An optimization spiking neural p system for approximately solving combinatorial optimization problems

Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and para...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of neural systems Ročník 24; číslo 5; s. 1440006
Hlavní autoři: Zhang, Gexiang, Rong, Haina, Neri, Ferrante, Pérez-Jiménez, Mario J
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 01.08.2014
Témata:
ISSN:0129-0657, 1793-6462, 1793-6462
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.
AbstractList Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.
Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.
Author Neri, Ferrante
Rong, Haina
Pérez-Jiménez, Mario J
Zhang, Gexiang
Author_xml – sequence: 1
  givenname: Gexiang
  surname: Zhang
  fullname: Zhang, Gexiang
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
– sequence: 2
  givenname: Haina
  surname: Rong
  fullname: Rong, Haina
– sequence: 3
  givenname: Ferrante
  surname: Neri
  fullname: Neri, Ferrante
– sequence: 4
  givenname: Mario J
  surname: Pérez-Jiménez
  fullname: Pérez-Jiménez, Mario J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24875789$$D View this record in MEDLINE/PubMed
BookMark eNpVkDtPwzAUhS1URNPCD2BBHlkCtuNHPFYVL6kSAzBHtnuDDIkd4gRRfj2pKAPTGc53z9U5CzQLMQBC55RcUcrZ9ROhTBMpFOWcECLpEcqo0kUuuWQzlO3tfO_P0SKlN0IoV7w8QXPGSyVUqTMEq4BjN_jWf5vBx4BT5999eMUBxt40uMNplwZocR17bLquj1--NQM0O5xi87knXWytD2aIvZ8O_oVNuG2gTafouDZNgrODLtHL7c3z-j7fPN49rFeb3AkuaE6dLQkFWVtXEHAaDN0WThqpDRXW1VowLZQjthBcy1oJW8utEFaB5o5by5bo8jd3evwxQhqq1icHTWMCxDFVVBREi6KYxluiiwM62ha2VddPvfpd9TcN-wH1Mmrm
CitedBy_id crossref_primary_10_1007_s00006_023_01279_7
crossref_primary_10_1109_TNB_2016_2562039
crossref_primary_10_1016_j_ins_2022_03_002
crossref_primary_10_1016_j_ins_2022_03_003
crossref_primary_10_1016_j_tcs_2020_07_016
crossref_primary_10_1038_srep27624
crossref_primary_10_3390_app10207011
crossref_primary_10_1016_j_neunet_2017_08_003
crossref_primary_10_3233_ICA_180564
crossref_primary_10_3390_en17225742
crossref_primary_10_1007_s11047_022_09900_7
crossref_primary_10_1016_j_ins_2018_12_030
crossref_primary_10_3390_molecules24071235
crossref_primary_10_1007_s00521_020_04983_8
crossref_primary_10_3390_app13148460
crossref_primary_10_1016_j_asoc_2024_111644
crossref_primary_10_1016_j_tcs_2018_10_024
crossref_primary_10_1142_S0129065716500040
crossref_primary_10_1016_j_ins_2022_05_016
crossref_primary_10_1109_TNB_2016_2594380
crossref_primary_10_3389_fchem_2022_848685
crossref_primary_10_1016_j_ins_2022_03_007
crossref_primary_10_1007_s41965_022_00113_6
crossref_primary_10_1007_s41965_022_00117_2
crossref_primary_10_1016_j_ins_2019_10_016
crossref_primary_10_1016_j_knosys_2016_04_025
crossref_primary_10_1016_j_knosys_2018_12_001
crossref_primary_10_1016_j_knosys_2024_111914
crossref_primary_10_1016_j_tcs_2019_08_034
crossref_primary_10_1016_j_neucom_2020_03_095
crossref_primary_10_1016_j_knosys_2018_10_016
crossref_primary_10_1109_TNB_2019_2896981
crossref_primary_10_1007_s00521_014_1799_2
crossref_primary_10_1109_TNB_2016_2598879
crossref_primary_10_1016_j_ins_2018_09_021
crossref_primary_10_1016_j_neunet_2020_04_014
crossref_primary_10_1007_s41965_021_00089_9
crossref_primary_10_1016_j_engappai_2020_103922
crossref_primary_10_23919_PCMP_2023_000208
crossref_primary_10_1007_s41965_022_00102_9
crossref_primary_10_1109_TNB_2015_2503603
crossref_primary_10_1016_j_neunet_2016_01_002
crossref_primary_10_1016_j_eswa_2023_123032
crossref_primary_10_1016_j_ins_2021_12_107
crossref_primary_10_1007_s41965_024_00162_z
crossref_primary_10_3390_pr8091132
crossref_primary_10_1371_journal_pone_0162882
crossref_primary_10_1016_j_neucom_2016_02_023
crossref_primary_10_1007_s42979_021_00513_y
crossref_primary_10_1016_j_ins_2021_12_109
crossref_primary_10_1016_j_ins_2019_02_008
crossref_primary_10_1016_j_jclepro_2017_10_001
crossref_primary_10_1038_s41598_025_02793_3
crossref_primary_10_1016_j_ic_2024_105179
crossref_primary_10_1109_TPDS_2024_3399755
crossref_primary_10_1016_j_ins_2022_02_014
crossref_primary_10_1109_TNB_2018_2836147
crossref_primary_10_1007_s41965_023_00133_w
crossref_primary_10_1016_j_neucom_2024_127351
crossref_primary_10_1145_3402456
crossref_primary_10_1007_s11063_018_9947_9
crossref_primary_10_1007_s41965_022_00116_3
crossref_primary_10_1109_TNNLS_2021_3134792
crossref_primary_10_1016_j_ins_2018_11_019
crossref_primary_10_3390_a15030098
crossref_primary_10_1109_TNB_2018_2879345
crossref_primary_10_1016_j_ic_2017_06_005
crossref_primary_10_1007_s41965_019_00020_3
crossref_primary_10_1016_j_tcs_2022_02_025
crossref_primary_10_1142_S0129065718500132
crossref_primary_10_1007_s11227_021_03635_5
crossref_primary_10_1142_S0129065717500423
crossref_primary_10_1016_j_ins_2019_05_046
crossref_primary_10_1109_TNB_2015_2402311
crossref_primary_10_1016_j_ins_2016_07_054
crossref_primary_10_1109_TNB_2017_2722466
crossref_primary_10_1038_srep19133
crossref_primary_10_1007_s41965_019_00025_y
crossref_primary_10_1007_s41965_022_00098_2
crossref_primary_10_1016_j_neucom_2024_128613
crossref_primary_10_1109_TNB_2014_2367506
crossref_primary_10_1007_s41965_022_00105_6
crossref_primary_10_1007_s11047_025_10026_9
crossref_primary_10_1016_j_neunet_2024_106801
crossref_primary_10_1109_TNB_2017_2783890
crossref_primary_10_1016_j_biosystems_2019_104020
crossref_primary_10_1016_j_neucom_2020_07_051
crossref_primary_10_1109_ACCESS_2023_3280801
crossref_primary_10_1016_j_neunet_2023_10_041
crossref_primary_10_1016_j_neucom_2015_07_097
crossref_primary_10_1061__ASCE_CO_1943_7862_0001047
crossref_primary_10_1016_j_ins_2021_12_058
crossref_primary_10_1016_j_ic_2021_104789
crossref_primary_10_1016_j_ins_2020_01_037
crossref_primary_10_1155_2021_3285719
crossref_primary_10_1080_17445760_2019_1682147
crossref_primary_10_3390_a15030083
crossref_primary_10_1007_s11047_016_9577_y
crossref_primary_10_1109_ACCESS_2019_2892797
crossref_primary_10_3233_ICA_190603
crossref_primary_10_3233_ICA_190723
crossref_primary_10_1016_j_tcs_2023_113979
crossref_primary_10_1007_s13369_019_04153_6
crossref_primary_10_1016_j_ic_2021_104786
crossref_primary_10_1016_j_tcs_2019_03_021
crossref_primary_10_3233_ICA_190606
crossref_primary_10_1016_j_neucom_2017_10_005
crossref_primary_10_1109_ACCESS_2019_2939217
crossref_primary_10_3390_app10228306
crossref_primary_10_1007_s12293_017_0244_3
crossref_primary_10_1007_s12293_019_00285_2
crossref_primary_10_1007_s41965_020_00060_0
crossref_primary_10_1016_j_neunet_2022_11_006
crossref_primary_10_1016_j_ins_2016_08_088
crossref_primary_10_1016_j_ins_2022_01_032
crossref_primary_10_1177_1094342016678665
crossref_primary_10_3390_molecules24101961
crossref_primary_10_1016_j_ins_2017_08_003
crossref_primary_10_3389_fenrg_2022_981404
crossref_primary_10_1007_s12591_016_0312_z
crossref_primary_10_3233_ICA_200618
crossref_primary_10_1007_s11047_024_09972_7
crossref_primary_10_1016_j_amc_2021_126518
crossref_primary_10_1007_s41965_022_00115_4
crossref_primary_10_1007_s11063_014_9378_1
crossref_primary_10_1016_j_engappai_2020_103680
crossref_primary_10_1007_s41965_025_00199_8
crossref_primary_10_1109_TNB_2022_3199542
crossref_primary_10_3233_ICA_160529
crossref_primary_10_3233_ICA_180596
crossref_primary_10_1007_s41965_021_00088_w
crossref_primary_10_3233_ICA_180593
crossref_primary_10_1109_TNB_2018_2873221
crossref_primary_10_1016_j_ins_2018_07_035
crossref_primary_10_3390_su11174685
crossref_primary_10_3390_su14148661
crossref_primary_10_1007_s40747_024_01627_5
crossref_primary_10_1016_j_asoc_2016_08_007
crossref_primary_10_1109_ACCESS_2019_2958895
crossref_primary_10_1016_j_tcs_2016_05_022
crossref_primary_10_1109_TNNLS_2020_3005538
crossref_primary_10_1007_s41965_023_00123_y
crossref_primary_10_1016_j_ins_2021_12_074
crossref_primary_10_1007_s00521_016_2489_z
crossref_primary_10_1016_j_ins_2018_11_042
crossref_primary_10_1016_j_tcs_2021_08_008
crossref_primary_10_1109_TNB_2016_2594192
crossref_primary_10_3390_pr8101281
crossref_primary_10_1016_j_ins_2022_08_098
crossref_primary_10_1016_j_ins_2023_01_026
crossref_primary_10_1007_s00500_018_3500_7
crossref_primary_10_1007_s00500_018_3254_2
crossref_primary_10_1007_s41965_024_00140_5
crossref_primary_10_1016_j_knosys_2022_109568
crossref_primary_10_1109_TSG_2017_2670602
crossref_primary_10_1109_TNNLS_2018_2872999
crossref_primary_10_1016_j_ins_2022_03_020
crossref_primary_10_1155_2018_5754908
crossref_primary_10_1016_j_neucom_2017_07_007
crossref_primary_10_1016_j_ins_2019_07_060
crossref_primary_10_1016_j_ins_2020_01_050
crossref_primary_10_1109_TPWRS_2014_2347699
crossref_primary_10_1162_evco_a_00220
crossref_primary_10_1007_s41965_021_00077_z
crossref_primary_10_1016_j_jocs_2020_101101
crossref_primary_10_1016_j_knosys_2019_105064
crossref_primary_10_1016_j_tcs_2015_12_038
crossref_primary_10_1016_j_ins_2018_10_033
crossref_primary_10_1016_j_tcs_2022_03_018
crossref_primary_10_1109_TNNLS_2019_2955137
crossref_primary_10_1016_j_ins_2024_120822
crossref_primary_10_1109_TNNLS_2017_2726119
crossref_primary_10_1016_j_ins_2022_03_013
crossref_primary_10_1016_j_tcs_2020_10_021
crossref_primary_10_1016_j_tcs_2017_12_015
crossref_primary_10_3233_IDA_170875
crossref_primary_10_1109_TCDS_2017_2785332
crossref_primary_10_1142_S0129065716500234
crossref_primary_10_1016_j_ins_2020_02_027
crossref_primary_10_1016_j_ins_2022_04_054
crossref_primary_10_3233_ICA_170547
crossref_primary_10_1007_s41965_022_00107_4
crossref_primary_10_1007_s41965_021_00072_4
crossref_primary_10_1109_ACCESS_2020_2973613
crossref_primary_10_1016_j_ins_2017_04_016
crossref_primary_10_1016_j_ins_2016_08_055
crossref_primary_10_3233_ICA_200626
crossref_primary_10_3233_ICA_200627
crossref_primary_10_1007_s41965_022_00100_x
crossref_primary_10_1109_ACCESS_2018_2865122
crossref_primary_10_3390_app11104376
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1142/S0129065714400061
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1793-6462
ExternalDocumentID 24875789
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.DC
0R~
36B
4.4
53G
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
P2P
P71
RWJ
WSC
7X8
ID FETCH-LOGICAL-c5451-1cb801e6fbc30ec9ea1d3c6a69a15bcf952957c0b35496f75bf6d55b7e94c4bb2
IEDL.DBID 7X8
ISICitedReferencesCount 173
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336922900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0129-0657
1793-6462
IngestDate Fri Sep 05 11:56:24 EDT 2025
Thu Apr 03 07:08:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5451-1cb801e6fbc30ec9ea1d3c6a69a15bcf952957c0b35496f75bf6d55b7e94c4bb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://nottingham-repository.worktribe.com/output/3705530
PMID 24875789
PQID 1530953314
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1530953314
pubmed_primary_24875789
PublicationCentury 2000
PublicationDate 20140800
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 20140800
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of neural systems
PublicationTitleAlternate Int J Neural Syst
PublicationYear 2014
SSID ssj0014748
Score 2.51959
Snippet Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1440006
SubjectTerms Action Potentials - physiology
Animals
Computer Simulation
Humans
Models, Neurological
Neurons - physiology
Title An optimization spiking neural p system for approximately solving combinatorial optimization problems
URI https://www.ncbi.nlm.nih.gov/pubmed/24875789
https://www.proquest.com/docview/1530953314
Volume 24
WOSCitedRecordID wos000336922900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXixvq0vIngN7W6ySXOSIhYPWgoq9LZsXlDQ3dVV0X_vJJtSPAiCl71tCJnXNzPJNwhdZCaxTClOKKRthA2NIYVmBgxvaIWl6cC5IOlbMZkMZzM5jQW3Jl6rXPjE4KhNpX2NvA-W6anRaMIu6xfip0b57mocobGKOhSgjL_SJWbLLgITYXqW10HCGU9jVzNhaf8-FGB4Jnxz08fx3xFmiDTj7n_3uIU2I8bEo1YpttGKLXdQdzG_AUdz3kV2VOIKXMZzfIuJm3ruK-fYk1zCAjVueZ4xAFscyMc_5wBw7dMXBo31lQgM-4LU2ifuoMc_F4ujapo99Di-fri6IXHsAtEApxKSaAVhy3KnNB1YLW2RGKp5wWWRZEo76XuDQg8UhdySO5Epx02WKWEl0yD3dB-tlVVpDxGWJlNU2EKx1HiqP6mEc8pY4wbCpNz00PniIHNQa9-rKEpbvTf58ih76KCVRl63_Bt5ygILvzz6w9_HaAMgDmuv7J2gjgOjtqdoXX-8zZvXs6Av8J1M774B2eDOSg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+spiking+neural+p+system+for+approximately+solving+combinatorial+optimization+problems&rft.jtitle=International+journal+of+neural+systems&rft.au=Zhang%2C+Gexiang&rft.au=Rong%2C+Haina&rft.au=Neri%2C+Ferrante&rft.au=P%C3%A9rez-Jim%C3%A9nez%2C+Mario+J&rft.date=2014-08-01&rft.issn=0129-0657&rft.volume=24&rft.issue=5&rft.spage=1440006&rft_id=info:doi/10.1142%2FS0129065714400061&rft_id=info%3Apmid%2F24875789&rft_id=info%3Apmid%2F24875789&rft.externalDocID=24875789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon