Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneousl...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 11; H. 1; S. 14756 - 12 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.07.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on convolutional neural network encoder–decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data’s quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics’ parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models’ performance and their applicability limits are discussed. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) BNL-222074-2021-JAAM 20-038; SC0012704 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-021-93747-y |