Sensitivity Analysis Without Assumptions

Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity ana...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Epidemiology (Cambridge, Mass.) Ročník 27; číslo 3; s. 368
Hlavní autoři: Ding, Peng, VanderWeele, Tyler J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.05.2016
Témata:
ISSN:1531-5487, 1531-5487
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder.
AbstractList Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder.Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder.
Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder.
Author Ding, Peng
VanderWeele, Tyler J
Author_xml – sequence: 1
  givenname: Peng
  surname: Ding
  fullname: Ding, Peng
  organization: From the aDepartment of Statistics, University of California, Berkeley, CA; and bDepartment of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA
– sequence: 2
  givenname: Tyler J
  surname: VanderWeele
  fullname: VanderWeele, Tyler J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26841057$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAYRYOMOA_9ByJdzqZjnpNkWcb6gAEXKi5Lm_mCkTatTSr030_BEeZu7lkcLtwlmvnWA0K3BG8I1vI-f8g3-DxcyAu0IIKRVHAlZ2c8R8sQvjEmkhFxheZ0qzjBQi7Q-g18cNH9ujgmmS_rMbiQfLr41Q4xyUIYmi661odrdGnLOsDNqVfo4zF_3z2n-9enl122T43ggqSqrMCWWlTScF0ZKqzlExCDAVtTWalAKqGZPmgAJirDJh-2DCuMraKcrtD6b7fr258BQiwaFwzUdemhHUJBpNSYUiLopN6d1KFq4FB0vWvKfiz-39Ejs0lTtw
CitedBy_id crossref_primary_10_3390_ijerph17041271
crossref_primary_10_1080_10543406_2022_2162067
crossref_primary_10_1001_jamanetworkopen_2022_15787
crossref_primary_10_1002_acr_24497
crossref_primary_10_1053_j_gastro_2017_04_047
crossref_primary_10_1097_HJH_0000000000002317
crossref_primary_10_1016_j_canep_2019_101654
crossref_primary_10_1186_s40560_019_0363_7
crossref_primary_10_1002_jso_27213
crossref_primary_10_1136_bmjqs_2020_011271
crossref_primary_10_1007_s10278_024_01366_6
crossref_primary_10_1016_j_xkme_2020_09_013
crossref_primary_10_1093_aje_kwy252
crossref_primary_10_1093_aje_kwx044
crossref_primary_10_1515_em_2019_0028
crossref_primary_10_1097_SLA_0000000000003562
crossref_primary_10_1111_ggi_14973
crossref_primary_10_1038_s41562_019_0602_x
crossref_primary_10_1016_j_ijresmar_2017_12_003
crossref_primary_10_1007_s40471_017_0131_y
crossref_primary_10_1177_0022343320957377
crossref_primary_10_1016_j_ssresearch_2022_102818
crossref_primary_10_1002_art_42272
crossref_primary_10_1111_1471_0528_14960
crossref_primary_10_1016_j_eururo_2019_07_032
crossref_primary_10_1016_j_jbusres_2022_07_004
crossref_primary_10_1186_s12883_018_1118_0
crossref_primary_10_3389_fpsyg_2025_1517590
crossref_primary_10_1136_gutjnl_2021_325097
crossref_primary_10_1002_sim_10342
crossref_primary_10_1111_rssa_12621
crossref_primary_10_2337_dc22_1584
crossref_primary_10_1016_j_urolonc_2018_06_007
crossref_primary_10_1093_biomet_asaa072
crossref_primary_10_1108_IJBM_10_2021_0453
crossref_primary_10_1186_s13098_025_01719_3
crossref_primary_10_1016_j_soard_2022_12_010
crossref_primary_10_3389_fpsyg_2021_631510
crossref_primary_10_1016_j_jclinepi_2024_111507
crossref_primary_10_1073_pnas_2214889120
crossref_primary_10_1016_j_annepidem_2018_05_009
crossref_primary_10_1016_j_jad_2021_12_117
crossref_primary_10_1093_aje_kwy142
crossref_primary_10_1017_S0020818321000126
crossref_primary_10_7326_M20_0167
crossref_primary_10_1080_13854046_2020_1713399
crossref_primary_10_1016_j_jpain_2023_11_019
crossref_primary_10_1186_s12884_020_02981_1
crossref_primary_10_1080_00273171_2016_1229171
crossref_primary_10_3389_fpubh_2020_00103
crossref_primary_10_1007_s10549_022_06746_6
crossref_primary_10_1093_ije_dyw230
crossref_primary_10_1146_annurev_publhealth_051920_114020
crossref_primary_10_1016_j_annepidem_2017_11_010
crossref_primary_10_1001_jamanetworkopen_2023_50897
crossref_primary_10_3390_ijerph191912916
crossref_primary_10_1093_ajcn_nqy016
crossref_primary_10_1097_HTR_0000000000001098
crossref_primary_10_1016_j_phrs_2022_106174
crossref_primary_10_1093_cid_ciab226
crossref_primary_10_1136_bmjmed_2022_000366
crossref_primary_10_1001_jama_2018_21554
crossref_primary_10_1093_aje_kwz009
crossref_primary_10_1287_mnsc_2020_3818
crossref_primary_10_1093_ije_dyac135
crossref_primary_10_1016_j_socscimed_2018_05_040
crossref_primary_10_1038_s41598_021_89020_x
crossref_primary_10_1093_ije_dyac018
crossref_primary_10_1093_aje_kwad209
crossref_primary_10_1111_cns_70207
crossref_primary_10_1214_19_STS728
crossref_primary_10_1007_s40471_022_00308_6
crossref_primary_10_1016_j_socscimed_2023_115841
crossref_primary_10_1093_aje_kwz003
crossref_primary_10_1093_biomet_asz003
crossref_primary_10_1177_1536867X20909696
crossref_primary_10_1016_j_vaccine_2023_11_011
crossref_primary_10_1590_0102_311x00294720
crossref_primary_10_1093_biomet_asac018
crossref_primary_10_12688_f1000research_157236_1
crossref_primary_10_1080_19466315_2025_2546360
crossref_primary_10_1007_s11336_021_09811_z
crossref_primary_10_1002_pst_2104
crossref_primary_10_1038_s41372_018_0244_2
crossref_primary_10_1016_j_annepidem_2022_11_001
crossref_primary_10_1200_JCO_2017_75_3228
crossref_primary_10_1111_cdoe_12654
crossref_primary_10_1016_j_ypmed_2022_107327
crossref_primary_10_1097_EDE_0000000000001207
crossref_primary_10_1001_jamapediatrics_2021_5778
crossref_primary_10_1093_infdis_jiab539
crossref_primary_10_1016_j_envres_2024_119612
crossref_primary_10_1093_aje_kwab033
crossref_primary_10_1093_ije_dyab055
crossref_primary_10_1093_ije_dyab056
crossref_primary_10_1093_aje_kwz133
crossref_primary_10_1002_bimj_201700199
crossref_primary_10_1001_jamanetworkopen_2021_34627
crossref_primary_10_1016_j_annepidem_2021_12_009
crossref_primary_10_1214_23_STS902
crossref_primary_10_1080_02664763_2021_1999398
crossref_primary_10_5465_amj_2022_1075
crossref_primary_10_1097_HTR_0000000000000546
crossref_primary_10_1177_0038040716681054
crossref_primary_10_1186_s12916_021_01941_6
crossref_primary_10_1371_journal_pone_0207778
crossref_primary_10_1093_jrsssa_qnae012
crossref_primary_10_1289_EHP6980
crossref_primary_10_1080_01621459_2023_2252576
crossref_primary_10_1161_CIRCOUTCOMES_119_005993
crossref_primary_10_2188_jea_JE20210134
crossref_primary_10_1016_j_clinthera_2019_08_016
crossref_primary_10_7326_M18_2159
crossref_primary_10_1017_ehs_2023_17
crossref_primary_10_3390_cancers12113182
crossref_primary_10_1111_biom_13436
crossref_primary_10_1007_s10834_023_09891_2
crossref_primary_10_2337_dc17_2280
crossref_primary_10_7326_L20_0125
crossref_primary_10_3390_ijerph20247157
crossref_primary_10_7326_M20_0887
crossref_primary_10_1093_ije_dyaa092
crossref_primary_10_7326_M16_2945
crossref_primary_10_1093_ije_dyaa094
crossref_primary_10_1093_ije_dyaa097
crossref_primary_10_1186_s12884_024_06994_y
crossref_primary_10_1515_em_2025_0007
crossref_primary_10_1097_EDE_0000000000000807
crossref_primary_10_1002_jbm4_10793
crossref_primary_10_3390_ijerph16224381
crossref_primary_10_1080_24709360_2022_2109910
crossref_primary_10_1002_acr_25016
crossref_primary_10_1007_s00181_022_02336_z
crossref_primary_10_1016_j_surg_2023_05_033
crossref_primary_10_1007_s11883_017_0640_7
crossref_primary_10_1111_1471_0528_18153
crossref_primary_10_7326_M18_3112
crossref_primary_10_1093_aje_kwae409
crossref_primary_10_1016_j_numecd_2022_07_004
crossref_primary_10_1289_EHP9200
crossref_primary_10_1007_s11558_025_09601_7
crossref_primary_10_1213_ANE_0000000000007104
crossref_primary_10_1017_ehs_2023_29
crossref_primary_10_1111_ppe_12568
crossref_primary_10_1093_epirev_mxab003
crossref_primary_10_1007_s10654_018_0436_2
crossref_primary_10_1080_13607863_2024_2445136
crossref_primary_10_1093_aje_kwy067
crossref_primary_10_1016_j_eururo_2020_04_038
crossref_primary_10_1080_10705511_2020_1780598
crossref_primary_10_1186_s12874_019_0858_x
crossref_primary_10_1126_sciadv_ads4156
crossref_primary_10_1177_25152459251326571
crossref_primary_10_1093_ije_dyz261
crossref_primary_10_1017_S0033291721002427
crossref_primary_10_1016_j_scitotenv_2022_155658
crossref_primary_10_1097_EDE_0000000000001239
crossref_primary_10_1007_s00586_024_08555_5
crossref_primary_10_1093_biomet_asad030
crossref_primary_10_1097_EDE_0000000000001238
crossref_primary_10_1080_01621459_2022_2102503
crossref_primary_10_1214_19_STS765
crossref_primary_10_57264_cer_2024_0007
crossref_primary_10_1093_jpids_piy023
crossref_primary_10_1111_liv_13994
crossref_primary_10_1002_pst_2260
crossref_primary_10_1016_j_scitotenv_2019_135232
crossref_primary_10_1200_JCO_2016_66_7352
crossref_primary_10_1016_j_ijchy_2019_100012
crossref_primary_10_1093_biostatistics_kxac24
crossref_primary_10_15195_v11_a17
crossref_primary_10_1038_s41409_018_0424_x
crossref_primary_10_1111_dom_14330
crossref_primary_10_2337_dc20_0204
crossref_primary_10_1073_pnas_1901326117
crossref_primary_10_1093_ehjopen_oeaf070
crossref_primary_10_1007_s10654_016_0175_1
crossref_primary_10_1080_01621459_2019_1623039
crossref_primary_10_1097_SLA_0000000000003627
crossref_primary_10_1289_EHP9468
crossref_primary_10_1001_jama_2024_7741
crossref_primary_10_1093_jpids_piab024
crossref_primary_10_1111_add_15503
crossref_primary_10_1214_19_AOS1929
crossref_primary_10_1007_s00464_022_09063_7
crossref_primary_10_1056_NEJMsm1605385
crossref_primary_10_1093_aje_kwac207
crossref_primary_10_1186_s12888_024_05941_7
crossref_primary_10_1136_bjsports_2023_107177
crossref_primary_10_1016_j_socscimed_2021_114494
crossref_primary_10_1093_ije_dyab096
crossref_primary_10_1080_01621459_2018_1529598
crossref_primary_10_1186_s13054_023_04307_x
crossref_primary_10_1093_biostatistics_kxac024
crossref_primary_10_1097_EDE_0000000000001379
crossref_primary_10_1111_rssb_12327
crossref_primary_10_1016_S2665_9913_22_00098_4
crossref_primary_10_1053_j_ajkd_2019_05_018
crossref_primary_10_1080_00273171_2019_1656051
crossref_primary_10_1007_s10654_024_01171_z
crossref_primary_10_1093_aje_kwz063
crossref_primary_10_1016_j_jclinepi_2020_05_002
crossref_primary_10_1145_3636423
crossref_primary_10_3389_fendo_2023_1303336
crossref_primary_10_1007_s10985_023_09607_6
crossref_primary_10_1093_ije_dyac073
crossref_primary_10_1016_j_eururo_2017_05_021
crossref_primary_10_2217_cer_2022_0030
crossref_primary_10_1097_EDE_0000000000001381
crossref_primary_10_1097_EDE_0000000000001380
crossref_primary_10_1007_s10680_025_09733_x
crossref_primary_10_1111_add_15959
crossref_primary_10_1161_CIRCOUTCOMES_121_007741
crossref_primary_10_1016_j_dld_2023_12_007
crossref_primary_10_3390_vaccines13040407
crossref_primary_10_1111_ppe_12809
crossref_primary_10_1007_s10940_018_9385_x
crossref_primary_10_1007_s12561_025_09495_4
crossref_primary_10_1001_jamanetworkopen_2025_9246
crossref_primary_10_3102_0162373721991575
crossref_primary_10_1200_JCO_2016_66_6594
crossref_primary_10_2147_CLEP_S313613
crossref_primary_10_1097_HJH_0000000000002706
crossref_primary_10_1177_23780231211024421
crossref_primary_10_1016_j_hpb_2023_09_016
crossref_primary_10_2217_cer_2022_0029
crossref_primary_10_1093_jncimonographs_lgaa008
crossref_primary_10_1200_JCO_2017_76_1759
crossref_primary_10_1016_j_psyneuen_2016_10_003
crossref_primary_10_1111_bcp_14728
crossref_primary_10_1007_s40266_018_0583_x
crossref_primary_10_1016_j_jhep_2019_08_015
crossref_primary_10_1080_01621459_2019_1604369
crossref_primary_10_1097_EDE_0000000000000864
crossref_primary_10_1080_10543406_2021_2011743
crossref_primary_10_1016_j_ygyno_2017_06_016
crossref_primary_10_1097_AOG_0000000000005424
crossref_primary_10_1097_EDE_0000000000001031
crossref_primary_10_1080_0161956X_2025_2508639
crossref_primary_10_1097_EDE_0000000000001033
crossref_primary_10_1007_s44197_025_00373_2
crossref_primary_10_1097_EDE_0000000000001032
crossref_primary_10_1007_s12160_016_9813_9
crossref_primary_10_1200_JCO_2016_69_4141
crossref_primary_10_1287_mksc_2020_1240
crossref_primary_10_1093_aje_kwae251
crossref_primary_10_1002_pst_2064
crossref_primary_10_1126_science_abm3425
crossref_primary_10_1136_bmjph_2024_001267
crossref_primary_10_1186_s13045_021_01185_0
crossref_primary_10_1016_j_joca_2021_09_015
crossref_primary_10_1097_LVT_0000000000000135
crossref_primary_10_1016_j_ecoenv_2024_116097
crossref_primary_10_1038_s41598_025_13016_0
crossref_primary_10_1093_ije_dyab219
crossref_primary_10_1111_biom_12919
crossref_primary_10_1164_rccm_202309_1636OC
crossref_primary_10_1093_biomtc_ujae106
crossref_primary_10_1093_ije_dyab218
crossref_primary_10_1177_1358863X211012754
crossref_primary_10_1080_01621459_2024_2441527
crossref_primary_10_2337_dc19_0409
crossref_primary_10_1002_sim_10288
crossref_primary_10_1016_j_conctc_2017_10_009
crossref_primary_10_1093_ije_dyaa120
crossref_primary_10_1097_EDE_0000000000001043
crossref_primary_10_1016_j_ecoenv_2023_115839
crossref_primary_10_1093_ije_dyaa127
crossref_primary_10_1159_000531261
crossref_primary_10_1186_s12874_019_0874_x
crossref_primary_10_1002_sim_70025
crossref_primary_10_1002_pds_5019
crossref_primary_10_1016_j_ajog_2021_10_028
crossref_primary_10_1093_biomet_asae040
crossref_primary_10_1016_j_urolonc_2021_07_018
crossref_primary_10_1016_j_chemosphere_2024_143882
crossref_primary_10_1111_rssa_12276
crossref_primary_10_14309_ajg_0000000000002257
crossref_primary_10_1007_s00345_017_2154_x
crossref_primary_10_1515_em_2022_0108
crossref_primary_10_1016_j_adolescence_2019_11_003
crossref_primary_10_1080_10447318_2024_2384830
crossref_primary_10_1136_annrheumdis_2020_219517
crossref_primary_10_1016_j_canlet_2024_217411
crossref_primary_10_1093_jrsssa_qnaf067
crossref_primary_10_1002_sim_70276
crossref_primary_10_1016_j_diabres_2025_112330
crossref_primary_10_1017_pan_2020_28
crossref_primary_10_1177_0081175018785216
crossref_primary_10_3389_fmed_2022_837743
crossref_primary_10_1093_humrep_deaa051
crossref_primary_10_1097_EDE_0000000000001622
crossref_primary_10_1111_add_16337
crossref_primary_10_1111_brv_70011
crossref_primary_10_1016_j_juro_2017_01_063
crossref_primary_10_1001_jamanetworkopen_2021_15305
crossref_primary_10_1097_EDE_0000000000000891
crossref_primary_10_1093_eurheartj_ehaf003
crossref_primary_10_1002_sim_7298
crossref_primary_10_1080_17439760_2018_1519591
crossref_primary_10_1111_rssc_12440
crossref_primary_10_1016_j_juro_2018_03_077
crossref_primary_10_1214_24_STS945
crossref_primary_10_1002_jbmr_3324
crossref_primary_10_1111_rssc_12443
crossref_primary_10_1177_0890117120964083
crossref_primary_10_2188_jea_JE20240082
crossref_primary_10_1016_j_jaac_2017_12_010
crossref_primary_10_1093_humrep_dey228
crossref_primary_10_1111_rssa_12946
crossref_primary_10_1210_er_2017_00246
crossref_primary_10_1016_j_lana_2025_101192
crossref_primary_10_1093_aje_kww179
crossref_primary_10_1136_thoraxjnl_2021_217487
crossref_primary_10_1214_18_STS645
crossref_primary_10_1093_cdn_nzz104
crossref_primary_10_1016_j_cct_2024_107492
crossref_primary_10_1016_j_ijar_2025_109531
crossref_primary_10_1016_j_reprotox_2024_108544
crossref_primary_10_1080_01621459_2020_1864382
crossref_primary_10_1186_s12874_023_01906_8
crossref_primary_10_3390_e24101469
crossref_primary_10_1002_pds_5189
crossref_primary_10_1017_S2045796022000294
crossref_primary_10_1007_s40264_020_01015_1
crossref_primary_10_1016_j_ijnurstu_2016_08_006
crossref_primary_10_1016_j_urolonc_2020_11_013
crossref_primary_10_1515_jci_2023_0069
crossref_primary_10_1016_j_soard_2021_06_022
crossref_primary_10_1287_msom_2022_0088
crossref_primary_10_1136_bmj_2023_076365
crossref_primary_10_1093_aje_kwad137
crossref_primary_10_1002_jrsm_1667
crossref_primary_10_1016_j_envint_2021_107032
crossref_primary_10_1017_cts_2023_688
crossref_primary_10_1093_aje_kwae102
crossref_primary_10_1016_j_ssresearch_2023_102973
crossref_primary_10_1017_S0033291718001368
crossref_primary_10_1177_1069031X211068072
crossref_primary_10_23736_S1973_9087_24_08435_1
crossref_primary_10_1371_journal_pone_0258723
crossref_primary_10_2147_NDT_S450236
crossref_primary_10_1093_ije_dyx023
crossref_primary_10_1016_j_annepidem_2018_09_003
crossref_primary_10_1016_j_socscimed_2017_01_015
crossref_primary_10_3390_nu14051072
crossref_primary_10_1186_s12874_025_02490_9
crossref_primary_10_1007_s10654_019_00494_6
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/EDE.0000000000000457
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 26841057
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01ES017876
– fundername: NCI NIH HHS
  grantid: R35 CA197449
– fundername: NIEHS NIH HHS
  grantid: R01 ES017876
– fundername: NCI NIH HHS
  grantid: P01 CA134294
GroupedDBID ---
.-D
.55
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAFWJ
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBHK
ABBUW
ABDIG
ABJNI
ABPLY
ABPXF
ABTLG
ABVCZ
ABXSQ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACHIC
ACHQT
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADFPA
ADGGA
ADHPY
ADNKB
ADQXQ
ADULT
AE3
AE6
AEETU
AENEX
AEUPB
AEXZC
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
ANHSF
AOHHW
AOQMC
AQVQM
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DCCCD
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HGD
HLJTE
HQ3
HTVGU
HZ~
IKREB
IKYAY
IN~
IPNFZ
IPSME
JAAYA
JBMMH
JENOY
JF9
JG8
JHFFW
JK3
JK8
JKQEH
JLS
JLXEF
JPM
JSG
JST
K8S
KD2
L-C
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OLG
OLH
OLU
OLY
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
SA0
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YOC
ZFV
ZGI
ZZMQN
7X8
ADKSD
ADSXY
ID FETCH-LOGICAL-c5451-8abefa95b7c49bc25ff449b1c0e0fcbf78e785939d9ee35bc3befe630800f8242
IEDL.DBID 7X8
ISICitedReferencesCount 413
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00001648-201605000-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1531-5487
IngestDate Sat Sep 27 19:24:13 EDT 2025
Mon Jul 21 06:02:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5451-8abefa95b7c49bc25ff449b1c0e0fcbf78e785939d9ee35bc3befe630800f8242
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4820664
PMID 26841057
PQID 1779022152
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1779022152
pubmed_primary_26841057
PublicationCentury 2000
PublicationDate 2016-May
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2016
References 29608547 - Epidemiology. 2018 May;29(3):e19
31373936 - Epidemiology. 2019 Sep;30(5):e31
References_xml – reference: 31373936 - Epidemiology. 2019 Sep;30(5):e31
– reference: 29608547 - Epidemiology. 2018 May;29(3):e19
SSID ssj0017315
Score 2.6466348
Snippet Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 368
SubjectTerms Causality
Confounding Factors, Epidemiologic
Epidemiologic Methods
Humans
Risk
Statistics as Topic
Title Sensitivity Analysis Without Assumptions
URI https://www.ncbi.nlm.nih.gov/pubmed/26841057
https://www.proquest.com/docview/1779022152
Volume 27
WOSCitedRecordID wos00001648-201605000-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7U9SCI78f6ooIHL2H7StOcRHQXLy4LKu6tpOkE99Kubtff76Rp2ZMg2EPJIYUyM8l8ZCbfB3AjQgwKigzmo-YsNhgyRcCZhRimOeUnGUSmEZsQ43E6ncpJe-C2aNsquz2x2aiLStsz8kFgifFCq8J6N_9kVjXKVldbCY116EUEZWxUi-mqiiCcggEt6oBZZN5dnZNiMHwcOurC7om5-B1kNslmtPvf39yDnRZmevcuLvZhDcsD2HZndJ67enQIty-2e93JR3gdO4n3Pqs_qmXtkePI1U1YHsHbaPj68MRa5QSmCREFLFU5GiV5LnQscx1yY2IaBNpH3-jciBSFJTqThUSMeK4jmo9JZOGjSSlrH8NGWZV4Cp4iQIC6QKO5jpWfqqRIAmVSGnNNWKAP150hMopMW25QJVbLRbYyRR9OnDWzuaPQyCzHjFUYPvvD1-ewRSglcV2GF9AztC7xEjb1dz1bfF01Lqf3ePL8A0C5tJo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+Without+Assumptions&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Ding%2C+Peng&rft.au=VanderWeele%2C+Tyler+J&rft.date=2016-05-01&rft.eissn=1531-5487&rft.volume=27&rft.issue=3&rft.spage=368&rft_id=info:doi/10.1097%2FEDE.0000000000000457&rft_id=info%3Apmid%2F26841057&rft_id=info%3Apmid%2F26841057&rft.externalDocID=26841057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon