10_1016_j_neuropharm_2018_09_020
crossref_primary_10_1007_s00232_019_00092_3
crossref_primary_10_1016_j_phrs_2025_107597
crossref_primary_10_1021_acs_biochem_4c00884
crossref_primary_10_1038_s41594_017_0011_7
crossref_primary_10_1073_pnas_2011023118
crossref_primary_10_3389_fphar_2020_606656
crossref_primary_10_1016_j_chembiol_2023_03_006
crossref_primary_10_1158_2159_8290_CD_18_0046
crossref_primary_10_1073_pnas_2026491118
crossref_primary_10_1242_jcs_259685
crossref_primary_10_1038_s41540_019_0114_3
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1700331114
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 28652372
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM103313
– fundername: NINDS NIH HHS
  grantid: R37 NS008174
– fundername: NIGMS NIH HHS
  grantid: F32 GM099373
– fundername: NCRR NIH HHS
  grantid: S10 RR026406
– fundername: NIDDK NIH HHS
  grantid: R01 DK080840
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-12b7080770036cb6e6c35bb638f58144a51f2ced458155edfe003e05dd34a7e12
IEDL.DBID 7X8
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405177100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 08:44:23 EDT 2025
Thu Apr 03 06:57:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords GPCR
arrestin
muscarinic receptor
ERK
receptor kinase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-12b7080770036cb6e6c35bb638f58144a51f2ced458155edfe003e05dd34a7e12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7266-1671
OpenAccessLink https://www.pnas.org/content/pnas/114/28/E5579.full.pdf
PMID 28652372
PQID 1914290439
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1914290439
pubmed_primary_28652372
PublicationCentury 2000
PublicationDate 2017-07-11
PublicationDateYYYYMMDD 2017-07-11
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
References 24753247 - J Biol Chem. 2014 May 30;289(22):15856-66
17620599 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12011-6
24449856 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1825-30
24949979 - Cell. 2014 Jun 19;157(7):1724-34
27499021 - Cell. 2016 Aug 11;166(4):907-19
27452469 - Cell Rep. 2016 Aug 9;16(6):1518-26
19332618 - J Gen Physiol. 2009 Apr;133(4):347-59
26958838 - Nature. 2016 Mar 17;531(7594):335-40
21680031 - Trends Pharmacol Sci. 2011 Sep;32(9):521-33
10648702 - J Neurosci. 2000 Feb 1;20(3):977-85
27852822 - J Biol Chem. 2016 Dec 30;291(53):27147-27159
24292823 - Handb Exp Pharmacol. 2014;219:15-56
17403928 - J Cell Biol. 2007 Apr 9;177(1):127-37
21868358 - Sci Signal. 2011 Aug 9;4(185):ra52
9495886 - J Pharmacol Exp Ther. 1998 Mar;284(3):1218-26
19717450 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15950-5
16267056 - Sci STKE. 2005 Nov 01;2005(308):cm10
17496911 - Oncogene. 2007 May 14;26(22):3122-42
21836019 - Mol Pharmacol. 2011 Nov;80(5):760-8
12473660 - J Biol Chem. 2003 Feb 21;278(8):6258-67
7744811 - J Biol Chem. 1995 May 19;270(20):11707-10
27007855 - Nature. 2016 Mar 31;531(7596):661-4
21177246 - J Biol Chem. 2011 Apr 1;286(13):11506-18
25043026 - Nature. 2014 Aug 14;512(7513):218-222
23222541 - Nature. 2012 Dec 20;492(7429):387-92
21942629 - Annu Rev Pharmacol Toxicol. 2012;52:179-97
16873665 - Science. 2006 Jul 28;313(5786):530-3
9931314 - Biochem J. 1999 Feb 15;338 ( Pt 1):175-83
11226259 - Proc Natl Acad Sci U S A. 2001 Feb 27;98 (5):2449-54
18621717 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93
10212206 - J Biol Chem. 1999 Apr 30;274(18):12355-60
27046816 - Curr Biol. 2016 Apr 4;26(7):R285-8
11152693 - J Biol Chem. 2001 Apr 13;276(15):11691-7
19776273 - J Neurosci. 2009 Sep 23;29(38):11867-79
26200343 - Nature. 2015 Jul 30;523(7562):561-7
20100890 - J Gen Physiol. 2010 Feb;135(2):81-97
12097495 - J Neurosci. 2002 Jul 1;22(13):5432-41
20360767 - Nat Protoc. 2010 Apr;5(4):725-38
12082107 - J Biol Chem. 2002 Aug 30;277(35):31818-25
21868357 - Sci Signal. 2011 Aug 9;4(185):ra51
28445455 - Nature. 2017 May 4;545(7652):112-115
19001375 - J Biol Chem. 2009 Jan 2;284(1):685-95
9759500 - Annu Rev Biochem. 1998;67:653-92
16687412 - J Biol Chem. 2006 Jul 21;281(29):20577-88
28189644 - Biochim Biophys Acta. 2017 May;1862(5):513-522
16051150 - Cell. 2005 Jul 29;122(2):261-73
26826123 - J Biol Chem. 2016 Apr 22;291(17 ):8862-75
25264171 - Biochim Biophys Acta. 2015 Jun;1851(6):794-804
28181498 - Nat Commun. 2017 Feb 09;8:14335
23604254 - Nature. 2013 May 2;497(7447):137-41
27007854 - Nature. 2016 Mar 31;531(7596):665-8
26829388 - Nat Cell Biol. 2016 Mar;18(3):303-10
23151001 - Curr Med Chem. 2013;20(1):39-46
27178731 - Pharmacol Res. 2016 Sep;111:1-16
26927499 - J Gen Physiol. 2016 Mar;147(3):255-71
10725339 - J Cell Biol. 2000 Mar 20;148(6):1267-81
References_xml – reference: 24449856 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1825-30
– reference: 24292823 - Handb Exp Pharmacol. 2014;219:15-56
– reference: 27178731 - Pharmacol Res. 2016 Sep;111:1-16
– reference: 20360767 - Nat Protoc. 2010 Apr;5(4):725-38
– reference: 26958838 - Nature. 2016 Mar 17;531(7594):335-40
– reference: 17620599 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12011-6
– reference: 19332618 - J Gen Physiol. 2009 Apr;133(4):347-59
– reference: 16873665 - Science. 2006 Jul 28;313(5786):530-3
– reference: 9931314 - Biochem J. 1999 Feb 15;338 ( Pt 1):175-83
– reference: 25043026 - Nature. 2014 Aug 14;512(7513):218-222
– reference: 9495886 - J Pharmacol Exp Ther. 1998 Mar;284(3):1218-26
– reference: 26200343 - Nature. 2015 Jul 30;523(7562):561-7
– reference: 26826123 - J Biol Chem. 2016 Apr 22;291(17 ):8862-75
– reference: 26927499 - J Gen Physiol. 2016 Mar;147(3):255-71
– reference: 21868357 - Sci Signal. 2011 Aug 9;4(185):ra51
– reference: 28445455 - Nature. 2017 May 4;545(7652):112-115
– reference: 23151001 - Curr Med Chem. 2013;20(1):39-46
– reference: 19001375 - J Biol Chem. 2009 Jan 2;284(1):685-95
– reference: 27007855 - Nature. 2016 Mar 31;531(7596):661-4
– reference: 17403928 - J Cell Biol. 2007 Apr 9;177(1):127-37
– reference: 20100890 - J Gen Physiol. 2010 Feb;135(2):81-97
– reference: 21680031 - Trends Pharmacol Sci. 2011 Sep;32(9):521-33
– reference: 16687412 - J Biol Chem. 2006 Jul 21;281(29):20577-88
– reference: 11226259 - Proc Natl Acad Sci U S A. 2001 Feb 27;98 (5):2449-54
– reference: 24949979 - Cell. 2014 Jun 19;157(7):1724-34
– reference: 25264171 - Biochim Biophys Acta. 2015 Jun;1851(6):794-804
– reference: 19776273 - J Neurosci. 2009 Sep 23;29(38):11867-79
– reference: 10725339 - J Cell Biol. 2000 Mar 20;148(6):1267-81
– reference: 17496911 - Oncogene. 2007 May 14;26(22):3122-42
– reference: 27007854 - Nature. 2016 Mar 31;531(7596):665-8
– reference: 10212206 - J Biol Chem. 1999 Apr 30;274(18):12355-60
– reference: 12097495 - J Neurosci. 2002 Jul 1;22(13):5432-41
– reference: 27499021 - Cell. 2016 Aug 11;166(4):907-19
– reference: 21836019 - Mol Pharmacol. 2011 Nov;80(5):760-8
– reference: 16267056 - Sci STKE. 2005 Nov 01;2005(308):cm10
– reference: 11152693 - J Biol Chem. 2001 Apr 13;276(15):11691-7
– reference: 27452469 - Cell Rep. 2016 Aug 9;16(6):1518-26
– reference: 21868358 - Sci Signal. 2011 Aug 9;4(185):ra52
– reference: 28189644 - Biochim Biophys Acta. 2017 May;1862(5):513-522
– reference: 18621717 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93
– reference: 27046816 - Curr Biol. 2016 Apr 4;26(7):R285-8
– reference: 23222541 - Nature. 2012 Dec 20;492(7429):387-92
– reference: 12082107 - J Biol Chem. 2002 Aug 30;277(35):31818-25
– reference: 23604254 - Nature. 2013 May 2;497(7447):137-41
– reference: 28181498 - Nat Commun. 2017 Feb 09;8:14335
– reference: 19717450 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15950-5
– reference: 12473660 - J Biol Chem. 2003 Feb 21;278(8):6258-67
– reference: 10648702 - J Neurosci. 2000 Feb 1;20(3):977-85
– reference: 9759500 - Annu Rev Biochem. 1998;67:653-92
– reference: 27852822 - J Biol Chem. 2016 Dec 30;291(53):27147-27159
– reference: 7744811 - J Biol Chem. 1995 May 19;270(20):11707-10
– reference: 24753247 - J Biol Chem. 2014 May 30;289(22):15856-66
– reference: 21942629 - Annu Rev Pharmacol Toxicol. 2012;52:179-97
– reference: 26829388 - Nat Cell Biol. 2016 Mar;18(3):303-10
– reference: 21177246 - J Biol Chem. 2011 Apr 1;286(13):11506-18
– reference: 16051150 - Cell. 2005 Jul 29;122(2):261-73
SSID ssj0009580
Score 2.4097776
Snippet Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E5579
Title Muscarinic receptor regulates extracellular signal regulated kinase by two modes of arrestin binding
URI https://www.ncbi.nlm.nih.gov/pubmed/28652372
https://www.proquest.com/docview/1914290439
Volume 114
WOSCitedRecordID wos000405177100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKG1XcfOhBCiYmnVAaRukWM7UoWUhKYF8e-5y0OwICGxRI7iPOzcne9s3_cRcsU1k4lQaWCE0RCgKBtoBiUbJZj3CRHJwFZkE2oy0bNZNG0m3MpmW2VrEytD7XKLc-R9xCHjESZy3hVvAbJG4epqQ6GxTjoCXBmUajXTP0B3dY1GELEghLe20D5K9IvMlLeITScEaPvwd_-yGmdGO__9wl2y3XiY9L4WiS5Z89ke6TY6XNLrBmj6Zp-48aq0BpdwLAXD5wuIv6FQkdNDTTDbC4MT-7hTleJGD3hse9nR1zk0ztPkky4_coqMOiXNU2oqto95RpN5lTBzQF5Gj88PT0HDuhBY8KaWAeOJAjdSYd-ENgl9aIVMEtDTVGoIv4xkKbfeDeFMSu9SDxX9QDonhkZ5xg_JRpZn_pjQ1GhvDSLyQ9DHvNPRwBkHf0NFkdVS9chl25MxSDW2yGQ-X5Xxd1_2yFH9O-Kiht-IMZeWC8VP_nD3KdniOA4jEiY7I50UdNqfk037vpyXi4tKXOA4mY6_AAoFyqA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscarinic+receptor+regulates+extracellular+signal+regulated+kinase+by+two+modes+of+arrestin+binding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jung%2C+Seung-Ryoung&rft.au=Kushmerick%2C+Christopher&rft.au=Seo%2C+Jong+Bae&rft.au=Koh%2C+Duk-Su&rft.date=2017-07-11&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=28&rft.spage=E5579&rft_id=info:doi/10.1073%2Fpnas.1700331114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon