Muscarinic receptor regulates extracellular signal regulated kinase by two modes of arrestin binding
Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling functio...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 114; H. 28; S. E5579 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
11.07.2017
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M
muscarinic acetylcholine receptors (M
Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M
receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M
R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane. |
|---|---|
| AbstractList | Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M
muscarinic acetylcholine receptors (M
Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M
receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M
R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane. Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M1 muscarinic acetylcholine receptors (M1Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M1 receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M1R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M1 muscarinic acetylcholine receptors (M1Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M1 receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M1R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane. |
| Author | Koh, Duk-Su Jung, Seung-Ryoung Hille, Bertil Kushmerick, Christopher Seo, Jong Bae |
| Author_xml | – sequence: 1 givenname: Seung-Ryoung surname: Jung fullname: Jung, Seung-Ryoung email: jsr007@uw.edu, hille@uw.edu organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195; jsr007@uw.edu hille@uw.edu – sequence: 2 givenname: Christopher surname: Kushmerick fullname: Kushmerick, Christopher organization: Departamento Fisiologia e Biofisica, ICB Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil – sequence: 3 givenname: Jong Bae surname: Seo fullname: Seo, Jong Bae organization: Department of Medicine, University of California, San Diego, CA 92093 – sequence: 4 givenname: Duk-Su surname: Koh fullname: Koh, Duk-Su organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195 – sequence: 5 givenname: Bertil orcidid: 0000-0002-7266-1671 surname: Hille fullname: Hille, Bertil email: jsr007@uw.edu, hille@uw.edu organization: Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195; jsr007@uw.edu hille@uw.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28652372$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNULlOxDAQtdAi9oCaDrmkyeIzR4lWXBKIBurIx2RlSJxgJ4L9e7xiQVTznubNvDezRDPfe0DonJI1JQW_GryKa1oQwjmlVByhBSUVzXJRkdk_PEfLGN8IIZUsyQmaszKXjBdsgezTFI0KzjuDAxgYxj4ksJ1aNULE8DUGZaBtEw84uq1X7V_b4neX_AHrHR4_e9z1No30DVYhQBydx9p56_z2FB03qo1wdqgr9Hp787K5zx6f7x4214-ZkUKOGWW6ICUp9ufkRueQGy61znnZyJIKoSRtmAErEpMSbANJCERay4UqgLIVuvzZO4T-Y0oR6s7FfXrloZ9iTSsqWEUEr5L04iCddAe2HoLrVNjVv59h37hXaOc |
| CitedBy_id | crossref_primary_10_1016_j_ceb_2018_10_005 crossref_primary_10_1038_s41467_022_33307_8 crossref_primary_10_1016_j_conb_2021_09_011 crossref_primary_10_1038_s41586_018_0077_3 crossref_primary_10_1038_s41598_020_73674_0 crossref_primary_10_1155_2017_5125624 crossref_primary_10_1038_s41467_023_43694_1 crossref_primary_10_3389_fimmu_2018_00415 crossref_primary_10_3390_ijms23021000 crossref_primary_10_1016_j_jep_2023_117192 crossref_primary_10_1073_pnas_1918736117 crossref_primary_10_1016_j_jmb_2022_167465 crossref_primary_10_1016_j_coemr_2020_09_006 crossref_primary_10_1111_bph_15982 crossref_primary_10_1016_j_cell_2020_11_014 crossref_primary_10_1016_j_ijbiomac_2024_137217 crossref_primary_10_3390_ijms25116284 crossref_primary_10_1016_j_neuropharm_2018_09_020 crossref_primary_10_1007_s00232_019_00092_3 crossref_primary_10_1016_j_phrs_2025_107597 crossref_primary_10_1021_acs_biochem_4c00884 crossref_primary_10_1038_s41594_017_0011_7 crossref_primary_10_1073_pnas_2011023118 crossref_primary_10_3389_fphar_2020_606656 crossref_primary_10_1016_j_chembiol_2023_03_006 crossref_primary_10_1158_2159_8290_CD_18_0046 crossref_primary_10_1073_pnas_2026491118 crossref_primary_10_1242_jcs_259685 crossref_primary_10_1038_s41540_019_0114_3 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1700331114 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 28652372 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM103313 – fundername: NINDS NIH HHS grantid: R37 NS008174 – fundername: NIGMS NIH HHS grantid: F32 GM099373 – fundername: NCRR NIH HHS grantid: S10 RR026406 – fundername: NIDDK NIH HHS grantid: R01 DK080840 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c545t-12b7080770036cb6e6c35bb638f58144a51f2ced458155edfe003e05dd34a7e12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405177100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 08:44:23 EDT 2025 Thu Apr 03 06:57:14 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Keywords | GPCR arrestin muscarinic receptor ERK receptor kinase |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-12b7080770036cb6e6c35bb638f58144a51f2ced458155edfe003e05dd34a7e12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7266-1671 |
| OpenAccessLink | https://www.pnas.org/content/pnas/114/28/E5579.full.pdf |
| PMID | 28652372 |
| PQID | 1914290439 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1914290439 pubmed_primary_28652372 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-11 |
| PublicationDateYYYYMMDD | 2017-07-11 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2017 |
| References | 24753247 - J Biol Chem. 2014 May 30;289(22):15856-66 17620599 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12011-6 24449856 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1825-30 24949979 - Cell. 2014 Jun 19;157(7):1724-34 27499021 - Cell. 2016 Aug 11;166(4):907-19 27452469 - Cell Rep. 2016 Aug 9;16(6):1518-26 19332618 - J Gen Physiol. 2009 Apr;133(4):347-59 26958838 - Nature. 2016 Mar 17;531(7594):335-40 21680031 - Trends Pharmacol Sci. 2011 Sep;32(9):521-33 10648702 - J Neurosci. 2000 Feb 1;20(3):977-85 27852822 - J Biol Chem. 2016 Dec 30;291(53):27147-27159 24292823 - Handb Exp Pharmacol. 2014;219:15-56 17403928 - J Cell Biol. 2007 Apr 9;177(1):127-37 21868358 - Sci Signal. 2011 Aug 9;4(185):ra52 9495886 - J Pharmacol Exp Ther. 1998 Mar;284(3):1218-26 19717450 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15950-5 16267056 - Sci STKE. 2005 Nov 01;2005(308):cm10 17496911 - Oncogene. 2007 May 14;26(22):3122-42 21836019 - Mol Pharmacol. 2011 Nov;80(5):760-8 12473660 - J Biol Chem. 2003 Feb 21;278(8):6258-67 7744811 - J Biol Chem. 1995 May 19;270(20):11707-10 27007855 - Nature. 2016 Mar 31;531(7596):661-4 21177246 - J Biol Chem. 2011 Apr 1;286(13):11506-18 25043026 - Nature. 2014 Aug 14;512(7513):218-222 23222541 - Nature. 2012 Dec 20;492(7429):387-92 21942629 - Annu Rev Pharmacol Toxicol. 2012;52:179-97 16873665 - Science. 2006 Jul 28;313(5786):530-3 9931314 - Biochem J. 1999 Feb 15;338 ( Pt 1):175-83 11226259 - Proc Natl Acad Sci U S A. 2001 Feb 27;98 (5):2449-54 18621717 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93 10212206 - J Biol Chem. 1999 Apr 30;274(18):12355-60 27046816 - Curr Biol. 2016 Apr 4;26(7):R285-8 11152693 - J Biol Chem. 2001 Apr 13;276(15):11691-7 19776273 - J Neurosci. 2009 Sep 23;29(38):11867-79 26200343 - Nature. 2015 Jul 30;523(7562):561-7 20100890 - J Gen Physiol. 2010 Feb;135(2):81-97 12097495 - J Neurosci. 2002 Jul 1;22(13):5432-41 20360767 - Nat Protoc. 2010 Apr;5(4):725-38 12082107 - J Biol Chem. 2002 Aug 30;277(35):31818-25 21868357 - Sci Signal. 2011 Aug 9;4(185):ra51 28445455 - Nature. 2017 May 4;545(7652):112-115 19001375 - J Biol Chem. 2009 Jan 2;284(1):685-95 9759500 - Annu Rev Biochem. 1998;67:653-92 16687412 - J Biol Chem. 2006 Jul 21;281(29):20577-88 28189644 - Biochim Biophys Acta. 2017 May;1862(5):513-522 16051150 - Cell. 2005 Jul 29;122(2):261-73 26826123 - J Biol Chem. 2016 Apr 22;291(17 ):8862-75 25264171 - Biochim Biophys Acta. 2015 Jun;1851(6):794-804 28181498 - Nat Commun. 2017 Feb 09;8:14335 23604254 - Nature. 2013 May 2;497(7447):137-41 27007854 - Nature. 2016 Mar 31;531(7596):665-8 26829388 - Nat Cell Biol. 2016 Mar;18(3):303-10 23151001 - Curr Med Chem. 2013;20(1):39-46 27178731 - Pharmacol Res. 2016 Sep;111:1-16 26927499 - J Gen Physiol. 2016 Mar;147(3):255-71 10725339 - J Cell Biol. 2000 Mar 20;148(6):1267-81 |
| References_xml | – reference: 24449856 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1825-30 – reference: 24292823 - Handb Exp Pharmacol. 2014;219:15-56 – reference: 27178731 - Pharmacol Res. 2016 Sep;111:1-16 – reference: 20360767 - Nat Protoc. 2010 Apr;5(4):725-38 – reference: 26958838 - Nature. 2016 Mar 17;531(7594):335-40 – reference: 17620599 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12011-6 – reference: 19332618 - J Gen Physiol. 2009 Apr;133(4):347-59 – reference: 16873665 - Science. 2006 Jul 28;313(5786):530-3 – reference: 9931314 - Biochem J. 1999 Feb 15;338 ( Pt 1):175-83 – reference: 25043026 - Nature. 2014 Aug 14;512(7513):218-222 – reference: 9495886 - J Pharmacol Exp Ther. 1998 Mar;284(3):1218-26 – reference: 26200343 - Nature. 2015 Jul 30;523(7562):561-7 – reference: 26826123 - J Biol Chem. 2016 Apr 22;291(17 ):8862-75 – reference: 26927499 - J Gen Physiol. 2016 Mar;147(3):255-71 – reference: 21868357 - Sci Signal. 2011 Aug 9;4(185):ra51 – reference: 28445455 - Nature. 2017 May 4;545(7652):112-115 – reference: 23151001 - Curr Med Chem. 2013;20(1):39-46 – reference: 19001375 - J Biol Chem. 2009 Jan 2;284(1):685-95 – reference: 27007855 - Nature. 2016 Mar 31;531(7596):661-4 – reference: 17403928 - J Cell Biol. 2007 Apr 9;177(1):127-37 – reference: 20100890 - J Gen Physiol. 2010 Feb;135(2):81-97 – reference: 21680031 - Trends Pharmacol Sci. 2011 Sep;32(9):521-33 – reference: 16687412 - J Biol Chem. 2006 Jul 21;281(29):20577-88 – reference: 11226259 - Proc Natl Acad Sci U S A. 2001 Feb 27;98 (5):2449-54 – reference: 24949979 - Cell. 2014 Jun 19;157(7):1724-34 – reference: 25264171 - Biochim Biophys Acta. 2015 Jun;1851(6):794-804 – reference: 19776273 - J Neurosci. 2009 Sep 23;29(38):11867-79 – reference: 10725339 - J Cell Biol. 2000 Mar 20;148(6):1267-81 – reference: 17496911 - Oncogene. 2007 May 14;26(22):3122-42 – reference: 27007854 - Nature. 2016 Mar 31;531(7596):665-8 – reference: 10212206 - J Biol Chem. 1999 Apr 30;274(18):12355-60 – reference: 12097495 - J Neurosci. 2002 Jul 1;22(13):5432-41 – reference: 27499021 - Cell. 2016 Aug 11;166(4):907-19 – reference: 21836019 - Mol Pharmacol. 2011 Nov;80(5):760-8 – reference: 16267056 - Sci STKE. 2005 Nov 01;2005(308):cm10 – reference: 11152693 - J Biol Chem. 2001 Apr 13;276(15):11691-7 – reference: 27452469 - Cell Rep. 2016 Aug 9;16(6):1518-26 – reference: 21868358 - Sci Signal. 2011 Aug 9;4(185):ra52 – reference: 28189644 - Biochim Biophys Acta. 2017 May;1862(5):513-522 – reference: 18621717 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93 – reference: 27046816 - Curr Biol. 2016 Apr 4;26(7):R285-8 – reference: 23222541 - Nature. 2012 Dec 20;492(7429):387-92 – reference: 12082107 - J Biol Chem. 2002 Aug 30;277(35):31818-25 – reference: 23604254 - Nature. 2013 May 2;497(7447):137-41 – reference: 28181498 - Nat Commun. 2017 Feb 09;8:14335 – reference: 19717450 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15950-5 – reference: 12473660 - J Biol Chem. 2003 Feb 21;278(8):6258-67 – reference: 10648702 - J Neurosci. 2000 Feb 1;20(3):977-85 – reference: 9759500 - Annu Rev Biochem. 1998;67:653-92 – reference: 27852822 - J Biol Chem. 2016 Dec 30;291(53):27147-27159 – reference: 7744811 - J Biol Chem. 1995 May 19;270(20):11707-10 – reference: 24753247 - J Biol Chem. 2014 May 30;289(22):15856-66 – reference: 21942629 - Annu Rev Pharmacol Toxicol. 2012;52:179-97 – reference: 26829388 - Nat Cell Biol. 2016 Mar;18(3):303-10 – reference: 21177246 - J Biol Chem. 2011 Apr 1;286(13):11506-18 – reference: 16051150 - Cell. 2005 Jul 29;122(2):261-73 |
| SSID | ssj0009580 |
| Score | 2.4097776 |
| Snippet | Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E5579 |
| Title | Muscarinic receptor regulates extracellular signal regulated kinase by two modes of arrestin binding |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28652372 https://www.proquest.com/docview/1914290439 |
| Volume | 114 |
| WOSCitedRecordID | wos000405177100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDKG1XcfOhBCiYmnVAaRukWM7UoWUhKYF8e-5y0OwICGxRI7iPOzcne9s3_cRcsU1k4lQaWCE0RCgKBtoBiUbJZj3CRHJwFZkE2oy0bNZNG0m3MpmW2VrEytD7XKLc-R9xCHjESZy3hVvAbJG4epqQ6GxTjoCXBmUajXTP0B3dY1GELEghLe20D5K9IvMlLeITScEaPvwd_-yGmdGO__9wl2y3XiY9L4WiS5Z89ke6TY6XNLrBmj6Zp-48aq0BpdwLAXD5wuIv6FQkdNDTTDbC4MT-7hTleJGD3hse9nR1zk0ztPkky4_coqMOiXNU2oqto95RpN5lTBzQF5Gj88PT0HDuhBY8KaWAeOJAjdSYd-ENgl9aIVMEtDTVGoIv4xkKbfeDeFMSu9SDxX9QDonhkZ5xg_JRpZn_pjQ1GhvDSLyQ9DHvNPRwBkHf0NFkdVS9chl25MxSDW2yGQ-X5Xxd1_2yFH9O-Kiht-IMZeWC8VP_nD3KdniOA4jEiY7I50UdNqfk037vpyXi4tKXOA4mY6_AAoFyqA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscarinic+receptor+regulates+extracellular+signal+regulated+kinase+by+two+modes+of+arrestin+binding&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jung%2C+Seung-Ryoung&rft.au=Kushmerick%2C+Christopher&rft.au=Seo%2C+Jong+Bae&rft.au=Koh%2C+Duk-Su&rft.date=2017-07-11&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=28&rft.spage=E5579&rft_id=info:doi/10.1073%2Fpnas.1700331114&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |