Graphene-enhanced metal oxide gas sensors at room temperature: a review

Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beilstein journal of nanotechnology Jg. 9; H. 1; S. 2832 - 2844
Hauptverfasser: Sun, Dongjin, Luo, Yifan, Debliquy, Marc, Zhang, Chao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Beilstein-Institut zur Föerderung der Chemischen Wissenschaften 09.11.2018
Beilstein-Institut
Schlagworte:
ISSN:2190-4286, 2190-4286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO 2 , NH 3 , CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.
AbstractList Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO2, NH3, CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.
Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO , NH , CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.
Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO2, NH3, CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO2, NH3, CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.
Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO 2 , NH 3 , CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.
Author Luo, Yifan
Debliquy, Marc
Zhang, Chao
Sun, Dongjin
AuthorAffiliation 1 College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
2 Department of Materials Science, University of Mons, 7000 Mons, Belgium
AuthorAffiliation_xml – name: 2 Department of Materials Science, University of Mons, 7000 Mons, Belgium
– name: 1 College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
Author_xml – sequence: 1
  givenname: Dongjin
  surname: Sun
  fullname: Sun, Dongjin
– sequence: 2
  givenname: Yifan
  surname: Luo
  fullname: Luo, Yifan
– sequence: 3
  givenname: Marc
  surname: Debliquy
  fullname: Debliquy, Marc
– sequence: 4
  givenname: Chao
  orcidid: 0000-0003-2346-6770
  surname: Zhang
  fullname: Zhang, Chao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30498655$$D View this record in MEDLINE/PubMed
BookMark eNptks9rFDEUx4NUbK29eZYBLx7cNZNk8sNDQYquhYIXPYc3yZvdLDPJmsxU-993tttKW8wl4eXzPnxJ3mtyFFNEQt7WdMmVZJ_abYSYlmbJpHhBTlht6EIwLY8enY_JWSlbOi9BmTb6FTnmVBgtm-aErFYZdhuMuMC4gejQVwOO0Ffpb_BYraFUBWNJuVQwVjmloRpx2GGGccr4uYIq43XAP2_Iyw76gmf3-yn59e3rz4vvi6sfq8uLL1cL1wgxLlrjpFJeK0dBt5oz2iEC7RqnO1DUC2C6VkxJJbnQXhneGtUwkJ53rRGKn5LLg9cn2NpdDgPkG5sg2LtCymsLeQyuRysdp14yaoRD0TjftkxKhq1WtHbOsNl1fnDtpnZA7zCOGfon0qc3MWzsOl1byYRg9T7Mh3tBTr8nLKMdQnHY9xAxTcWyWtRU1M0d-v4Zuk1TjvNTzRQ3uuGmbmbq3eNE_6I8_NcMsAPgciolY2ddGGEMaR8w9Lamdj8X9jAX1th5Luamj8-aHrz_xW8B2zO6KQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_144153
crossref_primary_10_1007_s10854_024_12649_7
crossref_primary_10_1016_j_colsurfa_2022_129435
crossref_primary_10_3762_bjnano_12_88
crossref_primary_10_1016_j_ijhydene_2020_11_268
crossref_primary_10_1016_j_est_2024_112317
crossref_primary_10_1016_j_synthmet_2020_116607
crossref_primary_10_1007_s10854_025_14300_5
crossref_primary_10_1016_j_cclet_2019_05_006
crossref_primary_10_3762_bjnano_10_242
crossref_primary_10_1016_j_molstruc_2023_137380
crossref_primary_10_1016_j_jallcom_2020_155857
crossref_primary_10_1016_j_jhazmat_2023_131555
crossref_primary_10_1016_j_cej_2025_163812
crossref_primary_10_3390_nano13081424
crossref_primary_10_1080_20550324_2021_2008207
crossref_primary_10_1134_S0036023622602021
crossref_primary_10_1109_JSEN_2023_3337544
crossref_primary_10_1007_s11051_022_05642_w
crossref_primary_10_1016_j_matchemphys_2024_129569
crossref_primary_10_1002_adsr_202300018
crossref_primary_10_1080_02670844_2019_1651551
crossref_primary_10_1016_j_matpr_2022_11_085
crossref_primary_10_1007_s13738_023_02742_9
crossref_primary_10_1016_j_foodchem_2020_127615
crossref_primary_10_3390_s24051431
crossref_primary_10_1016_j_snb_2023_134643
crossref_primary_10_1016_j_mee_2021_111662
crossref_primary_10_1021_acssensors_5c00526
crossref_primary_10_1134_S1061934822020083
crossref_primary_10_3390_chemosensors11040227
crossref_primary_10_1063_1_5099511
crossref_primary_10_3390_s24103217
crossref_primary_10_3390_ma14092347
crossref_primary_10_1038_s41598_023_34697_5
crossref_primary_10_3762_bjnano_12_28
crossref_primary_10_3390_ma15041326
crossref_primary_10_3390_ma15228050
crossref_primary_10_3390_coatings10111015
crossref_primary_10_1007_s00339_020_03863_1
crossref_primary_10_1016_j_solidstatesciences_2021_106534
crossref_primary_10_3390_s20123413
crossref_primary_10_1016_j_snb_2022_132957
crossref_primary_10_1016_j_ssc_2022_114945
crossref_primary_10_1016_j_snb_2025_137764
crossref_primary_10_1016_j_sna_2023_114405
crossref_primary_10_1016_j_pnsc_2020_06_006
crossref_primary_10_1021_acsnano_5c10578
crossref_primary_10_1134_S0020168524700870
crossref_primary_10_1016_j_snb_2019_127479
crossref_primary_10_1109_JSEN_2020_3037463
crossref_primary_10_1007_s10854_020_03648_5
crossref_primary_10_1038_s41598_025_15945_2
crossref_primary_10_1016_j_jallcom_2020_155527
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_1016_j_snb_2023_134586
crossref_primary_10_1016_j_jpcs_2021_110028
crossref_primary_10_1016_j_ccr_2025_216836
crossref_primary_10_1007_s00216_024_05213_z
crossref_primary_10_1016_j_ceramint_2025_02_294
crossref_primary_10_1038_s41598_020_72872_0
crossref_primary_10_1007_s12598_020_01557_4
crossref_primary_10_1016_j_molstruc_2024_140763
crossref_primary_10_3390_s20247223
crossref_primary_10_1016_j_ceramint_2019_03_086
crossref_primary_10_1016_j_nanoms_2021_03_004
crossref_primary_10_3390_chemosensors12030045
crossref_primary_10_1016_j_carbon_2024_119611
crossref_primary_10_1021_acsami_5c08140
crossref_primary_10_1007_s10853_021_06715_2
crossref_primary_10_1039_D5RA01821H
crossref_primary_10_1016_j_cej_2024_151872
crossref_primary_10_3390_chemosensors12050078
crossref_primary_10_1039_D1RA00361E
crossref_primary_10_1007_s00339_023_07234_4
crossref_primary_10_1002_advs_202408096
crossref_primary_10_1016_j_colsurfa_2025_136799
crossref_primary_10_1002_adsr_202400192
crossref_primary_10_1109_JRFID_2023_3344636
crossref_primary_10_1016_j_jece_2020_103836
crossref_primary_10_1016_j_snb_2024_135542
crossref_primary_10_1088_1742_6596_2705_1_012017
crossref_primary_10_1016_j_tsf_2021_139014
crossref_primary_10_1007_s11664_025_12044_w
crossref_primary_10_1007_s00604_021_04847_5
crossref_primary_10_1039_C9NR02780G
crossref_primary_10_1007_s13399_022_03258_7
crossref_primary_10_1016_j_apsusc_2020_147785
crossref_primary_10_1002_asia_202300529
crossref_primary_10_1016_j_flatc_2024_100716
crossref_primary_10_1016_j_molliq_2020_112878
crossref_primary_10_1080_17458080_2021_1922670
crossref_primary_10_3390_s21041443
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_3390_nano12224062
crossref_primary_10_1109_TIM_2024_3481592
crossref_primary_10_3390_s19204563
crossref_primary_10_1016_j_jallcom_2022_167467
crossref_primary_10_3390_s23031517
crossref_primary_10_1016_j_ceramint_2022_06_298
crossref_primary_10_1016_j_vacuum_2022_111197
crossref_primary_10_1016_j_vacuum_2022_111353
crossref_primary_10_1007_s10854_021_07470_5
crossref_primary_10_1016_j_electacta_2020_135880
crossref_primary_10_1016_j_snb_2021_130029
crossref_primary_10_3390_s21031011
crossref_primary_10_3762_bjnano_10_198
crossref_primary_10_1016_j_surfin_2020_100763
crossref_primary_10_3390_nano12132250
crossref_primary_10_1016_j_snb_2020_129384
crossref_primary_10_3389_fsens_2021_657931
crossref_primary_10_1016_j_apsusc_2021_150558
crossref_primary_10_1016_j_snb_2022_132189
crossref_primary_10_1134_S2635167625600051
Cites_doi 10.1016/j.snb.2017.08.148
10.1016/j.snb.2017.04.164
10.1021/acsami.5b09067
10.1016/j.snb.2013.08.004
10.1016/j.matlet.2015.11.129
10.1016/j.mseb.2014.11.011
10.1016/j.matlet.2017.06.008
10.1039/c4ta06024e
10.1063/1.2898501
10.1007/s12034-016-1208-9
10.1088/0957-4484/25/2/025502
10.1016/j.matchemphys.2017.01.046
10.1016/j.snb.2016.09.096
10.1021/nl0717715
10.1016/j.carbon.2015.12.074
10.1021/nn800593m
10.1016/j.snb.2016.01.023
10.1016/j.snb.2015.09.021
10.1021/nl072090c
10.1016/j.snb.2015.01.083
10.1016/j.snb.2013.08.067
10.1039/c3ta11490b
10.1016/j.carbon.2015.04.082
10.1016/j.snb.2015.07.070
10.1016/j.matlet.2016.08.010
10.1088/0957-0233/22/4/045203
10.1021/am400500a
10.1016/j.snb.2015.09.091
10.1103/physrevlett.101.026801
10.1016/j.snb.2017.03.108
10.1039/c3ce41374h
10.1016/j.ceramint.2016.07.135
10.1021/nn100780v
10.1016/j.apsusc.2017.03.251
10.1016/j.snb.2018.01.143
10.1038/nmat1967
10.1016/j.matchemphys.2012.01.116
10.1016/j.carbon.2014.09.027
10.1016/j.snb.2015.04.119
10.1039/c4ra10136g
10.1021/am505949a
10.1007/s10854-016-5710-z
10.1016/j.ceramint.2016.09.205
10.1016/j.snb.2017.05.162
10.1038/srep00166
10.1016/j.snb.2014.05.086
10.1021/nn100740x
10.1063/1.1690114
10.1039/c5cp01987g
10.1016/j.snb.2015.09.102
10.1063/1.4890583
10.1016/j.matlet.2015.12.115
10.1016/j.sna.2017.10.021
10.1557/jmr.2004.19.2.628
10.1039/c0nr00560f
10.1039/c4ra02453b
10.1007/s10854-015-3165-2
10.1016/j.pcrysgrow.2012.07.001
10.1039/c2nr31131c
10.1016/j.carbon.2018.04.037
10.1016/j.snb.2017.10.043
10.1016/j.carbon.2017.09.065
10.1016/j.apsusc.2017.10.152
10.1016/j.jallcom.2016.02.197
10.1016/j.apsusc.2013.11.130
10.1016/j.ceramint.2016.04.035
10.1002/adfm.201002171
10.1021/nl8013007
10.1016/j.carbon.2007.02.034
10.1016/j.snb.2017.07.199
10.1016/j.snb.2015.09.027
10.1016/j.snb.2015.07.102
10.1016/j.apsusc.2017.06.160
10.1016/j.snb.2012.06.055
10.1016/j.talanta.2014.09.034
10.1021/acs.cgd.6b00034
10.1016/j.jallcom.2017.06.105
10.1016/j.snb.2016.08.085
10.1016/j.snb.2016.02.069
10.1039/c1cs15078b
10.1016/j.carbon.2011.08.050
10.1007/s10854-015-4214-6
10.1016/j.snb.2018.02.117
10.1016/j.ceramint.2015.09.134
10.1186/s11671-016-1343-7
10.1038/238037a0
10.1016/j.ceramint.2014.03.109
10.1016/j.jcrysgro.2011.01.099
10.1126/science.1102896
10.1016/j.ijhydene.2017.06.066
10.1016/j.snb.2016.12.111
10.1016/j.jcis.2017.05.053
10.1016/j.mseb.2017.12.036
10.1016/j.snb.2015.11.024
10.1016/j.snb.2017.01.200
10.1039/c4nr00196f
10.1016/j.snb.2015.05.047
10.1016/j.snb.2016.12.062
10.1088/0957-4484/20/44/445502
10.1016/j.snb.2016.08.080
ContentType Journal Article
Copyright Copyright © 2018, Sun et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018, Sun et al. 2018 Sun et al.
Copyright_xml – notice: Copyright © 2018, Sun et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018, Sun et al. 2018 Sun et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3762/bjnano.9.264
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database (ProQuest)
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2190-4286
EndPage 2844
ExternalDocumentID oai_doaj_org_article_6c30d62094ce45cdbb2662eb8701cc92
PMC6244217
30498655
10_3762_bjnano_9_264
Genre Journal Article
Review
GroupedDBID 53G
5VS
88I
8FE
8FG
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ADBBV
ADDVE
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
KQ8
M2P
M48
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
~9O
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c544t-b9c677d87c0a8b8320feea0f5c8fa70d4a281727676348d793b9752a6d3fb9473
IEDL.DBID BENPR
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449758000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-4286
IngestDate Tue Oct 14 15:13:00 EDT 2025
Tue Nov 04 01:54:10 EST 2025
Fri Sep 05 09:08:06 EDT 2025
Sun Jul 13 04:51:42 EDT 2025
Thu Apr 03 07:02:22 EDT 2025
Tue Nov 18 19:56:21 EST 2025
Sat Nov 29 03:42:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gas sensor
room temperature
metal oxide
nitrogen dioxide (NO2)
graphene
Language English
License http://creativecommons.org/licenses/by/4.0
This is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.
The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-b9c677d87c0a8b8320feea0f5c8fa70d4a281727676348d793b9752a6d3fb9473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2346-6770
OpenAccessLink https://www.proquest.com/docview/2139853915?pq-origsite=%requestingapplication%
PMID 30498655
PQID 2139853915
PQPubID 2045589
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6c30d62094ce45cdbb2662eb8701cc92
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6244217
proquest_miscellaneous_2141041517
proquest_journals_2139853915
pubmed_primary_30498655
crossref_citationtrail_10_3762_bjnano_9_264
crossref_primary_10_3762_bjnano_9_264
PublicationCentury 2000
PublicationDate 2018-11-09
PublicationDateYYYYMMDD 2018-11-09
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-09
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Frankfurt am Main
– name: Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany
PublicationTitle Beilstein journal of nanotechnology
PublicationTitleAlternate Beilstein J Nanotechnol
PublicationYear 2018
Publisher Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
Beilstein-Institut
Publisher_xml – name: Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
– name: Beilstein-Institut
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
Geng (ref43)
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref102
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref98
  doi: 10.1016/j.snb.2017.08.148
– ident: ref35
  doi: 10.1016/j.snb.2017.04.164
– ident: ref56
  doi: 10.1021/acsami.5b09067
– ident: ref101
  doi: 10.1016/j.snb.2013.08.004
– ident: ref74
  doi: 10.1016/j.matlet.2015.11.129
– ident: ref38
  doi: 10.1016/j.mseb.2014.11.011
– ident: ref17
  doi: 10.1016/j.matlet.2017.06.008
– ident: ref81
  doi: 10.1039/c4ta06024e
– ident: ref15
  doi: 10.1063/1.2898501
– ident: ref31
  doi: 10.1007/s12034-016-1208-9
– ident: ref18
  doi: 10.1088/0957-4484/25/2/025502
– ident: ref23
  doi: 10.1016/j.matchemphys.2017.01.046
– ident: ref45
  doi: 10.1016/j.snb.2016.09.096
– ident: ref14
  doi: 10.1021/nl0717715
– ident: ref37
  doi: 10.1016/j.carbon.2015.12.074
– ident: ref10
  doi: 10.1021/nn800593m
– ident: ref61
  doi: 10.1016/j.snb.2016.01.023
– ident: ref92
  doi: 10.1016/j.snb.2015.09.021
– ident: ref12
  doi: 10.1021/nl072090c
– ident: ref68
  doi: 10.1016/j.snb.2015.01.083
– ident: ref62
  doi: 10.1016/j.snb.2013.08.067
– ident: ref36
  doi: 10.1039/c3ta11490b
– ident: ref11
  doi: 10.1016/j.carbon.2015.04.082
– ident: ref6
  doi: 10.1016/j.snb.2015.07.070
– ident: ref58
  doi: 10.1016/j.matlet.2016.08.010
– ident: ref76
  doi: 10.1088/0957-0233/22/4/045203
– ident: ref33
  doi: 10.1021/am400500a
– ident: ref53
  doi: 10.1016/j.snb.2015.09.091
– ident: ref16
  doi: 10.1103/physrevlett.101.026801
– ident: ref47
  doi: 10.1016/j.snb.2017.03.108
– ident: ref30
  doi: 10.1039/c3ce41374h
– ident: ref22
  doi: 10.1016/j.ceramint.2016.07.135
– ident: ref19
  doi: 10.1021/nn100780v
– ident: ref75
  doi: 10.1016/j.apsusc.2017.03.251
– ident: ref59
  doi: 10.1016/j.snb.2018.01.143
– ident: ref2
  doi: 10.1038/nmat1967
– ident: ref89
  doi: 10.1016/j.matchemphys.2012.01.116
– ident: ref9
  doi: 10.1016/j.carbon.2014.09.027
– ident: ref85
  doi: 10.1016/j.snb.2015.04.119
– ident: ref86
  doi: 10.1039/c4ra10136g
– ident: ref80
  doi: 10.1021/am505949a
– ident: ref28
  doi: 10.1007/s10854-016-5710-z
– ident: ref71
  doi: 10.1016/j.ceramint.2016.09.205
– ident: ref52
  doi: 10.1016/j.snb.2017.05.162
– ident: ref20
  doi: 10.1038/srep00166
– ident: ref63
  doi: 10.1016/j.snb.2014.05.086
– ident: ref5
  doi: 10.1021/nn100740x
– ident: ref48
  doi: 10.1063/1.1690114
– ident: ref94
  doi: 10.1039/c5cp01987g
– ident: ref97
  doi: 10.1016/j.snb.2015.09.102
– ident: ref83
  doi: 10.1063/1.4890583
– ident: ref100
  doi: 10.1016/j.matlet.2015.12.115
– ident: ref34
  doi: 10.1016/j.sna.2017.10.021
– ident: ref72
  doi: 10.1557/jmr.2004.19.2.628
– ident: ref77
  doi: 10.1039/c0nr00560f
– ident: ref69
  doi: 10.1039/c4ra02453b
– ident: ref27
  doi: 10.1007/s10854-015-3165-2
– ident: ref32
  doi: 10.1016/j.pcrysgrow.2012.07.001
– ident: ref99
  doi: 10.1039/c2nr31131c
– ident: ref41
  doi: 10.1016/j.carbon.2018.04.037
– ident: ref79
  doi: 10.1016/j.snb.2017.10.043
– ident: ref42
  doi: 10.1016/j.carbon.2017.09.065
– ident: ref64
  doi: 10.1016/j.apsusc.2017.10.152
– ident: ref50
  doi: 10.1016/j.jallcom.2016.02.197
– ident: ref39
  doi: 10.1016/j.apsusc.2013.11.130
– ident: ref40
  doi: 10.1016/j.ceramint.2016.04.035
– ident: ref91
  doi: 10.1002/adfm.201002171
– ident: ref8
  doi: 10.1021/nl8013007
– ident: ref3
  doi: 10.1016/j.carbon.2007.02.034
– ident: ref96
  doi: 10.1016/j.snb.2017.07.199
– ident: ref55
  doi: 10.1016/j.snb.2015.09.027
– ident: ref82
  doi: 10.1016/j.snb.2015.07.102
– ident: ref57
  doi: 10.1016/j.apsusc.2017.06.160
– ident: ref78
  doi: 10.1016/j.snb.2012.06.055
– ident: ref43
  publication-title: Sensors and Actuators, B: Chemical
– ident: ref84
  doi: 10.1016/j.talanta.2014.09.034
– ident: ref49
  doi: 10.1021/acs.cgd.6b00034
– ident: ref24
  doi: 10.1016/j.jallcom.2017.06.105
– ident: ref26
  doi: 10.1016/j.snb.2016.08.085
– ident: ref73
  doi: 10.1016/j.snb.2016.02.069
– ident: ref4
  doi: 10.1039/c1cs15078b
– ident: ref54
  doi: 10.1016/j.carbon.2011.08.050
– ident: ref51
  doi: 10.1007/s10854-015-4214-6
– ident: ref60
  doi: 10.1016/j.snb.2018.02.117
– ident: ref67
  doi: 10.1016/j.ceramint.2015.09.134
– ident: ref46
  doi: 10.1186/s11671-016-1343-7
– ident: ref70
  doi: 10.1038/238037a0
– ident: ref88
  doi: 10.1016/j.ceramint.2014.03.109
– ident: ref13
  doi: 10.1016/j.jcrysgro.2011.01.099
– ident: ref1
  doi: 10.1126/science.1102896
– ident: ref66
  doi: 10.1016/j.ijhydene.2017.06.066
– ident: ref93
  doi: 10.1016/j.snb.2016.12.111
– ident: ref65
  doi: 10.1016/j.jcis.2017.05.053
– ident: ref29
  doi: 10.1016/j.mseb.2017.12.036
– ident: ref102
  doi: 10.1016/j.snb.2015.11.024
– ident: ref25
  doi: 10.1016/j.snb.2017.01.200
– ident: ref87
  doi: 10.1039/c4nr00196f
– ident: ref90
  doi: 10.1016/j.snb.2015.05.047
– ident: ref95
  doi: 10.1016/j.snb.2016.12.062
– ident: ref7
  doi: 10.1088/0957-4484/20/44/445502
– ident: ref21
  doi: 10.1016/j.snb.2016.08.080
SSID ssj0000402898
Score 2.5335863
SecondaryResourceType review_article
Snippet Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2832
SubjectTerms Adsorption
Ammonia
Defects
Detection
gas sensor
Gas sensors
Gases
Graphene
High temperature
Humidity
Influence
metal oxide
Metal oxide semiconductors
Metal oxides
Nanoscience
Nanotechnology
Nitrogen dioxide
nitrogen dioxide (NO2)
Operating temperature
Power consumption
Recovery time
Review
Room temperature
Selectivity
Semiconductors
Sensitivity
Sensors
Shortages
VOCs
Volatile organic compounds
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLZQxQEOiDeBggYJTihtMjuZBzdAtBxQxQGk3kbzpIsgQZtt1Z-PPUlXuwjEhWvGh4nH9nyWx58BXmQZnY5S1B6xK5FqN7UzTaq7nGQXlMMMorDrf1QnJ_r01HzaGvVFb8ImeuBJcYcyLJooOWYhIYkuRO_xSuHJo521IZgSfRH1bCVTJQYLqqCVcXTUK40YW06v3tGf-KH_1rt-ODAHXIqd-6jQ9v8Ja_7-ZHLrDjq6Dbdm8MjeTJu-A9dSfxdublEK3oPjY2KgxgBWp_6sVPfZj4QAmw2Xy5jYVzeyETPXYTUyt2YEmxmxU83Uyq-ZY1Mzy334cvT-87sP9TwsoQ6dEOvamyCVilqFxmmPftrklFyTu6CzU00UjmsCKxIDitAR3dIb1XEn4yJ7I9TiAez1Q58eAZO-1a7NvHVtEtFz7QIV6zLGRu9i9hW8ulKZDTOTOA20-G4xoyAF20nB1lhUcAUvN9I_JwaNv8i9Je1vZIj3unxAa7CzNdh_WUMF-1dnZ2dnHC1HlIuoxLRdBc83y-hGVBtxfRrOSUa0xFbQqgoeTke92QlVIql_twK1YwQ7W91d6ZdnhapbInrCpO_x__i3J3AD0ZoujZBmH_bWq_P0FK6Hi_VyXD0r9v8LDhQLcg
  priority: 102
  providerName: Directory of Open Access Journals
Title Graphene-enhanced metal oxide gas sensors at room temperature: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/30498655
https://www.proquest.com/docview/2139853915
https://www.proquest.com/docview/2141041517
https://pubmed.ncbi.nlm.nih.gov/PMC6244217
https://doaj.org/article/6c30d62094ce45cdbb2662eb8701cc92
Volume 9
WOSCitedRecordID wos000449758000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: BFMQW
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2190-4286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402898
  issn: 2190-4286
  databaseCode: M2P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlAMceEMNJVokOCG39ma9Dy6IoqYgkcggEIGLtS-3qcAucYr4-czaTmgQcOFiS945jDw7s9_M7n4D8LjkTkvHWWwQuwZS7STWKvFxVnqeWaExg2jZ9d-I6VTOZirvC25Nf6xyFRPbQO1qG2rk-xShCi4tKs2en32LQ9eosLvat9DYgu3AVMYGsH1wOM3frassOEUxo5DdiXf0JbpvTitd1Xtqj3K2sRa1lP1_wpm_H5e8sP6Mr_-v5jfgWo88yYtuqtyES766BVcv8BHehqOjQF-N0S_21Ul7NIB89YjOSf1j7jw51g1pMO2tFw3RSxIwNwnUVj0v8zOiSXcT5g58GB--f_kq7jstxDZjbBkbZbkQTgqbaGnQyZPSe52UmZWlFoljmsqAdDhGIyYd-rRRIqOau1FpFBOjuzCo6srvAOEmlTotaapTz5yhUtuw01diYDXalSaCp6t_Xtiehjx0w_hSYDoSLFR0FipUgRaK4Mla-qyj3_iL3EEw31omkGa3H-rFcdH7YMHtKHGcYkJrPcusMwbRCfUGQ1ZqraIR7K4MWPSe3BS_rBfBo_Uw-mDYWNGVr8-DDEsD1UEqIrjXzZW1JmEbM1z-jUBszKINVTdHqvlJy_PNEXphxnj_32o9gCsI4mR7P1LtwmC5OPcP4bL9vpw3iyFsiZkc9m4R3uPJ24_DtvKAzwnN8Zlnn3Ekfz3JP_0Ee6ogIw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLRKw4E0JFDASZYPSJh7HsZFYUGDaqtMRSK3oLviVdipIymTK46f4Rq7zooOAXRdsEyty4nMfJ74-F-BJzq0SlrNQY-7qRbWjUMnIhUnueGJShQyiVtcfpeOxODiQbxfgR3cWxpdVdj6xdtS2NP4f-TrFVAVDi4y7Csod9_0r8rPqxfZrXMxVSodv9l5thW0LgdAkjM1CLQ1PUytSEymhEb1R7pyK8sSIXKWRZYoKH8I5mhkTFsGqZZpQxe0g15KlA3zu05PPoe9S5Xdz25YdF2BJcDlAu1raGO6-e9__1UGTQAYjmgp7tF26ro8LVZRrco1yNhf76hYBf8prfy_PPBPvhtf-ty91Ha62mTV52ZjCDVhwxU24ckZv8RZsbnp5bvTuoSuO6tIH8skh-yDlt4l15FBVpEJaX04rombEcwripbta3ennRJHmpM9t2D-Xl7sDi0VZuLtAuI6FinMaq9gxq6lQxu9k5hg4tLK5DuBZt8aZaWXWfbePjxnSLY-IrEFEJjNERACr_eiTRl7kL-M2PFz6MV4UvL5QTg-z1sdk3AwiyykSduNYYqzWmH1Rp9Elx8ZIGsBKB5is9VRV9gstATzub6OP8RtHqnDlqR_DYi_lEKcBLDfY7Gfit2n94eYA0jnUzk11_k4xOap1zDmmlsiI7_17Wo_g0tbe7igbbY937sNlTFhFfRZUrsDibHrqHsBF82U2qaYPW2Mk8OG8gf4Tcj10-A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSE4sC-BAkaiJ5RO4klsBwkhoEypWo3mAFLFxXhtpypJmUxZ_hq_jucsQwcBtx64JlbkxN9bvvj5ewBPPLNKWJbFGnPXIKqdxKpIXJx7x3LDFTKIRl1_l4_HYm-vmKzAj_4sTCir7H1i46htZcI_8gHFVAVDS5HmA9-VRUw2Ry-OP8ehg1TYae3babQQ2XHfvyJ9q59vb-Jar1M6evPu9du46zAQmzzL5rEuDOPcCm4SJTSCO_HOqcTnRnjFE5spKkKEZ2iFmbCIZV3wnCpmh14XGR_ic8_BeY4cM1jXJP-w-L-DxoFcRrS19mjFdKAPS1VWG8UGZdlSFGyaBfwpw_29UPNU5Btd_Z-_2TW40uXb5GVrINdhxZU34PIpFcabsLUVRLvR58euPGgKIsgnh5yEVN-m1pF9VZMayX41q4mak8A0SBD06tSonxFF2vM_t-D9mbzJbVgtq9LdBcJ0KlTqaapSl1lNhTJhf9NjONHKeh3B0369penE10MPkCOJJCygQ7bokIVEdESwvhh93IqO_GXcqwCdxZggFd5cqGb7svM8kplhYhlFGm9clhurNeZk1Gl01KkxBY1grQeP7PxXLX8hJ4LHi9voecJ2kipddRLGZGkQeEh5BHdanC5mEjZvw5HnCPgSgpemunynnB406uYME07kyff-Pa1HcBGhLHe3xzv34RJmsaI5IFqswep8duIewAXzZT6tZw8bqyTw8awh_RN-WHx5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-enhanced+metal+oxide+gas+sensors+at+room+temperature%3A+a+review&rft.jtitle=Beilstein+journal+of+nanotechnology&rft.au=Sun%2C+Dongjin&rft.au=Luo%2C+Yifan&rft.au=Debliquy%2C+Marc&rft.au=Zhang%2C+Chao&rft.date=2018-11-09&rft.pub=Beilstein-Institut&rft.eissn=2190-4286&rft.volume=9&rft.spage=2832&rft.epage=2844&rft_id=info:doi/10.3762%2Fbjnano.9.264&rft_id=info%3Apmid%2F30498655&rft.externalDocID=PMC6244217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4286&client=summon