Statistical analysis of non-coding RNA data

With rapid progress in high-throughput genome technology, the study of noncoding RNA has arisen as a highly popular topic in biomedical research. Noncoding RNA plays fundamental roles in cell proliferation, cell differentiation and epigenetic regulation, and the study of noncoding RNA will yield nov...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cancer letters Ročník 417; s. 161 - 167
Hlavní autori: He, Qianchuan, Liu, Yang, Sun, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Ireland Elsevier B.V 28.03.2018
Elsevier Limited
Predmet:
ISSN:0304-3835, 1872-7980, 1872-7980
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:With rapid progress in high-throughput genome technology, the study of noncoding RNA has arisen as a highly popular topic in biomedical research. Noncoding RNA plays fundamental roles in cell proliferation, cell differentiation and epigenetic regulation, and the study of noncoding RNA will yield novel insights into gene regulation and provide new clues for disease treatment. However, due to the large volume and diverse functions of noncoding RNAs, the analysis of these RNAs has proved to be a challenging task. In this review, we review the commonly used computational tools for the identification of noncoding RNAs, and discuss popular statistical tools for their analysis. Due to the large body of noncoding RNA classes, we focus on the analysis of microRNA and long noncoding RNA, two of the most widely studied classes of noncoding RNAs. Specific examples are provided to show the context of the analysis. This review aims to provide up-to-date information on existing tools and methods for identifying and analyzing noncoding RNA.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Equally contributed
ISSN:0304-3835
1872-7980
1872-7980
DOI:10.1016/j.canlet.2017.12.029