Sensitivity Analysis Without Assumptions
Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity ana...
Saved in:
| Published in: | Epidemiology (Cambridge, Mass.) Vol. 27; no. 3; p. 368 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.05.2016
|
| Subjects: | |
| ISSN: | 1531-5487, 1531-5487 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder. |
|---|---|
| AbstractList | Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder. Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder.Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially circumvent this issue by assessing the potential influence of unmeasured confounding on causal conclusions. However, previous sensitivity analysis approaches often make strong and untestable assumptions such as having an unmeasured confounder that is binary, or having no interaction between the effects of the exposure and the confounder on the outcome, or having only one unmeasured confounder. Without imposing any assumptions on the unmeasured confounder or confounders, we derive a bounding factor and a sharp inequality such that the sensitivity analysis parameters must satisfy the inequality if an unmeasured confounder is to explain away the observed effect estimate or reduce it to a particular level. Our approach is easy to implement and involves only two sensitivity parameters. Surprisingly, our bounding factor, which makes no simplifying assumptions, is no more conservative than a number of previous sensitivity analysis techniques that do make assumptions. Our new bounding factor implies not only the traditional Cornfield conditions that both the relative risk of the exposure on the confounder and that of the confounder on the outcome must satisfy but also a high threshold that the maximum of these relative risks must satisfy. Furthermore, this new bounding factor can be viewed as a measure of the strength of confounding between the exposure and the outcome induced by a confounder. |
| Author | Ding, Peng VanderWeele, Tyler J |
| Author_xml | – sequence: 1 givenname: Peng surname: Ding fullname: Ding, Peng organization: From the aDepartment of Statistics, University of California, Berkeley, CA; and bDepartment of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA – sequence: 2 givenname: Tyler J surname: VanderWeele fullname: VanderWeele, Tyler J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26841057$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAYRYOMOA_9ByJdzqZjnpNkWcb6gAEXKi5Lm_mCkTatTSr030_BEeZu7lkcLtwlmvnWA0K3BG8I1vI-f8g3-DxcyAu0IIKRVHAlZ2c8R8sQvjEmkhFxheZ0qzjBQi7Q-g18cNH9ujgmmS_rMbiQfLr41Q4xyUIYmi661odrdGnLOsDNqVfo4zF_3z2n-9enl122T43ggqSqrMCWWlTScF0ZKqzlExCDAVtTWalAKqGZPmgAJirDJh-2DCuMraKcrtD6b7fr258BQiwaFwzUdemhHUJBpNSYUiLopN6d1KFq4FB0vWvKfiz-39Ejs0lTtw |
| CitedBy_id | crossref_primary_10_3390_ijerph17041271 crossref_primary_10_1080_10543406_2022_2162067 crossref_primary_10_1001_jamanetworkopen_2022_15787 crossref_primary_10_1002_acr_24497 crossref_primary_10_1053_j_gastro_2017_04_047 crossref_primary_10_1097_HJH_0000000000002317 crossref_primary_10_1016_j_canep_2019_101654 crossref_primary_10_1186_s40560_019_0363_7 crossref_primary_10_1002_jso_27213 crossref_primary_10_1136_bmjqs_2020_011271 crossref_primary_10_1007_s10278_024_01366_6 crossref_primary_10_1016_j_xkme_2020_09_013 crossref_primary_10_1093_aje_kwy252 crossref_primary_10_1093_aje_kwx044 crossref_primary_10_1515_em_2019_0028 crossref_primary_10_1097_SLA_0000000000003562 crossref_primary_10_1111_ggi_14973 crossref_primary_10_1038_s41562_019_0602_x crossref_primary_10_1016_j_ijresmar_2017_12_003 crossref_primary_10_1007_s40471_017_0131_y crossref_primary_10_1177_0022343320957377 crossref_primary_10_1016_j_ssresearch_2022_102818 crossref_primary_10_1002_art_42272 crossref_primary_10_1111_1471_0528_14960 crossref_primary_10_1016_j_eururo_2019_07_032 crossref_primary_10_1016_j_jbusres_2022_07_004 crossref_primary_10_1186_s12883_018_1118_0 crossref_primary_10_3389_fpsyg_2025_1517590 crossref_primary_10_1136_gutjnl_2021_325097 crossref_primary_10_1002_sim_10342 crossref_primary_10_1111_rssa_12621 crossref_primary_10_2337_dc22_1584 crossref_primary_10_1016_j_urolonc_2018_06_007 crossref_primary_10_1093_biomet_asaa072 crossref_primary_10_1108_IJBM_10_2021_0453 crossref_primary_10_1186_s13098_025_01719_3 crossref_primary_10_1016_j_soard_2022_12_010 crossref_primary_10_3389_fpsyg_2021_631510 crossref_primary_10_1016_j_jclinepi_2024_111507 crossref_primary_10_1073_pnas_2214889120 crossref_primary_10_1016_j_annepidem_2018_05_009 crossref_primary_10_1016_j_jad_2021_12_117 crossref_primary_10_1093_aje_kwy142 crossref_primary_10_1017_S0020818321000126 crossref_primary_10_7326_M20_0167 crossref_primary_10_1080_13854046_2020_1713399 crossref_primary_10_1016_j_jpain_2023_11_019 crossref_primary_10_1186_s12884_020_02981_1 crossref_primary_10_1080_00273171_2016_1229171 crossref_primary_10_3389_fpubh_2020_00103 crossref_primary_10_1007_s10549_022_06746_6 crossref_primary_10_1093_ije_dyw230 crossref_primary_10_1146_annurev_publhealth_051920_114020 crossref_primary_10_1016_j_annepidem_2017_11_010 crossref_primary_10_1001_jamanetworkopen_2023_50897 crossref_primary_10_3390_ijerph191912916 crossref_primary_10_1093_ajcn_nqy016 crossref_primary_10_1097_HTR_0000000000001098 crossref_primary_10_1016_j_phrs_2022_106174 crossref_primary_10_1093_cid_ciab226 crossref_primary_10_1136_bmjmed_2022_000366 crossref_primary_10_1001_jama_2018_21554 crossref_primary_10_1093_aje_kwz009 crossref_primary_10_1287_mnsc_2020_3818 crossref_primary_10_1093_ije_dyac135 crossref_primary_10_1016_j_socscimed_2018_05_040 crossref_primary_10_1038_s41598_021_89020_x crossref_primary_10_1093_ije_dyac018 crossref_primary_10_1093_aje_kwad209 crossref_primary_10_1111_cns_70207 crossref_primary_10_1214_19_STS728 crossref_primary_10_1007_s40471_022_00308_6 crossref_primary_10_1016_j_socscimed_2023_115841 crossref_primary_10_1093_aje_kwz003 crossref_primary_10_1093_biomet_asz003 crossref_primary_10_1177_1536867X20909696 crossref_primary_10_1016_j_vaccine_2023_11_011 crossref_primary_10_1590_0102_311x00294720 crossref_primary_10_1093_biomet_asac018 crossref_primary_10_12688_f1000research_157236_1 crossref_primary_10_1080_19466315_2025_2546360 crossref_primary_10_1007_s11336_021_09811_z crossref_primary_10_1002_pst_2104 crossref_primary_10_1038_s41372_018_0244_2 crossref_primary_10_1016_j_annepidem_2022_11_001 crossref_primary_10_1200_JCO_2017_75_3228 crossref_primary_10_1111_cdoe_12654 crossref_primary_10_1016_j_ypmed_2022_107327 crossref_primary_10_1097_EDE_0000000000001207 crossref_primary_10_1001_jamapediatrics_2021_5778 crossref_primary_10_1093_infdis_jiab539 crossref_primary_10_1016_j_envres_2024_119612 crossref_primary_10_1093_aje_kwab033 crossref_primary_10_1093_ije_dyab055 crossref_primary_10_1093_ije_dyab056 crossref_primary_10_1093_aje_kwz133 crossref_primary_10_1002_bimj_201700199 crossref_primary_10_1001_jamanetworkopen_2021_34627 crossref_primary_10_1016_j_annepidem_2021_12_009 crossref_primary_10_1214_23_STS902 crossref_primary_10_1080_02664763_2021_1999398 crossref_primary_10_5465_amj_2022_1075 crossref_primary_10_1097_HTR_0000000000000546 crossref_primary_10_1177_0038040716681054 crossref_primary_10_1186_s12916_021_01941_6 crossref_primary_10_1371_journal_pone_0207778 crossref_primary_10_1093_jrsssa_qnae012 crossref_primary_10_1289_EHP6980 crossref_primary_10_1080_01621459_2023_2252576 crossref_primary_10_1161_CIRCOUTCOMES_119_005993 crossref_primary_10_2188_jea_JE20210134 crossref_primary_10_1016_j_clinthera_2019_08_016 crossref_primary_10_7326_M18_2159 crossref_primary_10_1017_ehs_2023_17 crossref_primary_10_3390_cancers12113182 crossref_primary_10_1111_biom_13436 crossref_primary_10_1007_s10834_023_09891_2 crossref_primary_10_2337_dc17_2280 crossref_primary_10_7326_L20_0125 crossref_primary_10_3390_ijerph20247157 crossref_primary_10_7326_M20_0887 crossref_primary_10_1093_ije_dyaa092 crossref_primary_10_7326_M16_2945 crossref_primary_10_1093_ije_dyaa094 crossref_primary_10_1093_ije_dyaa097 crossref_primary_10_1186_s12884_024_06994_y crossref_primary_10_1515_em_2025_0007 crossref_primary_10_1097_EDE_0000000000000807 crossref_primary_10_1002_jbm4_10793 crossref_primary_10_3390_ijerph16224381 crossref_primary_10_1080_24709360_2022_2109910 crossref_primary_10_1002_acr_25016 crossref_primary_10_1007_s00181_022_02336_z crossref_primary_10_1016_j_surg_2023_05_033 crossref_primary_10_1007_s11883_017_0640_7 crossref_primary_10_1111_1471_0528_18153 crossref_primary_10_7326_M18_3112 crossref_primary_10_1093_aje_kwae409 crossref_primary_10_1016_j_numecd_2022_07_004 crossref_primary_10_1289_EHP9200 crossref_primary_10_1007_s11558_025_09601_7 crossref_primary_10_1213_ANE_0000000000007104 crossref_primary_10_1017_ehs_2023_29 crossref_primary_10_1111_ppe_12568 crossref_primary_10_1093_epirev_mxab003 crossref_primary_10_1007_s10654_018_0436_2 crossref_primary_10_1080_13607863_2024_2445136 crossref_primary_10_1093_aje_kwy067 crossref_primary_10_1016_j_eururo_2020_04_038 crossref_primary_10_1080_10705511_2020_1780598 crossref_primary_10_1186_s12874_019_0858_x crossref_primary_10_1126_sciadv_ads4156 crossref_primary_10_1177_25152459251326571 crossref_primary_10_1093_ije_dyz261 crossref_primary_10_1017_S0033291721002427 crossref_primary_10_1016_j_scitotenv_2022_155658 crossref_primary_10_1097_EDE_0000000000001239 crossref_primary_10_1007_s00586_024_08555_5 crossref_primary_10_1093_biomet_asad030 crossref_primary_10_1097_EDE_0000000000001238 crossref_primary_10_1080_01621459_2022_2102503 crossref_primary_10_1214_19_STS765 crossref_primary_10_57264_cer_2024_0007 crossref_primary_10_1093_jpids_piy023 crossref_primary_10_1111_liv_13994 crossref_primary_10_1002_pst_2260 crossref_primary_10_1016_j_scitotenv_2019_135232 crossref_primary_10_1200_JCO_2016_66_7352 crossref_primary_10_1016_j_ijchy_2019_100012 crossref_primary_10_1093_biostatistics_kxac24 crossref_primary_10_15195_v11_a17 crossref_primary_10_1038_s41409_018_0424_x crossref_primary_10_1111_dom_14330 crossref_primary_10_2337_dc20_0204 crossref_primary_10_1073_pnas_1901326117 crossref_primary_10_1093_ehjopen_oeaf070 crossref_primary_10_1007_s10654_016_0175_1 crossref_primary_10_1080_01621459_2019_1623039 crossref_primary_10_1097_SLA_0000000000003627 crossref_primary_10_1289_EHP9468 crossref_primary_10_1001_jama_2024_7741 crossref_primary_10_1093_jpids_piab024 crossref_primary_10_1111_add_15503 crossref_primary_10_1214_19_AOS1929 crossref_primary_10_1007_s00464_022_09063_7 crossref_primary_10_1056_NEJMsm1605385 crossref_primary_10_1093_aje_kwac207 crossref_primary_10_1186_s12888_024_05941_7 crossref_primary_10_1136_bjsports_2023_107177 crossref_primary_10_1016_j_socscimed_2021_114494 crossref_primary_10_1093_ije_dyab096 crossref_primary_10_1080_01621459_2018_1529598 crossref_primary_10_1186_s13054_023_04307_x crossref_primary_10_1093_biostatistics_kxac024 crossref_primary_10_1097_EDE_0000000000001379 crossref_primary_10_1111_rssb_12327 crossref_primary_10_1016_S2665_9913_22_00098_4 crossref_primary_10_1053_j_ajkd_2019_05_018 crossref_primary_10_1080_00273171_2019_1656051 crossref_primary_10_1007_s10654_024_01171_z crossref_primary_10_1093_aje_kwz063 crossref_primary_10_1016_j_jclinepi_2020_05_002 crossref_primary_10_1145_3636423 crossref_primary_10_3389_fendo_2023_1303336 crossref_primary_10_1007_s10985_023_09607_6 crossref_primary_10_1093_ije_dyac073 crossref_primary_10_1016_j_eururo_2017_05_021 crossref_primary_10_2217_cer_2022_0030 crossref_primary_10_1097_EDE_0000000000001381 crossref_primary_10_1097_EDE_0000000000001380 crossref_primary_10_1007_s10680_025_09733_x crossref_primary_10_1111_add_15959 crossref_primary_10_1161_CIRCOUTCOMES_121_007741 crossref_primary_10_1016_j_dld_2023_12_007 crossref_primary_10_3390_vaccines13040407 crossref_primary_10_1111_ppe_12809 crossref_primary_10_1007_s10940_018_9385_x crossref_primary_10_1007_s12561_025_09495_4 crossref_primary_10_1001_jamanetworkopen_2025_9246 crossref_primary_10_3102_0162373721991575 crossref_primary_10_1200_JCO_2016_66_6594 crossref_primary_10_2147_CLEP_S313613 crossref_primary_10_1097_HJH_0000000000002706 crossref_primary_10_1177_23780231211024421 crossref_primary_10_1016_j_hpb_2023_09_016 crossref_primary_10_2217_cer_2022_0029 crossref_primary_10_1093_jncimonographs_lgaa008 crossref_primary_10_1200_JCO_2017_76_1759 crossref_primary_10_1016_j_psyneuen_2016_10_003 crossref_primary_10_1111_bcp_14728 crossref_primary_10_1007_s40266_018_0583_x crossref_primary_10_1016_j_jhep_2019_08_015 crossref_primary_10_1080_01621459_2019_1604369 crossref_primary_10_1097_EDE_0000000000000864 crossref_primary_10_1080_10543406_2021_2011743 crossref_primary_10_1016_j_ygyno_2017_06_016 crossref_primary_10_1097_AOG_0000000000005424 crossref_primary_10_1097_EDE_0000000000001031 crossref_primary_10_1080_0161956X_2025_2508639 crossref_primary_10_1097_EDE_0000000000001033 crossref_primary_10_1007_s44197_025_00373_2 crossref_primary_10_1097_EDE_0000000000001032 crossref_primary_10_1007_s12160_016_9813_9 crossref_primary_10_1200_JCO_2016_69_4141 crossref_primary_10_1287_mksc_2020_1240 crossref_primary_10_1093_aje_kwae251 crossref_primary_10_1002_pst_2064 crossref_primary_10_1126_science_abm3425 crossref_primary_10_1136_bmjph_2024_001267 crossref_primary_10_1186_s13045_021_01185_0 crossref_primary_10_1016_j_joca_2021_09_015 crossref_primary_10_1097_LVT_0000000000000135 crossref_primary_10_1016_j_ecoenv_2024_116097 crossref_primary_10_1038_s41598_025_13016_0 crossref_primary_10_1093_ije_dyab219 crossref_primary_10_1111_biom_12919 crossref_primary_10_1164_rccm_202309_1636OC crossref_primary_10_1093_biomtc_ujae106 crossref_primary_10_1093_ije_dyab218 crossref_primary_10_1177_1358863X211012754 crossref_primary_10_1080_01621459_2024_2441527 crossref_primary_10_2337_dc19_0409 crossref_primary_10_1002_sim_10288 crossref_primary_10_1016_j_conctc_2017_10_009 crossref_primary_10_1093_ije_dyaa120 crossref_primary_10_1097_EDE_0000000000001043 crossref_primary_10_1016_j_ecoenv_2023_115839 crossref_primary_10_1093_ije_dyaa127 crossref_primary_10_1159_000531261 crossref_primary_10_1186_s12874_019_0874_x crossref_primary_10_1002_sim_70025 crossref_primary_10_1002_pds_5019 crossref_primary_10_1016_j_ajog_2021_10_028 crossref_primary_10_1093_biomet_asae040 crossref_primary_10_1016_j_urolonc_2021_07_018 crossref_primary_10_1016_j_chemosphere_2024_143882 crossref_primary_10_1111_rssa_12276 crossref_primary_10_14309_ajg_0000000000002257 crossref_primary_10_1007_s00345_017_2154_x crossref_primary_10_1515_em_2022_0108 crossref_primary_10_1016_j_adolescence_2019_11_003 crossref_primary_10_1080_10447318_2024_2384830 crossref_primary_10_1136_annrheumdis_2020_219517 crossref_primary_10_1016_j_canlet_2024_217411 crossref_primary_10_1093_jrsssa_qnaf067 crossref_primary_10_1002_sim_70276 crossref_primary_10_1016_j_diabres_2025_112330 crossref_primary_10_1017_pan_2020_28 crossref_primary_10_1177_0081175018785216 crossref_primary_10_3389_fmed_2022_837743 crossref_primary_10_1093_humrep_deaa051 crossref_primary_10_1097_EDE_0000000000001622 crossref_primary_10_1111_add_16337 crossref_primary_10_1111_brv_70011 crossref_primary_10_1016_j_juro_2017_01_063 crossref_primary_10_1001_jamanetworkopen_2021_15305 crossref_primary_10_1097_EDE_0000000000000891 crossref_primary_10_1093_eurheartj_ehaf003 crossref_primary_10_1002_sim_7298 crossref_primary_10_1080_17439760_2018_1519591 crossref_primary_10_1111_rssc_12440 crossref_primary_10_1016_j_juro_2018_03_077 crossref_primary_10_1214_24_STS945 crossref_primary_10_1002_jbmr_3324 crossref_primary_10_1111_rssc_12443 crossref_primary_10_1177_0890117120964083 crossref_primary_10_2188_jea_JE20240082 crossref_primary_10_1016_j_jaac_2017_12_010 crossref_primary_10_1093_humrep_dey228 crossref_primary_10_1111_rssa_12946 crossref_primary_10_1210_er_2017_00246 crossref_primary_10_1016_j_lana_2025_101192 crossref_primary_10_1093_aje_kww179 crossref_primary_10_1136_thoraxjnl_2021_217487 crossref_primary_10_1214_18_STS645 crossref_primary_10_1093_cdn_nzz104 crossref_primary_10_1016_j_cct_2024_107492 crossref_primary_10_1016_j_ijar_2025_109531 crossref_primary_10_1016_j_reprotox_2024_108544 crossref_primary_10_1080_01621459_2020_1864382 crossref_primary_10_1186_s12874_023_01906_8 crossref_primary_10_3390_e24101469 crossref_primary_10_1002_pds_5189 crossref_primary_10_1017_S2045796022000294 crossref_primary_10_1007_s40264_020_01015_1 crossref_primary_10_1016_j_ijnurstu_2016_08_006 crossref_primary_10_1016_j_urolonc_2020_11_013 crossref_primary_10_1515_jci_2023_0069 crossref_primary_10_1016_j_soard_2021_06_022 crossref_primary_10_1287_msom_2022_0088 crossref_primary_10_1136_bmj_2023_076365 crossref_primary_10_1093_aje_kwad137 crossref_primary_10_1002_jrsm_1667 crossref_primary_10_1016_j_envint_2021_107032 crossref_primary_10_1017_cts_2023_688 crossref_primary_10_1093_aje_kwae102 crossref_primary_10_1016_j_ssresearch_2023_102973 crossref_primary_10_1017_S0033291718001368 crossref_primary_10_1177_1069031X211068072 crossref_primary_10_23736_S1973_9087_24_08435_1 crossref_primary_10_1371_journal_pone_0258723 crossref_primary_10_2147_NDT_S450236 crossref_primary_10_1093_ije_dyx023 crossref_primary_10_1016_j_annepidem_2018_09_003 crossref_primary_10_1016_j_socscimed_2017_01_015 crossref_primary_10_3390_nu14051072 crossref_primary_10_1186_s12874_025_02490_9 crossref_primary_10_1007_s10654_019_00494_6 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/EDE.0000000000000457 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1531-5487 |
| ExternalDocumentID | 26841057 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01ES017876 – fundername: NCI NIH HHS grantid: R35 CA197449 – fundername: NIEHS NIH HHS grantid: R01 ES017876 – fundername: NCI NIH HHS grantid: P01 CA134294 |
| GroupedDBID | --- .-D .55 .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 53G 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AACGO AAFWJ AAGIX AAHPQ AAIKC AAIQE AAMNW AAMOA AAMTA AANCE AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBHK ABBUW ABDIG ABJNI ABPLY ABPXF ABTLG ABVCZ ABXSQ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACHIC ACHQT ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADFPA ADGGA ADHPY ADNKB ADQXQ ADULT AE3 AE6 AEETU AENEX AEUPB AEXZC AFBFQ AFDTB AFFNX AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI ANHSF AOHHW AOQMC AQVQM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DCCCD DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HGD HLJTE HQ3 HTVGU HZ~ IKREB IKYAY IN~ IPNFZ IPSME JAAYA JBMMH JENOY JF9 JG8 JHFFW JK3 JK8 JKQEH JLS JLXEF JPM JSG JST K8S KD2 L-C N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA OLG OLH OLU OLY OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S SA0 T8P TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W X7M XXN XYM YOC ZFV ZGI ZZMQN 7X8 ADKSD ADSXY |
| ID | FETCH-LOGICAL-c5451-8abefa95b7c49bc25ff449b1c0e0fcbf78e785939d9ee35bc3befe630800f8242 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 413 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00001648-201605000-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1531-5487 |
| IngestDate | Sat Sep 27 19:24:13 EDT 2025 Mon Jul 21 06:02:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5451-8abefa95b7c49bc25ff449b1c0e0fcbf78e785939d9ee35bc3befe630800f8242 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4820664 |
| PMID | 26841057 |
| PQID | 1779022152 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1779022152 pubmed_primary_26841057 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-May |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-May |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Epidemiology (Cambridge, Mass.) |
| PublicationTitleAlternate | Epidemiology |
| PublicationYear | 2016 |
| References | 29608547 - Epidemiology. 2018 May;29(3):e19 31373936 - Epidemiology. 2019 Sep;30(5):e31 |
| References_xml | – reference: 31373936 - Epidemiology. 2019 Sep;30(5):e31 – reference: 29608547 - Epidemiology. 2018 May;29(3):e19 |
| SSID | ssj0017315 |
| Score | 2.6466348 |
| Snippet | Unmeasured confounding may undermine the validity of causal inference with observational studies. Sensitivity analysis provides an attractive way to partially... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 368 |
| SubjectTerms | Causality Confounding Factors, Epidemiologic Epidemiologic Methods Humans Risk Statistics as Topic |
| Title | Sensitivity Analysis Without Assumptions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26841057 https://www.proquest.com/docview/1779022152 |
| Volume | 27 |
| WOSCitedRecordID | wos00001648-201605000-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UehDE96O-iODBy9Kk2XQ3JxFt8aCl4Ku3kH0M9pJU2_r7nc0m9CQI5hBy2EDYmd35MjP7fQBXKjRCIUcmY9SMC21ZHuY9hpFGE6Lkskrovz2K4VCOx-moTrjN6rbKZk-sNmpTapcj70SOGK_rVFhvpp_MqUa56motobEKrZigjPNqMV5WEYRXMKBFHTGHzJujc6no9O_7nrqwuXgifgeZVbAZbP_3M3dgq4aZwa33i11YscUebPocXeCPHu3D9bPrXvfyEUHDThK8T-Yf5WIekOHI1JVbHsDroP9y98Bq5QSmCRFFTObKYp4mSmieKt1NEDk9RDq0IWqFQlrhiM5Sk1obJ0rHNN72YgcfUVLUPoS1oizsMQSJ1DkFcYVG078gGplwi8bkkSLrIzdtuGwmIiPPdOWGvLDlYpYtp6INR342s6mn0Mgcx4xTGD75w9unsEEopee7DM-ghbQu7Tms6-_5ZPZ1UZmc7sPR0w9pNLaK |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+Without+Assumptions&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Ding%2C+Peng&rft.au=VanderWeele%2C+Tyler+J&rft.date=2016-05-01&rft.issn=1531-5487&rft.eissn=1531-5487&rft.volume=27&rft.issue=3&rft.spage=368&rft_id=info:doi/10.1097%2FEDE.0000000000000457&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon |