Majorization-Minimization Algorithm for Discriminative Non-Negative Matrix Factorization

This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source separation. With an NMF-based approach to supervised audio source separation, NMF is first applied to train the basis spectra of each source usin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 227399 - 227408
Main Authors: Li, Li, Kameoka, Hirokazu, Makino, Shoji
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source separation. With an NMF-based approach to supervised audio source separation, NMF is first applied to train the basis spectra of each source using training examples and then applied to the spectrogram of a mixture signal using the pretrained basis spectra at test time. The source signals can then be separated out using a Wiener filter. Here, a typical way to train the basis spectra is to minimize the dissimilarity measure between the observed spectrogram and the NMF model. However, obtaining the basis spectra in this way does not ensure that the separated signal will be optimal at test time due to the inconsistency between the objective functions for training and separation (Wiener filtering). To address this mismatch, a framework called discriminative NMF (DNMF) has recently been proposed. While this framework is noteworthy in that it uses a common objective function for training and separation, the objective function becomes more analytically complex than that of regular NMF. In the original DNMF work, a multiplicative update algorithm was proposed for the basis training; however, the convergence of the algorithm is not guaranteed and can be very slow. To overcome this weakness, this paper proposes a convergence-guaranteed algorithm for DNMF based on a majorization-minimization principle. Experimental results show that the proposed algorithm outperform the conventional DNMF algorithm as well as the regular NMF algorithm in terms of both the signal-to-distortion and signal-to-interference ratios.
AbstractList This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source separation. With an NMF-based approach to supervised audio source separation, NMF is first applied to train the basis spectra of each source using training examples and then applied to the spectrogram of a mixture signal using the pretrained basis spectra at test time. The source signals can then be separated out using a Wiener filter. Here, a typical way to train the basis spectra is to minimize the dissimilarity measure between the observed spectrogram and the NMF model. However, obtaining the basis spectra in this way does not ensure that the separated signal will be optimal at test time due to the inconsistency between the objective functions for training and separation (Wiener filtering). To address this mismatch, a framework called discriminative NMF (DNMF) has recently been proposed. While this framework is noteworthy in that it uses a common objective function for training and separation, the objective function becomes more analytically complex than that of regular NMF. In the original DNMF work, a multiplicative update algorithm was proposed for the basis training; however, the convergence of the algorithm is not guaranteed and can be very slow. To overcome this weakness, this paper proposes a convergence-guaranteed algorithm for DNMF based on a majorization-minimization principle. Experimental results show that the proposed algorithm outperform the conventional DNMF algorithm as well as the regular NMF algorithm in terms of both the signal-to-distortion and signal-to-interference ratios.
Author Li, Li
Makino, Shoji
Kameoka, Hirokazu
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-3121-7857
  surname: Li
  fullname: Li, Li
  email: lili@mmlab.cs.tsukuba.ac.jp
  organization: Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan
– sequence: 2
  givenname: Hirokazu
  orcidid: 0000-0003-3102-0162
  surname: Kameoka
  fullname: Kameoka, Hirokazu
  organization: NTT Communication Science Laboratories, Kanagawa, Japan
– sequence: 3
  givenname: Shoji
  orcidid: 0000-0003-1934-640X
  surname: Makino
  fullname: Makino, Shoji
  organization: Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan
BookMark eNqFUctOwzAQtFCReH4Bl0icU-ysE8fHqrRQicIBkLhZG8cprkoMjouAr8clVYW44Mt6HzOz9hyRQetaQ8gZo0PGqLwYjceT-_thRjM6BMpzIdkeOcxYIVPIoRj8uh-Q065b0njKWMrFIXma49J5-4XBujad29a-bJNktFrETnh-SRrnk0vbaR-bbWy-m-Q2Tt-aRZ_MMXj7kUxRhx3XCdlvcNWZ0208Jo_TycP4Or25u5qNRzepzjkPaY6c1o0oNYOSSagNa8RmPSjyuuCVqOOLaAWM0rzKRAOABjiDoqohazgiHJNZz1s7XKrXuCL6T-XQqp-C8wuFPli9MspQHsWAaY0ZL6VALhpNmaY1rZAXELnOe65X797Wpgtq6da-jeurjAte5pIDj1PQT2nvus6bZqfKqNo4onpH1MYRtXUkouQflLbh56eCR7v6B3vWY60xZqcmM1kKQeEbcZua4g
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_info14070352
Cites_doi 10.1109/ICASSP.2014.6854302
10.1109/TASLP.2014.2320575
10.1109/ICASSP.2017.7952154
10.1587/transinf.2015EDL8114
10.1109/ICASSP.2014.6853860
10.1109/HSCMA.2014.6843241
10.1109/ISCAS.1999.777511
10.21437/Interspeech.2013-232
10.1109/HSCMA.2017.7895578
10.1111/j.2517-6161.1977.tb01600.x
10.1162/neco.2008.04-08-771
10.1007/978-3-319-53547-0_31
10.1007/978-4-431-55387-8_2
10.1109/TSA.2005.858005
10.1109/ICASSP.2016.7471631
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3045791
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 227408
ExternalDocumentID oai_doaj_org_article_e0440d31cca24897a47fc01c0d0ba463
10_1109_ACCESS_2020_3045791
9298770
Genre orig-research
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 18J20059
  funderid: 10.13039/501100001691
– fundername: SECOM Science and Technology Foundation
  funderid: 10.13039/501100004298
– fundername: JST CREST
  grantid: JPMJCR19A3
  funderid: 10.13039/501100003382
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c544t-5a40df78c138193de1f70008365d64b7d3040b31005b27f33ae34136bd32f4aa3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:30:07 EDT 2025
Mon Jun 30 05:42:32 EDT 2025
Sat Nov 29 06:11:47 EST 2025
Tue Nov 18 21:08:02 EST 2025
Wed Aug 27 02:29:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-5a40df78c138193de1f70008365d64b7d3040b31005b27f33ae34136bd32f4aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1934-640X
0000-0003-3102-0162
0000-0002-3121-7857
OpenAccessLink https://doaj.org/article/e0440d31cca24897a47fc01c0d0ba463
PQID 2474859434
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_3045791
ieee_primary_9298770
proquest_journals_2474859434
crossref_citationtrail_10_1109_ACCESS_2020_3045791
doaj_primary_oai_doaj_org_article_e0440d31cca24897a47fc01c0d0ba463
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
garofolo (ref22) 1993
ref15
ref1
ref17
ref16
ref19
ref18
roweis (ref3) 2001
nakano (ref20) 2010
bach (ref5) 2005
lee (ref10) 2001
smaragdis (ref6) 2007
ref24
weninger (ref11) 2014
ref25
ref21
vincent (ref23) 2020
boulanger-lewandowski (ref14) 2012
ref8
ref7
ref9
ref4
grais (ref12) 2013
wang (ref2) 2006
References_xml – ident: ref15
  doi: 10.1109/ICASSP.2014.6854302
– year: 2020
  ident: ref23
  publication-title: The 4th CHiME speech separation and recognition challenge
– ident: ref13
  doi: 10.1109/TASLP.2014.2320575
– ident: ref9
  doi: 10.1109/ICASSP.2017.7952154
– start-page: 865
  year: 2014
  ident: ref11
  article-title: Discriminative NMF and its application to single-channel source separation
  publication-title: Proc INTERSPEECH
– ident: ref16
  doi: 10.1587/transinf.2015EDL8114
– start-page: 414
  year: 2007
  ident: ref6
  article-title: Supervised and semisupervised separation of sounds from single-channel mixtures
  publication-title: Proc Integr Comput -Aided Eng
– start-page: 793
  year: 2001
  ident: ref3
  article-title: One microphone source separation
  publication-title: Proc NIPS
– ident: ref7
  doi: 10.1109/ICASSP.2014.6853860
– start-page: 65
  year: 2005
  ident: ref5
  article-title: Blind one-microphone speech separation: A spectral learning approach
  publication-title: Proc NIPS
– ident: ref17
  doi: 10.1109/HSCMA.2014.6843241
– ident: ref4
  doi: 10.1109/ISCAS.1999.777511
– start-page: 808
  year: 2013
  ident: ref12
  article-title: Discriminative nonnegative dictionary learning using cross-coherence penalties for single channel source separation
  publication-title: Proc INTERSPEECH
  doi: 10.21437/Interspeech.2013-232
– ident: ref1
  doi: 10.1109/HSCMA.2017.7895578
– start-page: 556
  year: 2001
  ident: ref10
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc NIPS
– ident: ref19
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref18
  doi: 10.1162/neco.2008.04-08-771
– year: 2006
  ident: ref2
  publication-title: Computational Auditory Scene Analysis Principles Algorithms and Applications
– start-page: 283
  year: 2010
  ident: ref20
  article-title: Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with beta-divergence
  publication-title: Proc MLSP
– year: 1993
  ident: ref22
  publication-title: Csr-i (wsj0) complete ldc93s6a' Web download
– ident: ref25
  doi: 10.1007/978-3-319-53547-0_31
– ident: ref21
  doi: 10.1007/978-4-431-55387-8_2
– ident: ref24
  doi: 10.1109/TSA.2005.858005
– start-page: 205
  year: 2012
  ident: ref14
  article-title: Discriminative non-negative matrix factorization for multiple pitch estimation
  publication-title: Proc ISMIR
– ident: ref8
  doi: 10.1109/ICASSP.2016.7471631
SSID ssj0000816957
Score 2.1679509
Snippet This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227399
SubjectTerms Algorithms
Convergence
Discriminative non-negative matrix factorization (NMF)
Factorization
Linear programming
majorization-minimization
Optimization
Separation
Signal processing algorithms
single-channel signal processing
Source separation
Spectra
Spectrogram
speech enhancement
Testing time
Training
Wiener filtering
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFH9R40EPfhun0_Tg0WoLFMpxThcPbvGgyW6kBaozczNzGv98eRSbJRoTb6WFhvID3kd5vwdwalJpteV5bAiRMSuljSU1NtaaEU2oFrImcb0Vg0E-HMq7JThrYmGstf7wmT3HS_8v30z1O7rKLpwoz4VwBvqyELyO1Wr8KZhAQmYiEAulibzodLvuG5wJSJxl6jQXz8O5IHw8R39IqvJjJ_bipbf5v45twUZQI6NOjfs2LNnJDqwvkAvuwrBfPE9nIcwy7o8mo5dQiDrjR_dk_vQSOZU1uhrh1oFHYnDriwau9sA-1oU-Mvh_Rj2flSc034OH3vV99yYOeRRinTE2j7OCJaYSuU7RPHNIpJXwuhfPDGelMG50khI9_VlJREVpYVG28dJQUrGioPuwMplO7AFErEy4ppW2xNltFZdF6QnoNNekSpk1LSDfA6x0IBnHXBdj5Y2NRKoaFYWoqIBKC86aRq81x8bf1S8RuaYqEmT7Gw4SFdabsphK29DUTVDCcikKJiqdpDoxSVkwTluwizA2LwkItqD9PQ9UWMxvijDB8gyJ9A5_b3UEa9jB2jPThpX57N0ew6r-mI_eZid-nn4Bf6rmTw
  priority: 102
  providerName: IEEE
Title Majorization-Minimization Algorithm for Discriminative Non-Negative Matrix Factorization
URI https://ieeexplore.ieee.org/document/9298770
https://www.proquest.com/docview/2474859434
https://doaj.org/article/e0440d31cca24897a47fc01c0d0ba463
Volume 8
WOSCitedRecordID wos000604520500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbGeNCDUaexOpcePNqMUgrlOOcWD7bxoMlupAU6a7bObNN48m8XKFuamOjFSxNaKOXj9f0g8D0ArmXIlFAkCSRCLMAFUwGLpAqEwEigSFDWkLg-0CxLJhP22Er1ZfaENfTADXB9ZXIiyyjUPSGcMJpjWgoYCihhkWNieT4hZa1gyurgJCQspo5mKISsPxgO9Yh0QIh0nKr9GMvK2TJFlrHfpVj5oZetsRkfgUPnJfqD5uuOwY6qT8BBizuwAyZp_rpYulOUQVrV1dwV_MFsqp-sX-a-9kj9u8poBrPjxWg2P9O1MzVtCqkh6P_0xzbpjmt-Cp7Ho6fhfeDSJAQixngdxLkGqKSJCE30pYEOS2pdKxJLggsq9XBhYRby4wLRMopyZUwXKWSESpzn0RnYrRe1Ogc-LiARUSkU0mFZSVheWH45QQQqQ6ykB9AGMS4ch7hJZTHjNpaAjDcwcwMzdzB74Gbb6K2h0Pi9-q2Zim1Vw39tb2ip4E4q-F9S4YGOmcjtS7QTmFAKPdDdTCx3_-qKI0xxEhuevIv_6PoS7JvhNMs0XbC7Xr6rK7AnPtbVatmzYqqv6deoZw8bfgMr8usx
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6qYBLsMAYFrYONHDgS6thOHB9Lt4ppbcQBpN6sxHagCNqplGl__vwcN0ICIXGLEzty3mf7_Yj9PYATk0irbZbHhlIZ80raWDJjY6051ZRpIRsS17Eoinw6lZcdOG3Pwlhr_eYze4aX_l--WegnDJX1nSrPhXAO-mbKOSXNaa02ooIpJGQqArVQQmR_MBy6r3BOIHW-qbNdPBPnM_XjWfpDWpUXa7FXMKOd93XtM3wKhmQ0aJDfhY6d78HHZ_SCXZhOyrvFMhy0jCez-ewhFKLB_Y17srp9iJzRGv2Y4eKBm2Jw8YsKV7uwN01hghz-_6KRz8sTmu_D9ejn1fAiDpkUYu0ktYrTkhNTi1wn6KA5LJJaeOsrS03GK2GcdEiFsf60oqJmrLSo3bLKMFrzsmQHsDFfzO0XiHhFMs1qbanz3OpMlpWnoNOZpnXCrekBXQtY6UAzjtku7pV3N4hUDSoKUVEBlR6cto3-NCwbb1c_R-TaqkiR7W84SFSYccpiMm3DEjdEKc-lKLmoNUk0MaQqecZ60EUY25cEBHtwtB4HKkznR0W54HmKVHpfX291DFsXV5OxGv8qfh_CNna2idMcwcZq-WS_wQf9dzV7XH73Y_Y_nkTplg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Majorization-Minimization+Algorithm+for+Discriminative+Non-Negative+Matrix+Factorization&rft.jtitle=IEEE+access&rft.au=Li%2C+Li&rft.au=Kameoka%2C+Hirokazu&rft.au=Makino%2C+Shoji&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=227399&rft.epage=227408&rft_id=info:doi/10.1109%2FACCESS.2020.3045791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3045791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon