Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals ma...
Uloženo v:
| Vydáno v: | Nature communications Ročník 11; číslo 1; s. 3860 - 6 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
31.07.2020
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe
2
/Fe
3
GeTe
2
interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m
−2
. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.
Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe
2
/Fe
3
GeTe
2
van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm
−2
. |
|---|---|
| AbstractList | The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m−2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2. The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m−2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2. The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe 2 /Fe 3 GeTe 2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm −2 . The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m–2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ m-2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures.The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Néel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ m-2. This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors report the formation of skyrmion lattice in the WTe2/Fe3GeTe2 van der Waals heterostructure and a Dzyaloshinskii–Moriya interaction with a large energy density of 1.0 mJm−2. |
| ArticleNumber | 3860 |
| Author | Mao, Zhiqiang Zhang, Xixiang Taniguchi, Takashi Wang, Wei Wu, Yingying Fang, Chi Shao, Qiming Zang, Jiadong Hu, Jin Wan, Caihua Zhu, Yang Lin Zhang, Senfu Han, Xiufeng Zhang, Junwei Yin, Gen Watanabe, Kenji Wong, Kin Wang, Kang L. |
| Author_xml | – sequence: 1 givenname: Yingying surname: Wu fullname: Wu, Yingying organization: Department of Electrical and Computer Engineering, University of California—Los Angeles – sequence: 2 givenname: Senfu orcidid: 0000-0002-8752-4194 surname: Zhang fullname: Zhang, Senfu organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology – sequence: 3 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei organization: Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University – sequence: 5 givenname: Yang Lin surname: Zhu fullname: Zhu, Yang Lin organization: Department of Physics, Pennsylvania State University – sequence: 6 givenname: Jin orcidid: 0000-0003-0080-4239 surname: Hu fullname: Hu, Jin organization: Department of Physics, University of Arkansas – sequence: 7 givenname: Gen orcidid: 0000-0001-5827-5101 surname: Yin fullname: Yin, Gen organization: Department of Electrical and Computer Engineering, University of California—Los Angeles – sequence: 8 givenname: Kin orcidid: 0000-0001-6776-3852 surname: Wong fullname: Wong, Kin organization: Department of Electrical and Computer Engineering, University of California—Los Angeles – sequence: 9 givenname: Chi surname: Fang fullname: Fang, Chi organization: Institute of Physics, Chinese Academy of Sciences – sequence: 10 givenname: Caihua surname: Wan fullname: Wan, Caihua organization: Institute of Physics, Chinese Academy of Sciences – sequence: 11 givenname: Xiufeng orcidid: 0000-0001-8053-793X surname: Han fullname: Han, Xiufeng organization: Institute of Physics, Chinese Academy of Sciences – sequence: 12 givenname: Qiming surname: Shao fullname: Shao, Qiming organization: Department of Electrical and Computer Engineering, University of California—Los Angeles – sequence: 13 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science – sequence: 14 givenname: Kenji surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science – sequence: 15 givenname: Jiadong surname: Zang fullname: Zang, Jiadong organization: Department of Physics and Astronomy, University of New Hampshire – sequence: 16 givenname: Zhiqiang orcidid: 0000-0002-4920-3293 surname: Mao fullname: Mao, Zhiqiang organization: Department of Physics, Pennsylvania State University – sequence: 17 givenname: Xixiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xixiang organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology – sequence: 18 givenname: Kang L. orcidid: 0000-0002-9363-1279 surname: Wang fullname: Wang, Kang L. email: wang@ee.ucla.edu organization: Department of Electrical and Computer Engineering, University of California—Los Angeles |
| BackLink | https://www.osti.gov/servlets/purl/1784965$$D View this record in Osti.gov |
| BookMark | eNp9UstuFDEQHKEg8iA_wGkEFy5D_H5ckEhEQqQILkE5Wh5Pe3eWWc9ie6LsJ_Ed_FjMTgQkh_jidruqut2uw2ovjAGq6g1GHzCi6iQxzIRsEEENllyI5u5FdUAQw-VI6N5_8X51nNIKlUU1Voy9qvYpkVQSpQ-q06-_f8HQ5O0G6vRjG9f9GOo-1DfXQE7OgV5ACepbG-oOYn1j7ZDqJWSIY8pxcnmK8Lp66Usajh_2o-r7-efrsy_N1beLy7NPV43jjOVGWuwVtkIJjplXSgopfQcteI694B4D7xRqleTctZp3yCvXtqAcE1i3ntKj6nLW7Ua7MpvYr23cmtH2ZpcY48LYmHs3gGGi7bTolNSIMuKdxp1TgmjOi77HrGh9nLU2U7uGzkHI0Q6PRB_fhH5pFuOtkVRzTEQReDsLlDn0Jrk-g1u6MQRw2WCpmBa8gN4_VInjzwlSNus-ORgGG2CckiGMaCm1QKRA3z2BrsYphjLPHYpyRHcoMqNcmX-K4P92jJH5Ywsz28IUW5idLcxdIaknpNKtzeWjy8v64Xkqnamp1AkLiP-6eoZ1D8RgzCE |
| CitedBy_id | crossref_primary_10_1021_acsnano_5c10466 crossref_primary_10_1103_RevModPhys_96_015005 crossref_primary_10_1038_s41467_022_30740_7 crossref_primary_10_1016_j_isci_2023_106311 crossref_primary_10_1038_s41467_022_33016_2 crossref_primary_10_1088_0256_307X_40_11_117501 crossref_primary_10_1002_adfm_202308560 crossref_primary_10_1038_s41467_022_31319_y crossref_primary_10_1038_s41467_024_48893_y crossref_primary_10_1016_j_pmatsci_2022_100971 crossref_primary_10_1103_PhysRevB_103_104410 crossref_primary_10_3390_jlpea15020016 crossref_primary_10_1063_5_0007517 crossref_primary_10_1002_advs_202207617 crossref_primary_10_1038_s41565_021_00936_x crossref_primary_10_1088_1674_1056_abd693 crossref_primary_10_3390_coatings12081152 crossref_primary_10_1016_j_jmmm_2023_170819 crossref_primary_10_1002_adma_202204163 crossref_primary_10_1016_j_mattod_2022_04_011 crossref_primary_10_1063_5_0020701 crossref_primary_10_1016_j_mattod_2025_06_022 crossref_primary_10_1088_1361_648X_ad24bd crossref_primary_10_1016_j_mtchem_2025_103049 crossref_primary_10_1063_5_0031870 crossref_primary_10_1002_adfm_202406444 crossref_primary_10_1103_PhysRevB_105_174422 crossref_primary_10_1103_vqb7_vz11 crossref_primary_10_1038_s41699_024_00499_0 crossref_primary_10_1039_D0NR06449A crossref_primary_10_1016_j_matt_2022_11_017 crossref_primary_10_1039_D2NR04820E crossref_primary_10_1016_j_cpc_2024_109283 crossref_primary_10_1021_acs_nanolett_5c03346 crossref_primary_10_1038_s41467_024_47715_5 crossref_primary_10_1103_PhysRevB_107_024402 crossref_primary_10_1038_s41467_022_30738_1 crossref_primary_10_1088_1361_648X_ac8f08 crossref_primary_10_1016_j_nantod_2021_101338 crossref_primary_10_1016_j_solidstatesciences_2025_108044 crossref_primary_10_1038_s41699_020_00167_z crossref_primary_10_1002_aelm_202300738 crossref_primary_10_1002_adma_202101730 crossref_primary_10_1109_TMAG_2024_3458401 crossref_primary_10_1063_5_0200642 crossref_primary_10_1063_5_0250741 crossref_primary_10_1002_adma_202410816 crossref_primary_10_1063_5_0030607 crossref_primary_10_1063_5_0173456 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1088_2053_1583_acfb1f crossref_primary_10_1016_j_jallcom_2022_166956 crossref_primary_10_1063_5_0054025 crossref_primary_10_1103_PhysRevMaterials_5_064413 crossref_primary_10_1016_j_physleta_2022_128326 crossref_primary_10_1103_PhysRevB_108_174433 crossref_primary_10_1002_advs_202200186 crossref_primary_10_1088_1361_6463_ad4bf2 crossref_primary_10_1016_j_jssc_2023_124015 crossref_primary_10_1103_PhysRevB_111_014442 crossref_primary_10_1063_5_0263946 crossref_primary_10_1063_5_0130037 crossref_primary_10_1002_adma_202205967 crossref_primary_10_1038_s41586_024_07858_3 crossref_primary_10_1103_PhysRevB_106_L220401 crossref_primary_10_1134_S0021364022100101 crossref_primary_10_1038_s41427_022_00418_z crossref_primary_10_1103_PhysRevB_111_054423 crossref_primary_10_1063_5_0231129 crossref_primary_10_1088_2053_1583_ad1c6d crossref_primary_10_1016_j_comptc_2023_114165 crossref_primary_10_1109_TMAG_2024_3426954 crossref_primary_10_1016_j_mattod_2021_09_015 crossref_primary_10_1002_adma_202420168 crossref_primary_10_1039_D1NR06835K crossref_primary_10_1002_adma_202411459 crossref_primary_10_1002_admi_202300188 crossref_primary_10_1073_pnas_2122952119 crossref_primary_10_1016_j_mtphys_2025_101727 crossref_primary_10_1002_adfm_202509453 crossref_primary_10_1021_acs_nanolett_5c03547 crossref_primary_10_1016_j_nanoen_2025_111350 crossref_primary_10_1002_adma_202311591 crossref_primary_10_1088_2633_4356_adb474 crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1039_D4NR01577K crossref_primary_10_1063_5_0069885 crossref_primary_10_1103_qkqn_lfzk crossref_primary_10_1002_adfm_202302984 crossref_primary_10_1063_5_0268615 crossref_primary_10_1002_sstr_202200064 crossref_primary_10_1063_5_0247817 crossref_primary_10_1002_aelm_202200164 crossref_primary_10_1002_advs_202303443 crossref_primary_10_1088_2053_1583_ac34d9 crossref_primary_10_1103_PhysRevB_104_224425 crossref_primary_10_1002_admi_202100515 crossref_primary_10_1007_s12598_021_01908_9 crossref_primary_10_1002_adma_202311022 crossref_primary_10_1063_5_0039069 crossref_primary_10_1038_d41586_024_02944_y crossref_primary_10_1088_1361_6528_abe32b crossref_primary_10_3389_fmats_2020_594771 crossref_primary_10_1002_adma_202108637 crossref_primary_10_1021_acsami_5c04834 crossref_primary_10_1088_1742_6596_2086_1_012165 crossref_primary_10_1002_adma_202311949 crossref_primary_10_1002_inf2_70064 crossref_primary_10_1038_s41467_021_22239_4 crossref_primary_10_1103_PhysRevLett_134_116702 crossref_primary_10_1038_s44306_024_00011_w crossref_primary_10_1088_0256_307X_40_1_017501 crossref_primary_10_1007_s11467_022_1217_7 crossref_primary_10_1063_5_0236903 crossref_primary_10_1103_PhysRevApplied_19_014012 crossref_primary_10_1002_adma_202107779 crossref_primary_10_1002_adfm_202425483 crossref_primary_10_1063_5_0052952 crossref_primary_10_1088_1361_6463_ac18eb crossref_primary_10_1007_s11837_022_05299_9 crossref_primary_10_1002_adma_202105266 crossref_primary_10_1002_adma_202306920 crossref_primary_10_1088_2053_1583_ad1a6b crossref_primary_10_1088_1674_1056_adcdf2 crossref_primary_10_1038_s41598_024_79386_z crossref_primary_10_1002_adma_202312013 crossref_primary_10_1007_s12598_025_03478_6 crossref_primary_10_1103_PhysRevResearch_6_L032008 crossref_primary_10_1002_adma_202312935 crossref_primary_10_1063_5_0235491 crossref_primary_10_1002_advs_202401048 crossref_primary_10_1021_acsnano_5c08312 crossref_primary_10_1016_j_scib_2024_04_005 crossref_primary_10_1093_nsr_nwz205 crossref_primary_10_1002_advs_202202467 crossref_primary_10_1088_1361_6528_ac2f59 crossref_primary_10_1002_adma_202106909 crossref_primary_10_1039_D4MH00734D crossref_primary_10_1063_5_0205298 crossref_primary_10_1007_s12274_021_3826_9 crossref_primary_10_1002_adma_202305044 crossref_primary_10_1016_j_mtelec_2023_100060 crossref_primary_10_1146_annurev_conmatphys_031620_110344 crossref_primary_10_1063_5_0187341 crossref_primary_10_1063_5_0223004 crossref_primary_10_1063_5_0089999 crossref_primary_10_1002_adfm_202105992 crossref_primary_10_1002_adfm_202419782 crossref_primary_10_1002_adma_202201880 crossref_primary_10_1002_advs_202409210 crossref_primary_10_1103_PhysRevB_108_134425 crossref_primary_10_1103_PhysRevResearch_3_013027 crossref_primary_10_1002_adma_202506279 crossref_primary_10_1063_5_0095875 crossref_primary_10_1063_5_0103076 crossref_primary_10_1038_s41598_021_93402_6 crossref_primary_10_1088_1361_6528_ad6fa2 crossref_primary_10_1063_5_0051394 crossref_primary_10_1002_adma_202110583 crossref_primary_10_1038_s42005_022_00972_6 crossref_primary_10_1002_adfm_202103583 crossref_primary_10_1002_smsc_202500028 crossref_primary_10_3389_fphy_2020_587419 crossref_primary_10_1088_1367_2630_ac6c45 crossref_primary_10_1016_j_revip_2025_100111 crossref_primary_10_1002_adma_202501250 crossref_primary_10_1016_j_jmmm_2025_172919 crossref_primary_10_1103_PhysRevB_106_L180409 crossref_primary_10_1103_PhysRevMaterials_6_044403 crossref_primary_10_3390_nano13050859 crossref_primary_10_1103_469v_x4cm crossref_primary_10_1088_2053_1583_acd2e9 crossref_primary_10_1103_PhysRevResearch_4_023256 crossref_primary_10_1109_ACCESS_2024_3509030 crossref_primary_10_1002_adma_202212087 crossref_primary_10_1088_1361_6463_acb801 crossref_primary_10_1038_s41467_024_48799_9 crossref_primary_10_1063_5_0139283 crossref_primary_10_1002_idm2_12072 crossref_primary_10_1063_1_5143323 crossref_primary_10_7566_JPSJ_92_081001 crossref_primary_10_1103_PhysRevResearch_4_033053 crossref_primary_10_1080_21663831_2022_2119108 crossref_primary_10_1063_5_0091931 crossref_primary_10_1002_adfm_202104452 crossref_primary_10_1016_j_apsusc_2023_159057 crossref_primary_10_1016_j_mattod_2023_11_008 crossref_primary_10_1038_s44306_024_00015_6 crossref_primary_10_1002_adma_202209346 crossref_primary_10_1002_adma_202208930 crossref_primary_10_1016_j_pquantelec_2025_100564 crossref_primary_10_1063_5_0097008 crossref_primary_10_1016_j_jmmm_2025_173353 crossref_primary_10_1103_PhysRevB_111_144425 crossref_primary_10_1039_D1NR06266B |
| Cites_doi | 10.1038/nphys3671 10.1021/jp952188s 10.1038/nmat4593 10.1038/nature22060 10.1021/acs.nanolett.8b02806 10.1021/acs.nanolett.7b01393 10.1063/1.5019286 10.1038/nnano.2013.243 10.1103/PhysRevLett.119.176809 10.1038/s41586-018-0626-9 10.1103/PhysRevB.99.115441 10.1038/s41565-018-0135-x 10.1021/acs.nanolett.8b01105 10.1126/sciadv.1603113 10.1016/j.physrep.2017.08.001 10.1038/s41563-018-0079-4 10.1038/s41563-018-0132-3 10.1002/smll.201601207 10.1063/1.4961592 10.1126/science.aaa1442 10.7567/1347-4065/aaf222 10.1209/0295-5075/100/57002 10.1126/science.aar3617 10.1038/s42005-018-0040-5 10.1038/nmat4360 10.1038/s41467-018-04953-8 10.1088/2053-1583/3/3/031012 10.1126/science.aar4851 10.1103/PhysRevMaterials.3.031001 10.1038/s41563-018-0149-7 10.1103/PhysRevLett.120.106802 10.1038/nature22391 10.1038/ncomms5875 10.1103/PhysRevB.88.085433 10.1088/1361-6528/ab0a37 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Univ. of New Hampshire, Durham, NH (United States) Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES) Pennsylvania State Univ., University Park, PA (United States) |
| CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES) – name: Pennsylvania State Univ., University Park, PA (United States) – name: Univ. of New Hampshire, Durham, NH (United States) |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
| DOI | 10.1038/s41467-020-17566-x |
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics Engineering |
| EISSN | 2041-1723 |
| EndPage | 6 |
| ExternalDocumentID | oai_doaj_org_article_46bd96d8790342fc91dc862955b87f14 PMC7395126 1784965 10_1038_s41467_020_17566_x |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM |
| ID | FETCH-LOGICAL-c544t-7a1f81a686514f887677fdebef51f65f1e5d80b8755cb95d0f8cbbe8c4619bf33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 305 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560400500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:37:44 EDT 2025 Tue Nov 04 01:52:10 EST 2025 Thu May 18 22:22:15 EDT 2023 Sun Nov 09 10:18:34 EST 2025 Tue Oct 07 06:36:53 EDT 2025 Sat Nov 29 06:20:27 EST 2025 Tue Nov 18 22:26:23 EST 2025 Fri Feb 21 02:40:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c544t-7a1f81a686514f887677fdebef51f65f1e5d80b8755cb95d0f8cbbe8c4619bf33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0020221; SC0019068; W911NF-15-1-10561; 1935362; 1909416; SC0012670; OSR-2016-CRG5-2977 National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division US Army Research Office (ARO) |
| ORCID | 0000-0001-8053-793X 0000-0002-9363-1279 0000-0003-0080-4239 0000-0002-3478-6414 0000-0002-8752-4194 0000-0001-6776-3852 0000-0002-4920-3293 0000-0001-5827-5101 0000000167763852 0000000287524194 0000000293631279 000000018053793X 0000000249203293 0000000300804239 0000000158275101 0000000234786414 |
| OpenAccessLink | https://www.proquest.com/docview/2429350302?pq-origsite=%requestingapplication% |
| PMID | 32737289 |
| PQID | 2429350302 |
| PQPubID | 546298 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_46bd96d8790342fc91dc862955b87f14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7395126 osti_scitechconnect_1784965 proquest_miscellaneous_2429779602 proquest_journals_2429350302 crossref_primary_10_1038_s41467_020_17566_x crossref_citationtrail_10_1038_s41467_020_17566_x springer_journals_10_1038_s41467_020_17566_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-31 |
| PublicationDateYYYYMMDD | 2020-07-31 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Jiang, Li, Wang, Mak, Shan (CR8) 2018; 13 Woo (CR27) 2016; 15 Jiang (CR26) 2015; 349 Yasuda (CR29) 2016; 12 Deng (CR11) 2018; 563 Yang (CR24) 2018; 17 CR36 Zhong (CR20) 2017; 3 Song (CR4) 2018; 360 Lin (CR10) 2018; 112 Seyler (CR21) 2018; 18 Carteaux, Brunet, Ouvrard, Andre (CR6) 1995; 7 Liu, Shan, Yao, Yao, Xiao (CR32) 2013; 88 Kim (CR13) 2018; 17 Xie, Jia, Shi, Yang, Si (CR23) 2018; 58 Fei (CR12) 2018; 17 Wang (CR17) 2016; 6 Yang (CR18) 2016; 3 Nagaosa, Tokura (CR28) 2013; 8 Li (CR14) 2018; 18 Avsar (CR19) 2014; 5 Wang (CR9) 2018; 9 Huang (CR2) 2017; 546 Luo (CR15) 2017; 17 Manchon, Koo, Nitta, Frolov, Duine (CR25) 2015; 14 Siberchicot, Jobic, Carteaux, Gressier, Ouvrard (CR5) 1996; 100 Gong (CR1) 2017; 546 Liu (CR30) 2017; 119 Zhang, Zhang, Wen, Chudnovsky, Zhang (CR34) 2018; 1 Jiang (CR33) 2017; 704 Ye (CR31) 2016; 12 León-Brito, Bauer, Ronning, Thompson, Movshovich (CR35) 2016; 120 Zhang, Ni, Huang, Hu, Liu (CR22) 2019; 99 Klein (CR3) 2018; 360 Jang, Jeong, Yoon, Ryee, Han (CR7) 2019; 3 Wakamura (CR16) 2018; 120 Thiaville, Rohart, Jué, Cros, Fert (CR37) 2012; 100 S Woo (17566_CR27) 2016; 15 Z Wang (17566_CR9) 2018; 9 Z Zhang (17566_CR22) 2019; 99 A Thiaville (17566_CR37) 2012; 100 H Yang (17566_CR24) 2018; 17 G-B Liu (17566_CR32) 2013; 88 K Yasuda (17566_CR29) 2016; 12 W Jiang (17566_CR33) 2017; 704 B Huang (17566_CR2) 2017; 546 K Kim (17566_CR13) 2018; 17 C Liu (17566_CR30) 2017; 119 Z Wang (17566_CR17) 2016; 6 S Zhang (17566_CR34) 2018; 1 A Manchon (17566_CR25) 2015; 14 DR Klein (17566_CR3) 2018; 360 S Jiang (17566_CR8) 2018; 13 T Song (17566_CR4) 2018; 360 T Wakamura (17566_CR16) 2018; 120 Y Deng (17566_CR11) 2018; 563 G Lin (17566_CR10) 2018; 112 B Yang (17566_CR18) 2016; 3 N Nagaosa (17566_CR28) 2013; 8 Z Fei (17566_CR12) 2018; 17 SW Jang (17566_CR7) 2019; 3 W Jiang (17566_CR26) 2015; 349 YK Luo (17566_CR15) 2017; 17 V Carteaux (17566_CR6) 1995; 7 KL Seyler (17566_CR21) 2018; 18 17566_CR36 C Gong (17566_CR1) 2017; 546 A Avsar (17566_CR19) 2014; 5 D Zhong (17566_CR20) 2017; 3 J Xie (17566_CR23) 2018; 58 Q Li (17566_CR14) 2018; 18 B Siberchicot (17566_CR5) 1996; 100 F Ye (17566_CR31) 2016; 12 N León-Brito (17566_CR35) 2016; 120 |
| References_xml | – volume: 12 start-page: 555 year: 2016 ident: CR29 article-title: Geometric hall effects in topological insulator heterostructures publication-title: Nat. Phys. doi: 10.1038/nphys3671 – volume: 100 start-page: 5863 year: 1996 end-page: 5867 ident: CR5 article-title: Band structure calculations of ferromagnetic chromium tellurides CrSiTe and CrGeTe publication-title: J. Phys. Chem. doi: 10.1021/jp952188s – volume: 15 start-page: 501 year: 2016 ident: CR27 article-title: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets publication-title: Nat. Mater. doi: 10.1038/nmat4593 – volume: 546 start-page: 265 year: 2017 ident: CR1 article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals publication-title: Nature doi: 10.1038/nature22060 – volume: 18 start-page: 5974 year: 2018 end-page: 5980 ident: CR14 article-title: Patterning-induced ferromagnetism of Fe GeTe van der Waals materials beyond room temperature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02806 – volume: 17 start-page: 3877 year: 2017 end-page: 3883 ident: CR15 article-title: Opto-valleytronic spin injection in monolayer MoS /few-layer graphene hybrid spin valves publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01393 – volume: 112 start-page: 072405 year: 2018 ident: CR10 article-title: Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI publication-title: Appl. Phys. Lett. doi: 10.1063/1.5019286 – volume: 8 start-page: 899 year: 2013 ident: CR28 article-title: Topological properties and dynamics of magnetic skyrmions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.243 – volume: 119 start-page: 176809 year: 2017 ident: CR30 article-title: Dimensional crossover-induced topological hall effect in a magnetic topological insulator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.176809 – volume: 563 start-page: 94 year: 2018 ident: CR11 article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 99 start-page: 115441 year: 2019 ident: CR22 article-title: Valley splitting in the van der Waals heterostructure WSe /CrI : the role of atom superposition publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.115441 – volume: 13 start-page: 549 year: 2018 end-page: 553 ident: CR8 article-title: Controlling magnetism in 2D CrI by electrostatic doping publication-title: Nat. Nanotechnol doi: 10.1038/s41565-018-0135-x – volume: 18 start-page: 3823 year: 2018 end-page: 3828 ident: CR21 article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01105 – volume: 3 start-page: e1603113 year: 2017 ident: CR20 article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 704 start-page: 1 year: 2017 end-page: 49 ident: CR33 article-title: Skyrmions in magnetic multilayers publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.001 – volume: 6 start-page: 041020 year: 2016 ident: CR17 article-title: Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides publication-title: Phys. Rev. X – volume: 17 start-page: 605 year: 2018 ident: CR24 article-title: Significant Dzyaloshinskii-Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect publication-title: Nat. Mater. doi: 10.1038/s41563-018-0079-4 – volume: 17 start-page: 794 year: 2018 ident: CR13 article-title: Large anomalous hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal publication-title: Nat. Mater. doi: 10.1038/s41563-018-0132-3 – volume: 12 start-page: 5802 year: 2016 end-page: 5808 ident: CR31 article-title: Environmental instability and degradation of single-and few-layer WTe nanosheets in ambient conditions publication-title: Small doi: 10.1002/smll.201601207 – volume: 120 start-page: 083903 year: 2016 ident: CR35 article-title: Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe GeTe publication-title: J. Appl. Phys. doi: 10.1063/1.4961592 – volume: 349 start-page: 283 year: 2015 end-page: 286 ident: CR26 article-title: Blowing magnetic skyrmion bubbles publication-title: Science doi: 10.1126/science.aaa1442 – volume: 58 start-page: 010906 year: 2018 ident: CR23 article-title: Electric field mediated large valley splitting in the van der Waals heterostructure WSe /CrI publication-title: Jpn J. Appl. Phys. doi: 10.7567/1347-4065/aaf222 – volume: 100 start-page: 57002 year: 2012 ident: CR37 article-title: Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films publication-title: EPL doi: 10.1209/0295-5075/100/57002 – volume: 360 start-page: 1218 year: 2018 end-page: 1222 ident: CR3 article-title: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling publication-title: Science doi: 10.1126/science.aar3617 – volume: 7 start-page: 69 year: 1995 ident: CR6 article-title: Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr Ge Te publication-title: J. Phys. – volume: 1 start-page: 36 year: 2018 ident: CR34 article-title: Determination of chirality and density control of Néel-type skyrmions with in-plane magnetic field publication-title: Commun. Phys. doi: 10.1038/s42005-018-0040-5 – ident: CR36 – volume: 14 start-page: 871 year: 2015 ident: CR25 article-title: New perspectives for rashba spin–orbit coupling publication-title: Nat. Mater. doi: 10.1038/nmat4360 – volume: 9 year: 2018 ident: CR9 article-title: Very large tunneling magnetoresistance in layered magnetic semiconductor CrI publication-title: Nat. Commun. doi: 10.1038/s41467-018-04953-8 – volume: 3 start-page: 031012 year: 2016 ident: CR18 article-title: Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS publication-title: 2D Mater. doi: 10.1088/2053-1583/3/3/031012 – volume: 360 start-page: 1214 year: 2018 end-page: 1218 ident: CR4 article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures publication-title: Science doi: 10.1126/science.aar4851 – volume: 3 start-page: 031001 year: 2019 ident: CR7 article-title: Microscopic understanding of magnetic interactions in bilayer CrI publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.031001 – volume: 17 start-page: 778 year: 2018 ident: CR12 article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 120 start-page: 106802 year: 2018 ident: CR16 article-title: Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.106802 – volume: 546 start-page: 270 year: 2017 ident: CR2 article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit publication-title: Nature doi: 10.1038/nature22391 – volume: 5 year: 2014 ident: CR19 article-title: Spin-orbit proximity effect in graphene publication-title: Nat. Commun. doi: 10.1038/ncomms5875 – volume: 88 start-page: 085433 year: 2013 ident: CR32 article-title: Three-band tight-binding model for monolayers of group-vib transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085433 – volume: 563 start-page: 94 year: 2018 ident: 17566_CR11 publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 9 year: 2018 ident: 17566_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04953-8 – volume: 704 start-page: 1 year: 2017 ident: 17566_CR33 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.001 – volume: 17 start-page: 605 year: 2018 ident: 17566_CR24 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0079-4 – volume: 18 start-page: 3823 year: 2018 ident: 17566_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01105 – volume: 58 start-page: 010906 year: 2018 ident: 17566_CR23 publication-title: Jpn J. Appl. Phys. doi: 10.7567/1347-4065/aaf222 – volume: 360 start-page: 1214 year: 2018 ident: 17566_CR4 publication-title: Science doi: 10.1126/science.aar4851 – volume: 546 start-page: 270 year: 2017 ident: 17566_CR2 publication-title: Nature doi: 10.1038/nature22391 – volume: 100 start-page: 5863 year: 1996 ident: 17566_CR5 publication-title: J. Phys. Chem. doi: 10.1021/jp952188s – volume: 119 start-page: 176809 year: 2017 ident: 17566_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.176809 – volume: 99 start-page: 115441 year: 2019 ident: 17566_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.115441 – volume: 15 start-page: 501 year: 2016 ident: 17566_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat4593 – volume: 1 start-page: 36 year: 2018 ident: 17566_CR34 publication-title: Commun. Phys. doi: 10.1038/s42005-018-0040-5 – volume: 13 start-page: 549 year: 2018 ident: 17566_CR8 publication-title: Nat. Nanotechnol doi: 10.1038/s41565-018-0135-x – volume: 120 start-page: 106802 year: 2018 ident: 17566_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.106802 – volume: 88 start-page: 085433 year: 2013 ident: 17566_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085433 – ident: 17566_CR36 doi: 10.1088/1361-6528/ab0a37 – volume: 3 start-page: 031001 year: 2019 ident: 17566_CR7 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.031001 – volume: 18 start-page: 5974 year: 2018 ident: 17566_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02806 – volume: 17 start-page: 794 year: 2018 ident: 17566_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0132-3 – volume: 546 start-page: 265 year: 2017 ident: 17566_CR1 publication-title: Nature doi: 10.1038/nature22060 – volume: 7 start-page: 69 year: 1995 ident: 17566_CR6 publication-title: J. Phys. – volume: 349 start-page: 283 year: 2015 ident: 17566_CR26 publication-title: Science doi: 10.1126/science.aaa1442 – volume: 360 start-page: 1218 year: 2018 ident: 17566_CR3 publication-title: Science doi: 10.1126/science.aar3617 – volume: 3 start-page: 031012 year: 2016 ident: 17566_CR18 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/3/031012 – volume: 112 start-page: 072405 year: 2018 ident: 17566_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5019286 – volume: 120 start-page: 083903 year: 2016 ident: 17566_CR35 publication-title: J. Appl. Phys. doi: 10.1063/1.4961592 – volume: 12 start-page: 555 year: 2016 ident: 17566_CR29 publication-title: Nat. Phys. doi: 10.1038/nphys3671 – volume: 5 year: 2014 ident: 17566_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms5875 – volume: 17 start-page: 778 year: 2018 ident: 17566_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 3 start-page: e1603113 year: 2017 ident: 17566_CR20 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 17 start-page: 3877 year: 2017 ident: 17566_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01393 – volume: 14 start-page: 871 year: 2015 ident: 17566_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat4360 – volume: 6 start-page: 041020 year: 2016 ident: 17566_CR17 publication-title: Phys. Rev. X – volume: 8 start-page: 899 year: 2013 ident: 17566_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.243 – volume: 12 start-page: 5802 year: 2016 ident: 17566_CR31 publication-title: Small doi: 10.1002/smll.201601207 – volume: 100 start-page: 57002 year: 2012 ident: 17566_CR37 publication-title: EPL doi: 10.1209/0295-5075/100/57002 |
| SSID | ssj0000391844 |
| Score | 2.7052176 |
| Snippet | The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as... Strong magnetic interfacial coupling in van der Waals heterostructures provides a new platform for discovering novel physics and effects. Here, the authors... |
| SourceID | doaj pubmedcentral osti proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3860 |
| SubjectTerms | 639/301/1005/1007 639/766/1130/2798 639/766/119/1001 Coupling Electromagnetism Electronic and spintronic devices Electronic devices Energy ENGINEERING Flux density Hall effect Heterostructures Humanities and Social Sciences Hypothetical particles Image transmission Information storage Magnetic domains multidisciplinary Particle theory Phase transitions Physics Science Science (multidisciplinary) Spintronics Thin films Transmission electron microscopy |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiKcILchI3CDaOPHzSBELB7TiUGhvVvxSV1RJtbtF7U_id_DHGDvZpakEXDglip3Ymoc945l8A_DKK8mE8G3ZSoUOinC61NK2pbMRVS-gM5YTZL9-kouFOjnRn6-V-ko5YQM88EC4GRPWa4Gf1AmsLjpNvUMrXHNulYy5hHVdSX3NmcprcKPRdWHjXzJVo2ZrlteE5C3hjilEeTnZiTJgP156VKyJsXkzVfJGvDRvQ_P7cG-0H8nbYd4P4FboHsKdoaLk1SM4XPz8Ec7KdLBK1t-ukIt9R5YdOT4K9Wwemg8Bbwhaz8SHFTluUfjIacqI6Qcg2YtVeAxf5u-P3n0sxzIJpeOMbUrZ0qhoK5RA4yfioiGkjB6ZEzmNgkcauFcVUotzZzX3VVTO2qAcQ-fJxqZ5Antd34WnQJgSikb0ilkVmI3cRuWZRhuBa1ZXgRZAtyQzbsQQT6UszkyOZTfKDGQ2SGaTyWwuC3i9e-d8QND4a-_DxIldz4R-nR-gTJhRJsy_ZKKA_cRHg0ZEQsJ1KWXIbXAIldDxCzjYsteMCrs2aKnohuOKVxfwcteMqpbiJ20X-ouhj5To8mEfORGLyXSnLd3yNIN2p4AorUUBb7YC9HvwP5Pj2f8gxz7crZPc5xPpA9hDeQrP4bb7vlmuVy-y4vwC2FoZBw priority: 102 providerName: Directory of Open Access Journals |
| Title | Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure |
| URI | https://link.springer.com/article/10.1038/s41467-020-17566-x https://www.proquest.com/docview/2429350302 https://www.proquest.com/docview/2429779602 https://www.osti.gov/servlets/purl/1784965 https://pubmed.ncbi.nlm.nih.gov/PMC7395126 https://doaj.org/article/46bd96d8790342fc91dc862955b87f14 |
| Volume | 11 |
| WOSCitedRecordID | wos000560400500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7YVsEX78XYukTwTcPmMtcncaWrgi5Bql19GZLJjF0sSd1spf1J_g7_mGcm2S0p2BdfkpCZkMu5zLnlOwDPK8EJY1URFVygg8K0jCQvi0iXFkXPoDPmC2S_fOCzmZjPZd4H3Nq-rHKtE72irhrtYuRjXEpkRpEl01enPyPXNcplV_sWGluw41ASUl-6l29iLA79XBDS_ysTZ2LcEq8ZnM-E6yZj0flgPfKw_bhrULwGJufVgskrWVO_GE3v_u9r3IM7vRkavu745j7cMPUDuNU1przAI18YqtuHMJn9-W1OIhepDdsfF8gWTR0u6vDo0KTjqcneGjwI0RwPK7MMjwrk5vDYldg0HTLt2dI8gs_Tg8M376K-70KkKSGriBeJFUnBBENryqIWYpzbCqltaWIZtYmhlYhL9HSoLiWtYit0WRqhCXpjpc2yXdium9o8hpAIJhKLbjaJDSktLa2oiESjg0qSxiYJIFl_faV7UHLXG-NE-eR4JlRHMYUUU55i6jyAF5trTjtIjmtnTxxRNzMdnLY_0Sy_q146FWFlJRnyrXSIiFbLpNLo6klK8S1tQgLYcyyh0Cpx0Lra1SDpFd5COLj9APbXtFa9BmjVJaEDeLYZRtl1CZmiNs1ZN4dz9CFxDh9w2OBxhyP14tijgLsMa5KyAF6uefHy5v_-HE-uf9Y9uJ064fDB633YRk4xT-Gm_rVatMsRbPE591sxgp3JwSz_NPJBjJGXO9zm9BuO5O8_5l__AkE0MdI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VKQgu_CNMCxgJTmAldvb3gBAFQqOmUQ6BltNir3dpRGWXuIXmkbjwErwYs2s7VSrRWw-cbNlr2Wt_MzvfzHgG4FkuOGEsT6OUCyQoTMtI8iyNdGZR9AySMZ8g-2nEx2Oxvy8na_C7_RfGpVW2OtEr6rzUzkfexaVE9ilCMnl99D1yXaNcdLVtoVHDYscsfiJlq14N3-H3fZ4kg_fTt9tR01Ug0pSQ44insRVxygRDW8GijDHObY5zsTS2jNrY0Fz0MrTjqc4kzXtW6CwzQhPkGpl1DlBU-evEgb0D65Ph7uTz0qvj6q0LQpq_c3p90a2I10WOpeFKzVh0urIC-kYBuClRoFeM3PMpmufitH75G9z8317cLbjRGNrhm1oybsOaKe7A1br15gL3fOqrru7C1vjPL3MYOV90WH1bIPDLIpwV4d7UJN2B6X8wuBMi4QhzMw_3UpTX8MAlEZV17d2TubkHHy9lKvehU5SFeQAhEUzElgskyoZklmZW5ESiWUUlSXomDiBuv7bSTdl11_3jUPnwf1-oGiEKEaI8QtRpAC-W1xzVRUcuHL3lQLQc6QqG-wPl_Ktq9I8iLMslQ8mUruaj1TLONZJZSSnO0sYkgA0HQYV2lyserF2WlT7GWwjXUCCAzRZbqtFxlToDVgBPl6dRO7mQU1qY8qQewzmyZBzDVxC98rirZ4rZga9z7mLIccICeNli_-zm_34dDy9-1idwbXu6O1Kj4XhnA64nTjC9q34TOoga8wiu6B_Hs2r-uJHtEL5ctlT8BZR_in4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaq8hAX3ojQAkGCE0S7zvp5QIhSFqpWqz0UWnFxE8emK6qkbLbQ_Un8Ba78MWacZKutRG89cIqVOEocf994ZjyZIeR5oSQTosiSTCowUITViZZ5ltjcA_UcGGMhQPbzjhyN1P6-Hq-Q392_MBhW2cnEIKiLyqKPvAdLiR5wgGTa821YxHhz-Ob4e4IVpHCntSun0UBk281_gvlWv97ahLl-kabD97vvPiZthYHEcsZmicyoVzQTSoDe4IFvQkpfwLg8p15wTx0vVD8HnZ7bXPOi75XNc6csA7sj9-gMBfF_BYarMZxwzL8s_DuYeV0x1v6n0x-oXs2CVEJ7DdZsIZLTpbUwlAyAQwXUXlJ3zwdrntuxDQvh8Nb__Alvk5ut-h2_bfhyh6y48i651hTknEMrBMTa-h7ZGP355Y4S9FDH9bc50KEq40kZ7-26tDd0gw8OGjGYIXHhpvFeBiyODzG0qGoy8p5M3X3y6VKG8oCsllXpHpKYKaGolwrMZ8dyz3OvCqZB2eKapX1HI0K7mTe2TcaONUGOTAgKGCjToMUAWkxAizmNyMvFPcdNKpILe28goBY9MY14OFFNv5pWKhkm8kIL4KvGTJDealpYMHE15zBKT1lE1hCOBrQxTClsMfbKzuARCssMRGS9w5lpJV9tzkAWkWeLyyCzcCMqK1110vSREmxn6COX0L30ustXyslhyH6OO8s0FRF51fHg7OH__hyPLn7Xp-Q6UMHsbI2218iNFDka_PfrZBVA4x6Tq_bHbFJPnwSSx-TgsinxF8uqkeE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N%C3%A9el-type+skyrmion+in+WTe2%2FFe3GeTe2+van+der+Waals+heterostructure&rft.jtitle=Nature+communications&rft.au=Wu%2C+Yingying&rft.au=Zhang%2C+Senfu&rft.au=Zhang%2C+Junwei&rft.au=Wang%2C+Wei&rft.date=2020-07-31&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-17566-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_020_17566_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |