An optimization spiking neural p system for approximately solving combinatorial optimization problems
Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and para...
Uloženo v:
| Vydáno v: | International journal of neural systems Ročník 24; číslo 5; s. 1440006 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
01.08.2014
|
| Témata: | |
| ISSN: | 0129-0657, 1793-6462, 1793-6462 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system. |
|---|---|
| AbstractList | Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system. Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system. |
| Author | Neri, Ferrante Rong, Haina Pérez-Jiménez, Mario J Zhang, Gexiang |
| Author_xml | – sequence: 1 givenname: Gexiang surname: Zhang fullname: Zhang, Gexiang organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China – sequence: 2 givenname: Haina surname: Rong fullname: Rong, Haina – sequence: 3 givenname: Ferrante surname: Neri fullname: Neri, Ferrante – sequence: 4 givenname: Mario J surname: Pérez-Jiménez fullname: Pérez-Jiménez, Mario J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24875789$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkDtPwzAUhS1URNPCD2BBHlkCtuNHPFYVL6kSAzBHtnuDDIkd4gRRfj2pKAPTGc53z9U5CzQLMQBC55RcUcrZ9ROhTBMpFOWcECLpEcqo0kUuuWQzlO3tfO_P0SKlN0IoV7w8QXPGSyVUqTMEq4BjN_jWf5vBx4BT5999eMUBxt40uMNplwZocR17bLquj1--NQM0O5xi87knXWytD2aIvZ8O_oVNuG2gTafouDZNgrODLtHL7c3z-j7fPN49rFeb3AkuaE6dLQkFWVtXEHAaDN0WThqpDRXW1VowLZQjthBcy1oJW8utEFaB5o5by5bo8jd3evwxQhqq1icHTWMCxDFVVBREi6KYxluiiwM62ha2VddPvfpd9TcN-wH1Mmrm |
| CitedBy_id | crossref_primary_10_1007_s00006_023_01279_7 crossref_primary_10_1109_TNB_2016_2562039 crossref_primary_10_1016_j_ins_2022_03_002 crossref_primary_10_1016_j_ins_2022_03_003 crossref_primary_10_1016_j_tcs_2020_07_016 crossref_primary_10_1038_srep27624 crossref_primary_10_3390_app10207011 crossref_primary_10_1016_j_neunet_2017_08_003 crossref_primary_10_3233_ICA_180564 crossref_primary_10_3390_en17225742 crossref_primary_10_1007_s11047_022_09900_7 crossref_primary_10_1016_j_ins_2018_12_030 crossref_primary_10_3390_molecules24071235 crossref_primary_10_1007_s00521_020_04983_8 crossref_primary_10_3390_app13148460 crossref_primary_10_1016_j_asoc_2024_111644 crossref_primary_10_1016_j_tcs_2018_10_024 crossref_primary_10_1142_S0129065716500040 crossref_primary_10_1016_j_ins_2022_05_016 crossref_primary_10_1109_TNB_2016_2594380 crossref_primary_10_3389_fchem_2022_848685 crossref_primary_10_1016_j_ins_2022_03_007 crossref_primary_10_1007_s41965_022_00113_6 crossref_primary_10_1007_s41965_022_00117_2 crossref_primary_10_1016_j_ins_2019_10_016 crossref_primary_10_1016_j_knosys_2016_04_025 crossref_primary_10_1016_j_knosys_2018_12_001 crossref_primary_10_1016_j_knosys_2024_111914 crossref_primary_10_1016_j_tcs_2019_08_034 crossref_primary_10_1016_j_neucom_2020_03_095 crossref_primary_10_1016_j_knosys_2018_10_016 crossref_primary_10_1109_TNB_2019_2896981 crossref_primary_10_1007_s00521_014_1799_2 crossref_primary_10_1109_TNB_2016_2598879 crossref_primary_10_1016_j_ins_2018_09_021 crossref_primary_10_1016_j_neunet_2020_04_014 crossref_primary_10_1007_s41965_021_00089_9 crossref_primary_10_1016_j_engappai_2020_103922 crossref_primary_10_23919_PCMP_2023_000208 crossref_primary_10_1007_s41965_022_00102_9 crossref_primary_10_1109_TNB_2015_2503603 crossref_primary_10_1016_j_neunet_2016_01_002 crossref_primary_10_1016_j_eswa_2023_123032 crossref_primary_10_1016_j_ins_2021_12_107 crossref_primary_10_1007_s41965_024_00162_z crossref_primary_10_3390_pr8091132 crossref_primary_10_1371_journal_pone_0162882 crossref_primary_10_1016_j_neucom_2016_02_023 crossref_primary_10_1007_s42979_021_00513_y crossref_primary_10_1016_j_ins_2021_12_109 crossref_primary_10_1016_j_ins_2019_02_008 crossref_primary_10_1016_j_jclepro_2017_10_001 crossref_primary_10_1038_s41598_025_02793_3 crossref_primary_10_1016_j_ic_2024_105179 crossref_primary_10_1109_TPDS_2024_3399755 crossref_primary_10_1016_j_ins_2022_02_014 crossref_primary_10_1109_TNB_2018_2836147 crossref_primary_10_1007_s41965_023_00133_w crossref_primary_10_1016_j_neucom_2024_127351 crossref_primary_10_1145_3402456 crossref_primary_10_1007_s11063_018_9947_9 crossref_primary_10_1007_s41965_022_00116_3 crossref_primary_10_1109_TNNLS_2021_3134792 crossref_primary_10_1016_j_ins_2018_11_019 crossref_primary_10_3390_a15030098 crossref_primary_10_1109_TNB_2018_2879345 crossref_primary_10_1016_j_ic_2017_06_005 crossref_primary_10_1007_s41965_019_00020_3 crossref_primary_10_1016_j_tcs_2022_02_025 crossref_primary_10_1142_S0129065718500132 crossref_primary_10_1007_s11227_021_03635_5 crossref_primary_10_1142_S0129065717500423 crossref_primary_10_1016_j_ins_2019_05_046 crossref_primary_10_1109_TNB_2015_2402311 crossref_primary_10_1016_j_ins_2016_07_054 crossref_primary_10_1109_TNB_2017_2722466 crossref_primary_10_1038_srep19133 crossref_primary_10_1007_s41965_019_00025_y crossref_primary_10_1007_s41965_022_00098_2 crossref_primary_10_1016_j_neucom_2024_128613 crossref_primary_10_1109_TNB_2014_2367506 crossref_primary_10_1007_s41965_022_00105_6 crossref_primary_10_1007_s11047_025_10026_9 crossref_primary_10_1016_j_neunet_2024_106801 crossref_primary_10_1109_TNB_2017_2783890 crossref_primary_10_1016_j_biosystems_2019_104020 crossref_primary_10_1016_j_neucom_2020_07_051 crossref_primary_10_1109_ACCESS_2023_3280801 crossref_primary_10_1016_j_neunet_2023_10_041 crossref_primary_10_1016_j_neucom_2015_07_097 crossref_primary_10_1061__ASCE_CO_1943_7862_0001047 crossref_primary_10_1016_j_ins_2021_12_058 crossref_primary_10_1016_j_ic_2021_104789 crossref_primary_10_1016_j_ins_2020_01_037 crossref_primary_10_1155_2021_3285719 crossref_primary_10_1080_17445760_2019_1682147 crossref_primary_10_3390_a15030083 crossref_primary_10_1007_s11047_016_9577_y crossref_primary_10_1109_ACCESS_2019_2892797 crossref_primary_10_3233_ICA_190603 crossref_primary_10_3233_ICA_190723 crossref_primary_10_1016_j_tcs_2023_113979 crossref_primary_10_1007_s13369_019_04153_6 crossref_primary_10_1016_j_ic_2021_104786 crossref_primary_10_1016_j_tcs_2019_03_021 crossref_primary_10_3233_ICA_190606 crossref_primary_10_1016_j_neucom_2017_10_005 crossref_primary_10_1109_ACCESS_2019_2939217 crossref_primary_10_3390_app10228306 crossref_primary_10_1007_s12293_017_0244_3 crossref_primary_10_1007_s12293_019_00285_2 crossref_primary_10_1007_s41965_020_00060_0 crossref_primary_10_1016_j_neunet_2022_11_006 crossref_primary_10_1016_j_ins_2016_08_088 crossref_primary_10_1016_j_ins_2022_01_032 crossref_primary_10_1177_1094342016678665 crossref_primary_10_3390_molecules24101961 crossref_primary_10_1016_j_ins_2017_08_003 crossref_primary_10_3389_fenrg_2022_981404 crossref_primary_10_1007_s12591_016_0312_z crossref_primary_10_3233_ICA_200618 crossref_primary_10_1007_s11047_024_09972_7 crossref_primary_10_1016_j_amc_2021_126518 crossref_primary_10_1007_s41965_022_00115_4 crossref_primary_10_1007_s11063_014_9378_1 crossref_primary_10_1016_j_engappai_2020_103680 crossref_primary_10_1007_s41965_025_00199_8 crossref_primary_10_1109_TNB_2022_3199542 crossref_primary_10_3233_ICA_160529 crossref_primary_10_3233_ICA_180596 crossref_primary_10_1007_s41965_021_00088_w crossref_primary_10_3233_ICA_180593 crossref_primary_10_1109_TNB_2018_2873221 crossref_primary_10_1016_j_ins_2018_07_035 crossref_primary_10_3390_su11174685 crossref_primary_10_3390_su14148661 crossref_primary_10_1007_s40747_024_01627_5 crossref_primary_10_1016_j_asoc_2016_08_007 crossref_primary_10_1109_ACCESS_2019_2958895 crossref_primary_10_1016_j_tcs_2016_05_022 crossref_primary_10_1109_TNNLS_2020_3005538 crossref_primary_10_1007_s41965_023_00123_y crossref_primary_10_1016_j_ins_2021_12_074 crossref_primary_10_1007_s00521_016_2489_z crossref_primary_10_1016_j_ins_2018_11_042 crossref_primary_10_1016_j_tcs_2021_08_008 crossref_primary_10_1109_TNB_2016_2594192 crossref_primary_10_3390_pr8101281 crossref_primary_10_1016_j_ins_2022_08_098 crossref_primary_10_1016_j_ins_2023_01_026 crossref_primary_10_1007_s00500_018_3500_7 crossref_primary_10_1007_s00500_018_3254_2 crossref_primary_10_1007_s41965_024_00140_5 crossref_primary_10_1016_j_knosys_2022_109568 crossref_primary_10_1109_TSG_2017_2670602 crossref_primary_10_1109_TNNLS_2018_2872999 crossref_primary_10_1016_j_ins_2022_03_020 crossref_primary_10_1155_2018_5754908 crossref_primary_10_1016_j_neucom_2017_07_007 crossref_primary_10_1016_j_ins_2019_07_060 crossref_primary_10_1016_j_ins_2020_01_050 crossref_primary_10_1109_TPWRS_2014_2347699 crossref_primary_10_1162_evco_a_00220 crossref_primary_10_1007_s41965_021_00077_z crossref_primary_10_1016_j_jocs_2020_101101 crossref_primary_10_1016_j_knosys_2019_105064 crossref_primary_10_1016_j_tcs_2015_12_038 crossref_primary_10_1016_j_ins_2018_10_033 crossref_primary_10_1016_j_tcs_2022_03_018 crossref_primary_10_1109_TNNLS_2019_2955137 crossref_primary_10_1016_j_ins_2024_120822 crossref_primary_10_1109_TNNLS_2017_2726119 crossref_primary_10_1016_j_ins_2022_03_013 crossref_primary_10_1016_j_tcs_2020_10_021 crossref_primary_10_1016_j_tcs_2017_12_015 crossref_primary_10_3233_IDA_170875 crossref_primary_10_1109_TCDS_2017_2785332 crossref_primary_10_1142_S0129065716500234 crossref_primary_10_1016_j_ins_2020_02_027 crossref_primary_10_1016_j_ins_2022_04_054 crossref_primary_10_3233_ICA_170547 crossref_primary_10_1007_s41965_022_00107_4 crossref_primary_10_1007_s41965_021_00072_4 crossref_primary_10_1109_ACCESS_2020_2973613 crossref_primary_10_1016_j_ins_2017_04_016 crossref_primary_10_1016_j_ins_2016_08_055 crossref_primary_10_3233_ICA_200626 crossref_primary_10_3233_ICA_200627 crossref_primary_10_1007_s41965_022_00100_x crossref_primary_10_1109_ACCESS_2018_2865122 crossref_primary_10_3390_app11104376 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1142/S0129065714400061 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1793-6462 |
| ExternalDocumentID | 24875789 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .DC 0R~ 36B 4.4 53G 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CS3 CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- P2P P71 RWJ WSC 7X8 |
| ID | FETCH-LOGICAL-c5451-1cb801e6fbc30ec9ea1d3c6a69a15bcf952957c0b35496f75bf6d55b7e94c4bb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 173 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336922900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0129-0657 1793-6462 |
| IngestDate | Fri Sep 05 11:56:24 EDT 2025 Thu Apr 03 07:08:09 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5451-1cb801e6fbc30ec9ea1d3c6a69a15bcf952957c0b35496f75bf6d55b7e94c4bb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://nottingham-repository.worktribe.com/output/3705530 |
| PMID | 24875789 |
| PQID | 1530953314 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1530953314 pubmed_primary_24875789 |
| PublicationCentury | 2000 |
| PublicationDate | 20140800 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 20140800 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of neural systems |
| PublicationTitleAlternate | Int J Neural Syst |
| PublicationYear | 2014 |
| SSID | ssj0014748 |
| Score | 2.51959 |
| Snippet | Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1440006 |
| SubjectTerms | Action Potentials - physiology Animals Computer Simulation Humans Models, Neurological Neurons - physiology |
| Title | An optimization spiking neural p system for approximately solving combinatorial optimization problems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24875789 https://www.proquest.com/docview/1530953314 |
| Volume | 24 |
| WOSCitedRecordID | wos000336922900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXixvq0vIngN7W6ySXOSIhYPWgoq9LZsXlDQ3dVV0X_vJJtSPAiCl71tCJnXNzPJNwhdZCaxTClOKKRthA2NIYVmBgxvaIWl6cC5IOlbMZkMZzM5jQW3Jl6rXPjE4KhNpX2NvA-W6anRaMIu6xfip0b57mocobGKOhSgjL_SJWbLLgITYXqW10HCGU9jVzNhaf8-FGB4Jnxz08fx3xFmiDTj7n_3uIU2I8bEo1YpttGKLXdQdzG_AUdz3kV2VOIKXMZzfIuJm3ruK-fYk1zCAjVueZ4xAFscyMc_5wBw7dMXBo31lQgM-4LU2ifuoMc_F4ujapo99Di-fri6IXHsAtEApxKSaAVhy3KnNB1YLW2RGKp5wWWRZEo76XuDQg8UhdySO5Epx02WKWEl0yD3dB-tlVVpDxGWJlNU2EKx1HiqP6mEc8pY4wbCpNz00PniIHNQa9-rKEpbvTf58ih76KCVRl63_Bt5ygILvzz6w9_HaAMgDmuv7J2gjgOjtqdoXX-8zZvXs6Av8J1M774B2eDOSg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+spiking+neural+p+system+for+approximately+solving+combinatorial+optimization+problems&rft.jtitle=International+journal+of+neural+systems&rft.au=Zhang%2C+Gexiang&rft.au=Rong%2C+Haina&rft.au=Neri%2C+Ferrante&rft.au=P%C3%A9rez-Jim%C3%A9nez%2C+Mario+J&rft.date=2014-08-01&rft.issn=0129-0657&rft.volume=24&rft.issue=5&rft.spage=1440006&rft_id=info:doi/10.1142%2FS0129065714400061&rft_id=info%3Apmid%2F24875789&rft_id=info%3Apmid%2F24875789&rft.externalDocID=24875789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon |