Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure

The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 11; číslo 1; s. 3860 - 6
Hlavní autoři: Wu, Yingying, Zhang, Senfu, Zhang, Junwei, Wang, Wei, Zhu, Yang Lin, Hu, Jin, Yin, Gen, Wong, Kin, Fang, Chi, Wan, Caihua, Han, Xiufeng, Shao, Qiming, Taniguchi, Takashi, Watanabe, Kenji, Zang, Jiadong, Mao, Zhiqiang, Zhang, Xixiang, Wang, Kang L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 31.07.2020
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe 2 /Fe 3 GeTe 2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm −2 .
AbstractList The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m−2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m−2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe 2 /Fe 3 GeTe 2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm −2 .
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m–2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ m-2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ m-2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.
Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2.
ArticleNumber 3860
Author Mao, Zhiqiang
Zhang, Xixiang
Taniguchi, Takashi
Wang, Wei
Wu, Yingying
Fang, Chi
Shao, Qiming
Zang, Jiadong
Hu, Jin
Wan, Caihua
Zhu, Yang Lin
Zhang, Senfu
Han, Xiufeng
Zhang, Junwei
Yin, Gen
Watanabe, Kenji
Wong, Kin
Wang, Kang L.
Author_xml – sequence: 1
  givenname: Yingying
  surname: Wu
  fullname: Wu, Yingying
  organization: Department of Electrical and Computer Engineering, University of California—Los Angeles
– sequence: 2
  givenname: Senfu
  orcidid: 0000-0002-8752-4194
  surname: Zhang
  fullname: Zhang, Senfu
  organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology
– sequence: 3
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University
– sequence: 5
  givenname: Yang Lin
  surname: Zhu
  fullname: Zhu, Yang Lin
  organization: Department of Physics, Pennsylvania State University
– sequence: 6
  givenname: Jin
  orcidid: 0000-0003-0080-4239
  surname: Hu
  fullname: Hu, Jin
  organization: Department of Physics, University of Arkansas
– sequence: 7
  givenname: Gen
  orcidid: 0000-0001-5827-5101
  surname: Yin
  fullname: Yin, Gen
  organization: Department of Electrical and Computer Engineering, University of California—Los Angeles
– sequence: 8
  givenname: Kin
  orcidid: 0000-0001-6776-3852
  surname: Wong
  fullname: Wong, Kin
  organization: Department of Electrical and Computer Engineering, University of California—Los Angeles
– sequence: 9
  givenname: Chi
  surname: Fang
  fullname: Fang, Chi
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 10
  givenname: Caihua
  surname: Wan
  fullname: Wan, Caihua
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 11
  givenname: Xiufeng
  orcidid: 0000-0001-8053-793X
  surname: Han
  fullname: Han, Xiufeng
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Qiming
  surname: Shao
  fullname: Shao, Qiming
  organization: Department of Electrical and Computer Engineering, University of California—Los Angeles
– sequence: 13
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 14
  givenname: Kenji
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 15
  givenname: Jiadong
  surname: Zang
  fullname: Zang, Jiadong
  organization: Department of Physics and Astronomy, University of New Hampshire
– sequence: 16
  givenname: Zhiqiang
  orcidid: 0000-0002-4920-3293
  surname: Mao
  fullname: Mao, Zhiqiang
  organization: Department of Physics, Pennsylvania State University
– sequence: 17
  givenname: Xixiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xixiang
  organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology
– sequence: 18
  givenname: Kang L.
  orcidid: 0000-0002-9363-1279
  surname: Wang
  fullname: Wang, Kang L.
  email: wang@ee.ucla.edu
  organization: Department of Electrical and Computer Engineering, University of California—Los Angeles
BackLink https://www.osti.gov/servlets/purl/1784965$$D View this record in Osti.gov
BookMark eNp9UstuFDEQHKEg8iA_wGkEFy5D_H5ckEhEQqQILkE5Wh5Pe3eWWc9ie6LsJ_Ed_FjMTgQkh_jidruqut2uw2ovjAGq6g1GHzCi6iQxzIRsEEENllyI5u5FdUAQw-VI6N5_8X51nNIKlUU1Voy9qvYpkVQSpQ-q06-_f8HQ5O0G6vRjG9f9GOo-1DfXQE7OgV5ACepbG-oOYn1j7ZDqJWSIY8pxcnmK8Lp66Usajh_2o-r7-efrsy_N1beLy7NPV43jjOVGWuwVtkIJjplXSgopfQcteI694B4D7xRqleTctZp3yCvXtqAcE1i3ntKj6nLW7Ua7MpvYr23cmtH2ZpcY48LYmHs3gGGi7bTolNSIMuKdxp1TgmjOi77HrGh9nLU2U7uGzkHI0Q6PRB_fhH5pFuOtkVRzTEQReDsLlDn0Jrk-g1u6MQRw2WCpmBa8gN4_VInjzwlSNus-ORgGG2CckiGMaCm1QKRA3z2BrsYphjLPHYpyRHcoMqNcmX-K4P92jJH5Ywsz28IUW5idLcxdIaknpNKtzeWjy8v64Xkqnamp1AkLiP-6eoZ1D8RgzCE
CitedBy_id crossref_primary_10_1021_acsnano_5c10466
crossref_primary_10_1103_RevModPhys_96_015005
crossref_primary_10_1038_s41467_022_30740_7
crossref_primary_10_1016_j_isci_2023_106311
crossref_primary_10_1038_s41467_022_33016_2
crossref_primary_10_1088_0256_307X_40_11_117501
crossref_primary_10_1002_adfm_202308560
crossref_primary_10_1038_s41467_022_31319_y
crossref_primary_10_1038_s41467_024_48893_y
crossref_primary_10_1016_j_pmatsci_2022_100971
crossref_primary_10_1103_PhysRevB_103_104410
crossref_primary_10_3390_jlpea15020016
crossref_primary_10_1063_5_0007517
crossref_primary_10_1002_advs_202207617
crossref_primary_10_1038_s41565_021_00936_x
crossref_primary_10_1088_1674_1056_abd693
crossref_primary_10_3390_coatings12081152
crossref_primary_10_1016_j_jmmm_2023_170819
crossref_primary_10_1002_adma_202204163
crossref_primary_10_1016_j_mattod_2022_04_011
crossref_primary_10_1063_5_0020701
crossref_primary_10_1016_j_mattod_2025_06_022
crossref_primary_10_1088_1361_648X_ad24bd
crossref_primary_10_1016_j_mtchem_2025_103049
crossref_primary_10_1063_5_0031870
crossref_primary_10_1002_adfm_202406444
crossref_primary_10_1103_PhysRevB_105_174422
crossref_primary_10_1103_vqb7_vz11
crossref_primary_10_1038_s41699_024_00499_0
crossref_primary_10_1039_D0NR06449A
crossref_primary_10_1016_j_matt_2022_11_017
crossref_primary_10_1039_D2NR04820E
crossref_primary_10_1016_j_cpc_2024_109283
crossref_primary_10_1021_acs_nanolett_5c03346
crossref_primary_10_1038_s41467_024_47715_5
crossref_primary_10_1103_PhysRevB_107_024402
crossref_primary_10_1038_s41467_022_30738_1
crossref_primary_10_1088_1361_648X_ac8f08
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1016_j_solidstatesciences_2025_108044
crossref_primary_10_1038_s41699_020_00167_z
crossref_primary_10_1002_aelm_202300738
crossref_primary_10_1002_adma_202101730
crossref_primary_10_1109_TMAG_2024_3458401
crossref_primary_10_1063_5_0200642
crossref_primary_10_1063_5_0250741
crossref_primary_10_1002_adma_202410816
crossref_primary_10_1063_5_0030607
crossref_primary_10_1063_5_0173456
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1088_2053_1583_acfb1f
crossref_primary_10_1016_j_jallcom_2022_166956
crossref_primary_10_1063_5_0054025
crossref_primary_10_1103_PhysRevMaterials_5_064413
crossref_primary_10_1016_j_physleta_2022_128326
crossref_primary_10_1103_PhysRevB_108_174433
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1088_1361_6463_ad4bf2
crossref_primary_10_1016_j_jssc_2023_124015
crossref_primary_10_1103_PhysRevB_111_014442
crossref_primary_10_1063_5_0263946
crossref_primary_10_1063_5_0130037
crossref_primary_10_1002_adma_202205967
crossref_primary_10_1038_s41586_024_07858_3
crossref_primary_10_1103_PhysRevB_106_L220401
crossref_primary_10_1134_S0021364022100101
crossref_primary_10_1038_s41427_022_00418_z
crossref_primary_10_1103_PhysRevB_111_054423
crossref_primary_10_1063_5_0231129
crossref_primary_10_1088_2053_1583_ad1c6d
crossref_primary_10_1016_j_comptc_2023_114165
crossref_primary_10_1109_TMAG_2024_3426954
crossref_primary_10_1016_j_mattod_2021_09_015
crossref_primary_10_1002_adma_202420168
crossref_primary_10_1039_D1NR06835K
crossref_primary_10_1002_adma_202411459
crossref_primary_10_1002_admi_202300188
crossref_primary_10_1073_pnas_2122952119
crossref_primary_10_1016_j_mtphys_2025_101727
crossref_primary_10_1002_adfm_202509453
crossref_primary_10_1021_acs_nanolett_5c03547
crossref_primary_10_1016_j_nanoen_2025_111350
crossref_primary_10_1002_adma_202311591
crossref_primary_10_1088_2633_4356_adb474
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1039_D4NR01577K
crossref_primary_10_1063_5_0069885
crossref_primary_10_1103_qkqn_lfzk
crossref_primary_10_1002_adfm_202302984
crossref_primary_10_1063_5_0268615
crossref_primary_10_1002_sstr_202200064
crossref_primary_10_1063_5_0247817
crossref_primary_10_1002_aelm_202200164
crossref_primary_10_1002_advs_202303443
crossref_primary_10_1088_2053_1583_ac34d9
crossref_primary_10_1103_PhysRevB_104_224425
crossref_primary_10_1002_admi_202100515
crossref_primary_10_1007_s12598_021_01908_9
crossref_primary_10_1002_adma_202311022
crossref_primary_10_1063_5_0039069
crossref_primary_10_1038_d41586_024_02944_y
crossref_primary_10_1088_1361_6528_abe32b
crossref_primary_10_3389_fmats_2020_594771
crossref_primary_10_1002_adma_202108637
crossref_primary_10_1021_acsami_5c04834
crossref_primary_10_1088_1742_6596_2086_1_012165
crossref_primary_10_1002_adma_202311949
crossref_primary_10_1002_inf2_70064
crossref_primary_10_1038_s41467_021_22239_4
crossref_primary_10_1103_PhysRevLett_134_116702
crossref_primary_10_1038_s44306_024_00011_w
crossref_primary_10_1088_0256_307X_40_1_017501
crossref_primary_10_1007_s11467_022_1217_7
crossref_primary_10_1063_5_0236903
crossref_primary_10_1103_PhysRevApplied_19_014012
crossref_primary_10_1002_adma_202107779
crossref_primary_10_1002_adfm_202425483
crossref_primary_10_1063_5_0052952
crossref_primary_10_1088_1361_6463_ac18eb
crossref_primary_10_1007_s11837_022_05299_9
crossref_primary_10_1002_adma_202105266
crossref_primary_10_1002_adma_202306920
crossref_primary_10_1088_2053_1583_ad1a6b
crossref_primary_10_1088_1674_1056_adcdf2
crossref_primary_10_1038_s41598_024_79386_z
crossref_primary_10_1002_adma_202312013
crossref_primary_10_1007_s12598_025_03478_6
crossref_primary_10_1103_PhysRevResearch_6_L032008
crossref_primary_10_1002_adma_202312935
crossref_primary_10_1063_5_0235491
crossref_primary_10_1002_advs_202401048
crossref_primary_10_1021_acsnano_5c08312
crossref_primary_10_1016_j_scib_2024_04_005
crossref_primary_10_1093_nsr_nwz205
crossref_primary_10_1002_advs_202202467
crossref_primary_10_1088_1361_6528_ac2f59
crossref_primary_10_1002_adma_202106909
crossref_primary_10_1039_D4MH00734D
crossref_primary_10_1063_5_0205298
crossref_primary_10_1007_s12274_021_3826_9
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1016_j_mtelec_2023_100060
crossref_primary_10_1146_annurev_conmatphys_031620_110344
crossref_primary_10_1063_5_0187341
crossref_primary_10_1063_5_0223004
crossref_primary_10_1063_5_0089999
crossref_primary_10_1002_adfm_202105992
crossref_primary_10_1002_adfm_202419782
crossref_primary_10_1002_adma_202201880
crossref_primary_10_1002_advs_202409210
crossref_primary_10_1103_PhysRevB_108_134425
crossref_primary_10_1103_PhysRevResearch_3_013027
crossref_primary_10_1002_adma_202506279
crossref_primary_10_1063_5_0095875
crossref_primary_10_1063_5_0103076
crossref_primary_10_1038_s41598_021_93402_6
crossref_primary_10_1088_1361_6528_ad6fa2
crossref_primary_10_1063_5_0051394
crossref_primary_10_1002_adma_202110583
crossref_primary_10_1038_s42005_022_00972_6
crossref_primary_10_1002_adfm_202103583
crossref_primary_10_1002_smsc_202500028
crossref_primary_10_3389_fphy_2020_587419
crossref_primary_10_1088_1367_2630_ac6c45
crossref_primary_10_1016_j_revip_2025_100111
crossref_primary_10_1002_adma_202501250
crossref_primary_10_1016_j_jmmm_2025_172919
crossref_primary_10_1103_PhysRevB_106_L180409
crossref_primary_10_1103_PhysRevMaterials_6_044403
crossref_primary_10_3390_nano13050859
crossref_primary_10_1103_469v_x4cm
crossref_primary_10_1088_2053_1583_acd2e9
crossref_primary_10_1103_PhysRevResearch_4_023256
crossref_primary_10_1109_ACCESS_2024_3509030
crossref_primary_10_1002_adma_202212087
crossref_primary_10_1088_1361_6463_acb801
crossref_primary_10_1038_s41467_024_48799_9
crossref_primary_10_1063_5_0139283
crossref_primary_10_1002_idm2_12072
crossref_primary_10_1063_1_5143323
crossref_primary_10_7566_JPSJ_92_081001
crossref_primary_10_1103_PhysRevResearch_4_033053
crossref_primary_10_1080_21663831_2022_2119108
crossref_primary_10_1063_5_0091931
crossref_primary_10_1002_adfm_202104452
crossref_primary_10_1016_j_apsusc_2023_159057
crossref_primary_10_1016_j_mattod_2023_11_008
crossref_primary_10_1038_s44306_024_00015_6
crossref_primary_10_1002_adma_202209346
crossref_primary_10_1002_adma_202208930
crossref_primary_10_1016_j_pquantelec_2025_100564
crossref_primary_10_1063_5_0097008
crossref_primary_10_1016_j_jmmm_2025_173353
crossref_primary_10_1103_PhysRevB_111_144425
crossref_primary_10_1039_D1NR06266B
Cites_doi 10.1038/nphys3671
10.1021/jp952188s
10.1038/nmat4593
10.1038/nature22060
10.1021/acs.nanolett.8b02806
10.1021/acs.nanolett.7b01393
10.1063/1.5019286
10.1038/nnano.2013.243
10.1103/PhysRevLett.119.176809
10.1038/s41586-018-0626-9
10.1103/PhysRevB.99.115441
10.1038/s41565-018-0135-x
10.1021/acs.nanolett.8b01105
10.1126/sciadv.1603113
10.1016/j.physrep.2017.08.001
10.1038/s41563-018-0079-4
10.1038/s41563-018-0132-3
10.1002/smll.201601207
10.1063/1.4961592
10.1126/science.aaa1442
10.7567/1347-4065/aaf222
10.1209/0295-5075/100/57002
10.1126/science.aar3617
10.1038/s42005-018-0040-5
10.1038/nmat4360
10.1038/s41467-018-04953-8
10.1088/2053-1583/3/3/031012
10.1126/science.aar4851
10.1103/PhysRevMaterials.3.031001
10.1038/s41563-018-0149-7
10.1103/PhysRevLett.120.106802
10.1038/nature22391
10.1038/ncomms5875
10.1103/PhysRevB.88.085433
10.1088/1361-6528/ab0a37
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of New Hampshire, Durham, NH (United States)
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
– name: Pennsylvania State Univ., University Park, PA (United States)
– name: Univ. of New Hampshire, Durham, NH (United States)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-020-17566-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
Engineering
EISSN 2041-1723
EndPage 6
ExternalDocumentID oai_doaj_org_article_46bd96d8790342fc91dc862955b87f14
PMC7395126
1784965
10_1038_s41467_020_17566_x
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c544t-7a1f81a686514f887677fdebef51f65f1e5d80b8755cb95d0f8cbbe8c4619bf33
IEDL.DBID M7P
ISICitedReferencesCount 305
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560400500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:37:44 EDT 2025
Tue Nov 04 01:52:10 EST 2025
Thu May 18 22:22:15 EDT 2023
Sun Nov 09 10:18:34 EST 2025
Tue Oct 07 06:36:53 EDT 2025
Sat Nov 29 06:20:27 EST 2025
Tue Nov 18 22:26:23 EST 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-7a1f81a686514f887677fdebef51f65f1e5d80b8755cb95d0f8cbbe8c4619bf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0020221; SC0019068; W911NF-15-1-10561; 1935362; 1909416; SC0012670; OSR-2016-CRG5-2977
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
US Army Research Office (ARO)
ORCID 0000-0001-8053-793X
0000-0002-9363-1279
0000-0003-0080-4239
0000-0002-3478-6414
0000-0002-8752-4194
0000-0001-6776-3852
0000-0002-4920-3293
0000-0001-5827-5101
0000000167763852
0000000287524194
0000000293631279
000000018053793X
0000000249203293
0000000300804239
0000000158275101
0000000234786414
OpenAccessLink https://www.proquest.com/docview/2429350302?pq-origsite=%requestingapplication%
PMID 32737289
PQID 2429350302
PQPubID 546298
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_46bd96d8790342fc91dc862955b87f14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7395126
osti_scitechconnect_1784965
proquest_miscellaneous_2429779602
proquest_journals_2429350302
crossref_primary_10_1038_s41467_020_17566_x
crossref_citationtrail_10_1038_s41467_020_17566_x
springer_journals_10_1038_s41467_020_17566_x
PublicationCentury 2000
PublicationDate 2020-07-31
PublicationDateYYYYMMDD 2020-07-31
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Jiang, Li, Wang, Mak, Shan (CR8) 2018; 13
Woo (CR27) 2016; 15
Jiang (CR26) 2015; 349
Yasuda (CR29) 2016; 12
Deng (CR11) 2018; 563
Yang (CR24) 2018; 17
CR36
Zhong (CR20) 2017; 3
Song (CR4) 2018; 360
Lin (CR10) 2018; 112
Seyler (CR21) 2018; 18
Carteaux, Brunet, Ouvrard, Andre (CR6) 1995; 7
Liu, Shan, Yao, Yao, Xiao (CR32) 2013; 88
Kim (CR13) 2018; 17
Xie, Jia, Shi, Yang, Si (CR23) 2018; 58
Fei (CR12) 2018; 17
Wang (CR17) 2016; 6
Yang (CR18) 2016; 3
Nagaosa, Tokura (CR28) 2013; 8
Li (CR14) 2018; 18
Avsar (CR19) 2014; 5
Wang (CR9) 2018; 9
Huang (CR2) 2017; 546
Luo (CR15) 2017; 17
Manchon, Koo, Nitta, Frolov, Duine (CR25) 2015; 14
Siberchicot, Jobic, Carteaux, Gressier, Ouvrard (CR5) 1996; 100
Gong (CR1) 2017; 546
Liu (CR30) 2017; 119
Zhang, Zhang, Wen, Chudnovsky, Zhang (CR34) 2018; 1
Jiang (CR33) 2017; 704
Ye (CR31) 2016; 12
León-Brito, Bauer, Ronning, Thompson, Movshovich (CR35) 2016; 120
Zhang, Ni, Huang, Hu, Liu (CR22) 2019; 99
Klein (CR3) 2018; 360
Jang, Jeong, Yoon, Ryee, Han (CR7) 2019; 3
Wakamura (CR16) 2018; 120
Thiaville, Rohart, Jué, Cros, Fert (CR37) 2012; 100
S Woo (17566_CR27) 2016; 15
Z Wang (17566_CR9) 2018; 9
Z Zhang (17566_CR22) 2019; 99
A Thiaville (17566_CR37) 2012; 100
H Yang (17566_CR24) 2018; 17
G-B Liu (17566_CR32) 2013; 88
K Yasuda (17566_CR29) 2016; 12
W Jiang (17566_CR33) 2017; 704
B Huang (17566_CR2) 2017; 546
K Kim (17566_CR13) 2018; 17
C Liu (17566_CR30) 2017; 119
Z Wang (17566_CR17) 2016; 6
S Zhang (17566_CR34) 2018; 1
A Manchon (17566_CR25) 2015; 14
DR Klein (17566_CR3) 2018; 360
S Jiang (17566_CR8) 2018; 13
T Song (17566_CR4) 2018; 360
T Wakamura (17566_CR16) 2018; 120
Y Deng (17566_CR11) 2018; 563
G Lin (17566_CR10) 2018; 112
B Yang (17566_CR18) 2016; 3
N Nagaosa (17566_CR28) 2013; 8
Z Fei (17566_CR12) 2018; 17
SW Jang (17566_CR7) 2019; 3
W Jiang (17566_CR26) 2015; 349
YK Luo (17566_CR15) 2017; 17
V Carteaux (17566_CR6) 1995; 7
KL Seyler (17566_CR21) 2018; 18
17566_CR36
C Gong (17566_CR1) 2017; 546
A Avsar (17566_CR19) 2014; 5
D Zhong (17566_CR20) 2017; 3
J Xie (17566_CR23) 2018; 58
Q Li (17566_CR14) 2018; 18
B Siberchicot (17566_CR5) 1996; 100
F Ye (17566_CR31) 2016; 12
N León-Brito (17566_CR35) 2016; 120
References_xml – volume: 12
  start-page: 555
  year: 2016
  ident: CR29
  article-title: Geometric hall effects in topological insulator heterostructures
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3671
– volume: 100
  start-page: 5863
  year: 1996
  end-page: 5867
  ident: CR5
  article-title: Band structure calculations of ferromagnetic chromium tellurides CrSiTe and CrGeTe
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952188s
– volume: 15
  start-page: 501
  year: 2016
  ident: CR27
  article-title: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4593
– volume: 546
  start-page: 265
  year: 2017
  ident: CR1
  article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 18
  start-page: 5974
  year: 2018
  end-page: 5980
  ident: CR14
  article-title: Patterning-induced ferromagnetism of Fe GeTe van der Waals materials beyond room temperature
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02806
– volume: 17
  start-page: 3877
  year: 2017
  end-page: 3883
  ident: CR15
  article-title: Opto-valleytronic spin injection in monolayer MoS /few-layer graphene hybrid spin valves
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01393
– volume: 112
  start-page: 072405
  year: 2018
  ident: CR10
  article-title: Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019286
– volume: 8
  start-page: 899
  year: 2013
  ident: CR28
  article-title: Topological properties and dynamics of magnetic skyrmions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.243
– volume: 119
  start-page: 176809
  year: 2017
  ident: CR30
  article-title: Dimensional crossover-induced topological hall effect in a magnetic topological insulator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.176809
– volume: 563
  start-page: 94
  year: 2018
  ident: CR11
  article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 99
  start-page: 115441
  year: 2019
  ident: CR22
  article-title: Valley splitting in the van der Waals heterostructure WSe /CrI : the role of atom superposition
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.115441
– volume: 13
  start-page: 549
  year: 2018
  end-page: 553
  ident: CR8
  article-title: Controlling magnetism in 2D CrI by electrostatic doping
  publication-title: Nat. Nanotechnol
  doi: 10.1038/s41565-018-0135-x
– volume: 18
  start-page: 3823
  year: 2018
  end-page: 3828
  ident: CR21
  article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01105
– volume: 3
  start-page: e1603113
  year: 2017
  ident: CR20
  article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 704
  start-page: 1
  year: 2017
  end-page: 49
  ident: CR33
  article-title: Skyrmions in magnetic multilayers
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.08.001
– volume: 6
  start-page: 041020
  year: 2016
  ident: CR17
  article-title: Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides
  publication-title: Phys. Rev. X
– volume: 17
  start-page: 605
  year: 2018
  ident: CR24
  article-title: Significant Dzyaloshinskii-Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0079-4
– volume: 17
  start-page: 794
  year: 2018
  ident: CR13
  article-title: Large anomalous hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0132-3
– volume: 12
  start-page: 5802
  year: 2016
  end-page: 5808
  ident: CR31
  article-title: Environmental instability and degradation of single-and few-layer WTe nanosheets in ambient conditions
  publication-title: Small
  doi: 10.1002/smll.201601207
– volume: 120
  start-page: 083903
  year: 2016
  ident: CR35
  article-title: Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe GeTe
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4961592
– volume: 349
  start-page: 283
  year: 2015
  end-page: 286
  ident: CR26
  article-title: Blowing magnetic skyrmion bubbles
  publication-title: Science
  doi: 10.1126/science.aaa1442
– volume: 58
  start-page: 010906
  year: 2018
  ident: CR23
  article-title: Electric field mediated large valley splitting in the van der Waals heterostructure WSe /CrI
  publication-title: Jpn J. Appl. Phys.
  doi: 10.7567/1347-4065/aaf222
– volume: 100
  start-page: 57002
  year: 2012
  ident: CR37
  article-title: Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films
  publication-title: EPL
  doi: 10.1209/0295-5075/100/57002
– volume: 360
  start-page: 1218
  year: 2018
  end-page: 1222
  ident: CR3
  article-title: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
  publication-title: Science
  doi: 10.1126/science.aar3617
– volume: 7
  start-page: 69
  year: 1995
  ident: CR6
  article-title: Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr Ge Te
  publication-title: J. Phys.
– volume: 1
  start-page: 36
  year: 2018
  ident: CR34
  article-title: Determination of chirality and density control of Néel-type skyrmions with in-plane magnetic field
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-018-0040-5
– ident: CR36
– volume: 14
  start-page: 871
  year: 2015
  ident: CR25
  article-title: New perspectives for rashba spin–orbit coupling
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4360
– volume: 9
  year: 2018
  ident: CR9
  article-title: Very large tunneling magnetoresistance in layered magnetic semiconductor CrI
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04953-8
– volume: 3
  start-page: 031012
  year: 2016
  ident: CR18
  article-title: Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/3/031012
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  ident: CR4
  article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 3
  start-page: 031001
  year: 2019
  ident: CR7
  article-title: Microscopic understanding of magnetic interactions in bilayer CrI
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.031001
– volume: 17
  start-page: 778
  year: 2018
  ident: CR12
  article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 120
  start-page: 106802
  year: 2018
  ident: CR16
  article-title: Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.106802
– volume: 546
  start-page: 270
  year: 2017
  ident: CR2
  article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 5
  year: 2014
  ident: CR19
  article-title: Spin-orbit proximity effect in graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5875
– volume: 88
  start-page: 085433
  year: 2013
  ident: CR32
  article-title: Three-band tight-binding model for monolayers of group-vib transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085433
– volume: 563
  start-page: 94
  year: 2018
  ident: 17566_CR11
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 9
  year: 2018
  ident: 17566_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04953-8
– volume: 704
  start-page: 1
  year: 2017
  ident: 17566_CR33
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.08.001
– volume: 17
  start-page: 605
  year: 2018
  ident: 17566_CR24
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0079-4
– volume: 18
  start-page: 3823
  year: 2018
  ident: 17566_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01105
– volume: 58
  start-page: 010906
  year: 2018
  ident: 17566_CR23
  publication-title: Jpn J. Appl. Phys.
  doi: 10.7567/1347-4065/aaf222
– volume: 360
  start-page: 1214
  year: 2018
  ident: 17566_CR4
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 546
  start-page: 270
  year: 2017
  ident: 17566_CR2
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 100
  start-page: 5863
  year: 1996
  ident: 17566_CR5
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952188s
– volume: 119
  start-page: 176809
  year: 2017
  ident: 17566_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.176809
– volume: 99
  start-page: 115441
  year: 2019
  ident: 17566_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.115441
– volume: 15
  start-page: 501
  year: 2016
  ident: 17566_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4593
– volume: 1
  start-page: 36
  year: 2018
  ident: 17566_CR34
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-018-0040-5
– volume: 13
  start-page: 549
  year: 2018
  ident: 17566_CR8
  publication-title: Nat. Nanotechnol
  doi: 10.1038/s41565-018-0135-x
– volume: 120
  start-page: 106802
  year: 2018
  ident: 17566_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.106802
– volume: 88
  start-page: 085433
  year: 2013
  ident: 17566_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085433
– ident: 17566_CR36
  doi: 10.1088/1361-6528/ab0a37
– volume: 3
  start-page: 031001
  year: 2019
  ident: 17566_CR7
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.031001
– volume: 18
  start-page: 5974
  year: 2018
  ident: 17566_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02806
– volume: 17
  start-page: 794
  year: 2018
  ident: 17566_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0132-3
– volume: 546
  start-page: 265
  year: 2017
  ident: 17566_CR1
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 7
  start-page: 69
  year: 1995
  ident: 17566_CR6
  publication-title: J. Phys.
– volume: 349
  start-page: 283
  year: 2015
  ident: 17566_CR26
  publication-title: Science
  doi: 10.1126/science.aaa1442
– volume: 360
  start-page: 1218
  year: 2018
  ident: 17566_CR3
  publication-title: Science
  doi: 10.1126/science.aar3617
– volume: 3
  start-page: 031012
  year: 2016
  ident: 17566_CR18
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/3/031012
– volume: 112
  start-page: 072405
  year: 2018
  ident: 17566_CR10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019286
– volume: 120
  start-page: 083903
  year: 2016
  ident: 17566_CR35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4961592
– volume: 12
  start-page: 555
  year: 2016
  ident: 17566_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3671
– volume: 5
  year: 2014
  ident: 17566_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5875
– volume: 17
  start-page: 778
  year: 2018
  ident: 17566_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 3
  start-page: e1603113
  year: 2017
  ident: 17566_CR20
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 17
  start-page: 3877
  year: 2017
  ident: 17566_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01393
– volume: 14
  start-page: 871
  year: 2015
  ident: 17566_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4360
– volume: 6
  start-page: 041020
  year: 2016
  ident: 17566_CR17
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 899
  year: 2013
  ident: 17566_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.243
– volume: 12
  start-page: 5802
  year: 2016
  ident: 17566_CR31
  publication-title: Small
  doi: 10.1002/smll.201601207
– volume: 100
  start-page: 57002
  year: 2012
  ident: 17566_CR37
  publication-title: EPL
  doi: 10.1209/0295-5075/100/57002
SSID ssj0000391844
Score 2.7052176
Snippet The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as...
Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3860
SubjectTerms 639/301/1005/1007
639/766/1130/2798
639/766/119/1001
Coupling
Electromagnetism
Electronic and spintronic devices
Electronic devices
Energy
ENGINEERING
Flux density
Hall effect
Heterostructures
Humanities and Social Sciences
Hypothetical particles
Image transmission
Information storage
Magnetic domains
multidisciplinary
Particle theory
Phase transitions
Physics
Science
Science (multidisciplinary)
Spintronics
Thin films
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFL2U0EI3oU_qTBpU6K41Y1vvZVM67WroIiXZCVsPMjTYYWYSkk_qd-THciV7pnGg6SYrG0tG8n1I50ryuQAfq5o1PqB_80LYnFVVyHWj6tyy4MqicE5YlpJNyPlcnZzon3dSfcUzYT09cC-4KRON08IpqSNZXbC6dBZRuOa8UTKkFNZVIfWdYCqNwVRj6MKGv2QKqqYrlsaEGC3hjClEfjWaiRJhP146dKwR2Lx_VPLefmmahmYvYHfAj-RL3--X8MS3r-BZn1Hy-jUczm_--LM8LqyS1e9r1GLXkkVLjo98NZ15-t3jDUH0TJxfkuMajY-cxhMxXU8ke7H0b-DX7NvR1x_5kCYht5yxdS7rMqiyFkog-Ak4aAgpg0PlBF4GwUPpuVMFSotz22juiqBs03hlGQZPTaD0Ley0XevfAQnKq4pSgbBAs-BtTR3nGKE4hGk1YokMyo3IjB04xGMqizOT9rKpMr2YDYrZJDGbqww-bd857xk0Hqx9GDWxrRnZr9MDtAkz2IT5n01kMIl6NAgiIhOujUeG7BqbUJEdP4P9jXrN4LArg0hFU44jHn7jh20xulrcP6lb3130daTEkA_ryJFZjLo7LmkXp4m0O26IlpXI4PPGgP42_m9x7D2GOCbwvIp2n1ak92EH7cm_h6f2cr1YLQ-S49wCe_cZkA
  priority: 102
  providerName: Directory of Open Access Journals
Title Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure
URI https://link.springer.com/article/10.1038/s41467-020-17566-x
https://www.proquest.com/docview/2429350302
https://www.proquest.com/docview/2429779602
https://www.osti.gov/servlets/purl/1784965
https://pubmed.ncbi.nlm.nih.gov/PMC7395126
https://doaj.org/article/46bd96d8790342fc91dc862955b87f14
Volume 11
WOSCitedRecordID wos000560400500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFH6iLUhc2BFuS2QkbmDFy2w-IYIa4EBkoaIGLiN7ljaists4Re1P4nfwx3gzdlK5Er1wsS3PWF7eMm_z9wBepyWpjEX5pjFTEUlTG-WVKCNFrE7iWGumiG82wWczMZ_nRR9wa_uyyrVO9IpaN8rFyMe4lOQZRZZM352dR65rlMuu9i00tmDHoSSkvnSv2MRYHPq5IKT_VybOxLglXjM4nwnXTcaiy8F65GH7cdegeA1MzpsFkzeypn4xmj7839d4BA96MzR83_HNY7hj6idwr2tMeYVHvjBUtU9hMvvz25xGLlIbtj-vkC2aOlzU4dGhScdTk300eBCiOR5qswyPSuTm8MSV2DQdMu3F0jyDb9ODww-for7vQqQoIauIl4kVSckEQ2vKohZinFuN1LY0sYzaxFAt4go9HaqqnOrYClVVRiiC3lhls-w5bNdNbV5AaIURaZYxtDNyYo0qM00pujwa7b4SjZMAkvXXl6oHJXe9MU6lT45nQnYUk0gx6SkmLwN4s7nmrIPkuHX2xBF1M9PBafsTzfJY9tIpCat0zrTguUNEtCpPtEJXL6cU39ImJIA9xxISrRIHratcDZJa4S2Eg9sPYH9Na9lrgFZeEzqAV5thlF2XkClr01x0czhHHxLn8AGHDR53OFIvTjwKuMuwJikL4O2aF69v_u_PsXv7s-7B_dQJhw9e78M2cop5CXfVr9WiXY5gi8-534oR7EwOZsXXkQ9ijLzc4bagP3Ck-Pyl-P4XA1AyWw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceCNCCwQJThBtHrbjHBCiwNJV29UeFrWc3MQPuqJKymYL3Z_EhT_BH2PsJFttJXrrgVOsxFFi-5vxvDwD8CLOSaEN0jcNmQxIHJsgK3geSGJUFIZKMUlcsYl0NOIHB9l4DX53Z2FsWGXHEx2jVpW0NvI-biVZQhGS8duT74GtGmW9q10JjQYWO3rxE1W2-s3wA67vyzgefJy83w7aqgKBpITMgzSPDI9yxhnKCgZpjKWpUTgWQyPDqIk0VTwsUI6nssioCg2XRaG5JKhrFMYaQJHlrxML9h6sj4d74y9Lq47Nt84JaU_nhAnv18TxIqul4U7NWHC2sgO6QgF4qZCgV4TciyGaF_y0bvsb3P7fJu4O3GoFbf9dQxl3YU2X9-B6U3pzgS0X-irr-7A1-vNLHwfWFu3X3xYI_Kr0p6W_P9Fxf6CTTxobPiocvtIzfz9HevWPbBBR1eTePZ3pB_D5SobyEHplVepH4BuueZwkDCWpjBgt80RRikqdQsk2R_HLg6hbbSHbtOu2-sexcO7_hIsGIQIRIhxCxJkHr5bvnDRJRy7tvWVBtOxpE4a7G9Xsq2j5jyCsUBlTPM1szkcjs0hJVGYzSnGUJiIebFgICpS7bPJgaaOs5Bw_wW1BAQ82O2yJlsfV4hxYHjxfPkbuZF1Oeamr06ZPmqKWjH3SFUSv_O7qk3J65PKcWx9yFDMPXnfYP__4v6fj8eX_-gxubE_2dsXucLSzATdjS5jOVL8JPUSNfgLX5I_5tJ49bWnbh8Orpoq_z8aLBw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuvBGhBYIEJ4g2cWzHOSBEKQtV0WoPRa24uIkfdNUqaTdb6P4k_gJX_hhjJ9lqK9FbD5wSJY4SO983nhmPZwBekoKWxiK_WcxVRAmxUV6KIlLU6iSOteaK-mIT2Wgk9vby8Qr87vfCuLDKXiZ6Qa1r5XzkA5xK8pQhJMnAdmER483hu-OTyFWQciutfTmNFiLbZv4Tzbfm7dYm_utXhAw_7nz4HHUVBiLFKJ1FWZFYkRRccNQbLPKNZ5nV2C_LEsuZTQzTIi5Rp2eqzJmOrVBlaYSiaHeU1jlDUfxfy9DGdOGEY_Zt4d9xmdcFpd0-nTgVg4Z6qeTsNZyzOY_OluZCXzIADzVSe0ndvRiseWHF1k-Ewzv_8xDehdud-h2-b_lyD1ZMdR9utAU553jmA2JV8wA2Rn9-maPIeajD5nCOdKircFKFuzuGDIYm_WTwJEQzJNRmGu4WyOLwwIUW1W1G3tOpeQhfr6Qrj2C1qivzGEIrjCBpylG_yqk1qkg1Y2jqadR3C1TKAkj6Py9Vl4zd1QQ5kj4oIBWyRYtEtEiPFnkWwOvFM8dtKpJLW284QC1aujTi_kI9_S47qSQpL3XOtchylwnSqjzRCk3cnDHspU1oAGsOjhK1MZdSWLnYKzXDVwhXZiCA9R5nspN8jTwHWQAvFrdRZrmFqKIy9WnbJsvQdsY22RK6lz53-U41OfDZz93KckJ4AG96Hpy__N_D8eTyb30ON5EK8svWaHsNbhHHUe-_X4dVBI15CtfVj9mkmT7zJA9h_6op8RcNY5Jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N%C3%A9el-type+skyrmion+in+WTe2%2FFe3GeTe2+van+der+Waals+heterostructure&rft.jtitle=Nature+communications&rft.au=Wu%2C+Yingying&rft.au=Zhang%2C+Senfu&rft.au=Zhang%2C+Junwei&rft.au=Wang%2C+Wei&rft.date=2020-07-31&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-17566-x&rft_id=info%3Apmid%2F32737289&rft.externalDocID=PMC7395126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon