Multi-user joint task offloading and resource allocation based on mobile edge computing in mining scenarios

With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in mee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 16170 - 24
Hlavní autoři: Li, Siqi, Li, Weidong, Zheng, Wanbo, Xia, Yunni, Guo, Kunyin, Peng, Qinglan, Li, Xu, Ren, Jiaxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 09.05.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in meeting high-performance requirements such as low transmission latency and low energy consumption. To address this issue, this paper proposes a method that combines partial offloading with collaborative mobile edge computing (MEC). This approach leverages device-to-device communication to partition computational tasks into multiple subtasks, offloading some of them to collaborative devices or MEC servers for execution. This not only alleviates the computational burden on MEC servers but also makes full use of the idle computing resources of terminal devices, thereby enhancing resource utilization efficiency. Given the limited computational capacity of terminal devices, this paper optimizes the offloading decision-making process between terminal devices and MEC servers. By introducing weighted coefficients for latency and energy consumption, the proposed method ensures that task completion latency does not exceed a predefined threshold while minimizing the overall system cost. The problem is formulated as a multi-objective optimization problem, which is solved using a two-layer alternating optimization framework. In the upper layer, an improved genetic algorithm (IGA) based on heuristic rules is employed to generate an offloading decision population, while the lower layer utilizes the deep deterministic policy gradient (DDPG) algorithm to optimize the offloading strategy and the weighted coefficients for latency and energy consumption. To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. Simulation results demonstrate that the proposed IGA-DDPG algorithm achieves significant improvements over these baseline methods. Specifically, under various experimental scenarios, IGA-DDPG reduces latency by an average of 24.5%, decreases energy consumption by 26.3%, and lowers overall system cost by 44.6%. Moreover, the algorithm consistently ensures a 100% task completion rate under different system configurations.
AbstractList Abstract With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in meeting high-performance requirements such as low transmission latency and low energy consumption. To address this issue, this paper proposes a method that combines partial offloading with collaborative mobile edge computing (MEC). This approach leverages device-to-device communication to partition computational tasks into multiple subtasks, offloading some of them to collaborative devices or MEC servers for execution. This not only alleviates the computational burden on MEC servers but also makes full use of the idle computing resources of terminal devices, thereby enhancing resource utilization efficiency. Given the limited computational capacity of terminal devices, this paper optimizes the offloading decision-making process between terminal devices and MEC servers. By introducing weighted coefficients for latency and energy consumption, the proposed method ensures that task completion latency does not exceed a predefined threshold while minimizing the overall system cost. The problem is formulated as a multi-objective optimization problem, which is solved using a two-layer alternating optimization framework. In the upper layer, an improved genetic algorithm (IGA) based on heuristic rules is employed to generate an offloading decision population, while the lower layer utilizes the deep deterministic policy gradient (DDPG) algorithm to optimize the offloading strategy and the weighted coefficients for latency and energy consumption. To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. Simulation results demonstrate that the proposed IGA-DDPG algorithm achieves significant improvements over these baseline methods. Specifically, under various experimental scenarios, IGA-DDPG reduces latency by an average of 24.5%, decreases energy consumption by 26.3%, and lowers overall system cost by 44.6%. Moreover, the algorithm consistently ensures a 100% task completion rate under different system configurations.
With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in meeting high-performance requirements such as low transmission latency and low energy consumption. To address this issue, this paper proposes a method that combines partial offloading with collaborative mobile edge computing (MEC). This approach leverages device-to-device communication to partition computational tasks into multiple subtasks, offloading some of them to collaborative devices or MEC servers for execution. This not only alleviates the computational burden on MEC servers but also makes full use of the idle computing resources of terminal devices, thereby enhancing resource utilization efficiency. Given the limited computational capacity of terminal devices, this paper optimizes the offloading decision-making process between terminal devices and MEC servers. By introducing weighted coefficients for latency and energy consumption, the proposed method ensures that task completion latency does not exceed a predefined threshold while minimizing the overall system cost. The problem is formulated as a multi-objective optimization problem, which is solved using a two-layer alternating optimization framework. In the upper layer, an improved genetic algorithm (IGA) based on heuristic rules is employed to generate an offloading decision population, while the lower layer utilizes the deep deterministic policy gradient (DDPG) algorithm to optimize the offloading strategy and the weighted coefficients for latency and energy consumption. To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. Simulation results demonstrate that the proposed IGA-DDPG algorithm achieves significant improvements over these baseline methods. Specifically, under various experimental scenarios, IGA-DDPG reduces latency by an average of 24.5%, decreases energy consumption by 26.3%, and lowers overall system cost by 44.6%. Moreover, the algorithm consistently ensures a 100% task completion rate under different system configurations.
With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in meeting high-performance requirements such as low transmission latency and low energy consumption. To address this issue, this paper proposes a method that combines partial offloading with collaborative mobile edge computing (MEC). This approach leverages device-to-device communication to partition computational tasks into multiple subtasks, offloading some of them to collaborative devices or MEC servers for execution. This not only alleviates the computational burden on MEC servers but also makes full use of the idle computing resources of terminal devices, thereby enhancing resource utilization efficiency. Given the limited computational capacity of terminal devices, this paper optimizes the offloading decision-making process between terminal devices and MEC servers. By introducing weighted coefficients for latency and energy consumption, the proposed method ensures that task completion latency does not exceed a predefined threshold while minimizing the overall system cost. The problem is formulated as a multi-objective optimization problem, which is solved using a two-layer alternating optimization framework. In the upper layer, an improved genetic algorithm (IGA) based on heuristic rules is employed to generate an offloading decision population, while the lower layer utilizes the deep deterministic policy gradient (DDPG) algorithm to optimize the offloading strategy and the weighted coefficients for latency and energy consumption. To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. Simulation results demonstrate that the proposed IGA-DDPG algorithm achieves significant improvements over these baseline methods. Specifically, under various experimental scenarios, IGA-DDPG reduces latency by an average of 24.5%, decreases energy consumption by 26.3%, and lowers overall system cost by 44.6%. Moreover, the algorithm consistently ensures a 100% task completion rate under different system configurations.With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations. However, due to the surge in network traffic and the limited availability of computational resources, these terminal devices face challenges in meeting high-performance requirements such as low transmission latency and low energy consumption. To address this issue, this paper proposes a method that combines partial offloading with collaborative mobile edge computing (MEC). This approach leverages device-to-device communication to partition computational tasks into multiple subtasks, offloading some of them to collaborative devices or MEC servers for execution. This not only alleviates the computational burden on MEC servers but also makes full use of the idle computing resources of terminal devices, thereby enhancing resource utilization efficiency. Given the limited computational capacity of terminal devices, this paper optimizes the offloading decision-making process between terminal devices and MEC servers. By introducing weighted coefficients for latency and energy consumption, the proposed method ensures that task completion latency does not exceed a predefined threshold while minimizing the overall system cost. The problem is formulated as a multi-objective optimization problem, which is solved using a two-layer alternating optimization framework. In the upper layer, an improved genetic algorithm (IGA) based on heuristic rules is employed to generate an offloading decision population, while the lower layer utilizes the deep deterministic policy gradient (DDPG) algorithm to optimize the offloading strategy and the weighted coefficients for latency and energy consumption. To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. Simulation results demonstrate that the proposed IGA-DDPG algorithm achieves significant improvements over these baseline methods. Specifically, under various experimental scenarios, IGA-DDPG reduces latency by an average of 24.5%, decreases energy consumption by 26.3%, and lowers overall system cost by 44.6%. Moreover, the algorithm consistently ensures a 100% task completion rate under different system configurations.
ArticleNumber 16170
Author Peng, Qinglan
Zheng, Wanbo
Li, Xu
Ren, Jiaxin
Li, Weidong
Xia, Yunni
Li, Siqi
Guo, Kunyin
Author_xml – sequence: 1
  givenname: Siqi
  surname: Li
  fullname: Li, Siqi
  organization: Faculty of Science, Kunming University of Science and Technology
– sequence: 2
  givenname: Weidong
  surname: Li
  fullname: Li, Weidong
  organization: School of Mathematics and Statistics, Yunnan University
– sequence: 3
  givenname: Wanbo
  surname: Zheng
  fullname: Zheng, Wanbo
  email: zwanbo2001@163.com
  organization: Faculty of Science, Kunming University of Science and Technology
– sequence: 4
  givenname: Yunni
  surname: Xia
  fullname: Xia, Yunni
  organization: School of Computer Science, Chongqing University
– sequence: 5
  givenname: Kunyin
  surname: Guo
  fullname: Guo, Kunyin
  organization: School of Computer Science, Chongqing University
– sequence: 6
  givenname: Qinglan
  surname: Peng
  fullname: Peng, Qinglan
  organization: School of Artificial Intelligence, Henan University
– sequence: 7
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  organization: Faculty of Science, Kunming University of Science and Technology
– sequence: 8
  givenname: Jiaxin
  surname: Ren
  fullname: Ren, Jiaxin
  organization: Faculty of Science, Kunming University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40346170$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8iA_wAGNxIXLgN_2nBCKIEQK4gJny_b0LN547cWeibR_j3cngSSH-OKWu6rUXa7T5iimCE3zBqMPGFH1sTDMe9UhwjuEJEXd7kVzQhDjHaGEHD2oj5vzUtaoHk56hvtXzTFDlAks0Ulz830Ok-_mArldJx-ndjLlpk3jGJIZfFy1Jg5thpLm7KA1ISRnJp9ia02Boa3FJlkfoIVhBa1Lm-087Wm-NnzcV8VBNNmn8rp5OZpQ4PzuPmt-ff3y8-Jbd_3j8uri83XnOKNTNxpqnSWcyREpieRgiOWKjJaKXo7WKmKRlNw6yYFXD-r6yFDhmCBCDONAz5qrRXdIZq232W9M3ulkvD48pLzSJk_eBdCCSSGZAkPRwEQPveO2tzAqqcAqgavWp0VrO9sNDHWVKZvwSPRxJ_rfepVuNSZIMMF5VXh_p5DTnxnKpDe-WhKCiZDmoilBhCGMe1Wh755A19X2WL3ao2iPGVWiot4-HOnfLPefWgFqAbicSskwauenw6fVCX3QGOl9hPQSIV0jpA8R0rtKJU-o9-rPkuhCKhUcV5D_j_0M6y-0dtna
CitedBy_id crossref_primary_10_3390_electronics14173515
crossref_primary_10_3390_drones9090653
Cites_doi 10.1109/JSAC.2016.2545382
10.1109/TIV.2022.3190308
10.1016/j.comnet.2021.108352
10.1109/TNET.2021.3110052
10.1109/MCOM.2018.1700873
10.1016/j.comcom.2022.04.017
10.1109/ACCESS.2017.2665971
10.1109/TWC.2012.113012.120500
10.1016/j.cor.2004.04.016
10.1109/TITS.2022.3178759
10.1109/JIOT.2021.3053283
10.1109/JSAC.2016.2611964
10.1109/GLOCOM.2017.8254550
10.1109/TVT.2022.3227197
10.1109/JIOT.2018.2875246
10.1109/JSAC.2016.2525398
10.1109/JIOT.2023.3240395
10.1109/TVT.2018.2868013
10.1109/ICCC52777.2021.9580313
10.1007/s11227-024-06557-0
10.1109/TWC.2017.2785305
10.1109/TVT.2022.3182378
10.1109/TPDS.2014.2316834
10.1109/TMC.2019.2928811
10.3390/s20113064
10.1109/TNSM.2023.3343290
10.1109/JIOT.2021.3137984
10.23919/cje.2022.00.031
10.1109/MWC.2017.1600321
10.1109/TITS.2021.3099368
10.1109/JSAC.2017.2760160
10.1109/WOCC.2019.8770605
10.1186/s13677-021-00240-y
10.1109/TVT.2020.3022766
10.1109/COMST.2014.2375934
10.1109/MNET.001.1900652
10.1145/3318265.3318276
10.1109/TC.2015.2435781
10.1109/JIOT.2018.2875218
10.1109/JIOT.2022.3188434
10.1109/COMST.2018.2828120
10.1016/j.asoc.2017.12.031
10.1109/TVT.2014.2372852
10.1109/TWC.2018.2820077
10.1038/s41598-024-79464-2
10.1017/9781009489843
10.1109/JIOT.2021.3064186
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-00730-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_6476748ea30d469e9c5b9bef878eb861
PMC12064655
40346170
10_1038_s41598_025_00730_y
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62162036
– fundername: Yunnan Provincial Innovation Guidance and Technology-Based Enterprise Cultivation Program
  grantid: 202404CC110017
– fundername: Key Program of the Yunnan Provincial Basic Research Plan
  grantid: 202401AS070963
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-fa3bcb2547f08707da2b582fb3697fbb82b0775bc75e55980070a36c46266dfd3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485688100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:59 EDT 2025
Tue Nov 04 02:04:02 EST 2025
Fri Sep 05 17:12:26 EDT 2025
Tue Oct 07 09:07:50 EDT 2025
Mon Jul 21 05:47:49 EDT 2025
Tue Nov 18 20:02:49 EST 2025
Sat Nov 29 07:55:32 EST 2025
Sat May 10 01:10:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mining edge computing
Multi-objective optimization
Task offloading
Resource allocation
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-fa3bcb2547f08707da2b582fb3697fbb82b0775bc75e55980070a36c46266dfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6476748ea30d469e9c5b9bef878eb861
PMID 40346170
PQID 3203914386
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_6476748ea30d469e9c5b9bef878eb861
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12064655
proquest_miscellaneous_3202401198
proquest_journals_3203914386
pubmed_primary_40346170
crossref_citationtrail_10_1038_s41598_025_00730_y
crossref_primary_10_1038_s41598_025_00730_y
springer_journals_10_1038_s41598_025_00730_y
PublicationCentury 2000
PublicationDate 2025-05-09
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References B Picano (730_CR40) 2023; 21
M Simsek (730_CR1) 2016; 34
L Tang (730_CR25) 2021; 10
Q Zhang (730_CR38) 2022; 9
G Li (730_CR28) 2023; 10
C Su (730_CR35) 2020; 69
F Sun (730_CR4) 2018; 67
730_CR30
L Zhao (730_CR32) 2018; 67
F Wang (730_CR24) 2017; 17
H Zhang (730_CR44) 2023; 6
Y Mao (730_CR20) 2016; 34
X Yang (730_CR26) 2021; 8
Y Wang (730_CR49) 2016; 64
H Zhou (730_CR18) 2018; 64
X Chen (730_CR42) 2017; 24
M Sun (730_CR50) 2022; 72
C You (730_CR21) 2016; 34
JM Valente (730_CR51) 2005; 32
D Chatzopoulos (730_CR8) 2018; 57
S Liu (730_CR13) 2021; 23
L Liu (730_CR47) 2012; 12
730_CR46
X Pang (730_CR16) 2021; 30
X Gu (730_CR6) 2020; 20
C You (730_CR15) 2018; 17
R Roostaei (730_CR27) 2021; 198
S Wang (730_CR2) 2017; 5
X-Q Pham (730_CR43) 2022; 71
L Yang (730_CR33) 2015; 65
R Xie (730_CR5) 2018; 39
Y Sun (730_CR3) 2017; 35
730_CR53
M Qin (730_CR19) 2018; 6
730_CR14
X Cao (730_CR31) 2018; 6
A Mahmood (730_CR29) 2022; 190
SK Panda (730_CR39) 2025; 81
S Zhang (730_CR11) 2020; 34
Z Wang (730_CR17) 2023; 32
L Huang (730_CR52) 2019; 19
L Yao (730_CR36) 2022; 24
X Chen (730_CR45) 2014; 26
D Wang (730_CR37) 2021; 9
O Munoz (730_CR41) 2014; 64
J Liu (730_CR9) 2014; 17
F Jameel (730_CR10) 2018; 20
X Jin (730_CR7) 2024; 14
730_CR23
730_CR22
Q Wang (730_CR48) 2019; 21
P Lang (730_CR12) 2022; 7
D Chen (730_CR34) 2021; 8
References_xml – volume: 34
  start-page: 1757
  year: 2016
  ident: 730_CR21
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2545382
– volume: 7
  start-page: 783
  year: 2022
  ident: 730_CR12
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2022.3190308
– volume: 198
  year: 2021
  ident: 730_CR27
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108352
– volume: 30
  start-page: 327
  year: 2021
  ident: 730_CR16
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2021.3110052
– volume: 57
  start-page: 102
  year: 2018
  ident: 730_CR8
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700873
– volume: 190
  start-page: 178
  year: 2022
  ident: 730_CR29
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.04.017
– volume: 5
  start-page: 2514
  year: 2017
  ident: 730_CR2
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2017.2665971
– volume: 12
  start-page: 288
  year: 2012
  ident: 730_CR47
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2012.113012.120500
– volume: 32
  start-page: 2905
  year: 2005
  ident: 730_CR51
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.04.016
– volume: 24
  start-page: 12991
  year: 2022
  ident: 730_CR36
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3178759
– volume: 8
  start-page: 11415
  year: 2021
  ident: 730_CR34
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3053283
– volume: 34
  start-page: 3590
  year: 2016
  ident: 730_CR20
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2611964
– ident: 730_CR22
  doi: 10.1109/GLOCOM.2017.8254550
– volume: 72
  start-page: 4887
  year: 2022
  ident: 730_CR50
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3227197
– volume: 6
  start-page: 4188
  year: 2018
  ident: 730_CR31
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2875246
– volume: 21
  start-page: 154
  year: 2019
  ident: 730_CR48
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 34
  start-page: 460
  year: 2016
  ident: 730_CR1
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2016.2525398
– volume: 10
  start-page: 12156
  year: 2023
  ident: 730_CR28
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3240395
– volume: 67
  start-page: 11049
  year: 2018
  ident: 730_CR4
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2868013
– ident: 730_CR14
  doi: 10.1109/ICCC52777.2021.9580313
– volume: 81
  start-page: 1
  year: 2025
  ident: 730_CR39
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-024-06557-0
– volume: 17
  start-page: 1784
  year: 2017
  ident: 730_CR24
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2785305
– volume: 6
  start-page: 66
  year: 2023
  ident: 730_CR44
  publication-title: IEEE Trans. Veh. Technol.
– volume: 67
  start-page: 6533
  year: 2018
  ident: 730_CR32
  publication-title: IEEE Trans. Veh. Technol.
– volume: 71
  start-page: 10220
  year: 2022
  ident: 730_CR43
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3182378
– volume: 26
  start-page: 974
  year: 2014
  ident: 730_CR45
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2316834
– volume: 19
  start-page: 2581
  year: 2019
  ident: 730_CR52
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2019.2928811
– volume: 20
  start-page: 3064
  year: 2020
  ident: 730_CR6
  publication-title: Sensors
  doi: 10.3390/s20113064
– volume: 21
  start-page: 1958
  year: 2023
  ident: 730_CR40
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2023.3343290
– volume: 9
  start-page: 12588
  year: 2021
  ident: 730_CR37
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3137984
– volume: 32
  start-page: 1
  year: 2023
  ident: 730_CR17
  publication-title: Chin. J. Electron.
  doi: 10.23919/cje.2022.00.031
– volume: 24
  start-page: 64
  year: 2017
  ident: 730_CR42
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2017.1600321
– volume: 23
  start-page: 1616
  year: 2021
  ident: 730_CR13
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3099368
– volume: 35
  start-page: 2637
  year: 2017
  ident: 730_CR3
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760160
– ident: 730_CR23
  doi: 10.1109/WOCC.2019.8770605
– volume: 10
  start-page: 23
  year: 2021
  ident: 730_CR25
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-021-00240-y
– volume: 69
  start-page: 13686
  year: 2020
  ident: 730_CR35
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3022766
– volume: 17
  start-page: 1923
  year: 2014
  ident: 730_CR9
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2014.2375934
– volume: 34
  start-page: 86
  year: 2020
  ident: 730_CR11
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1900652
– ident: 730_CR30
  doi: 10.1145/3318265.3318276
– volume: 65
  start-page: 1440
  year: 2015
  ident: 730_CR33
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2015.2435781
– ident: 730_CR46
– volume: 6
  start-page: 4330
  year: 2018
  ident: 730_CR19
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2875218
– volume: 9
  start-page: 23224
  year: 2022
  ident: 730_CR38
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3188434
– volume: 20
  start-page: 2133
  year: 2018
  ident: 730_CR10
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2828120
– volume: 39
  start-page: 138
  year: 2018
  ident: 730_CR5
  publication-title: J. Commun.
– volume: 64
  start-page: 4268
  year: 2016
  ident: 730_CR49
  publication-title: IEEE Trans. Commun.
– volume: 64
  start-page: 564
  year: 2018
  ident: 730_CR18
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.031
– volume: 64
  start-page: 4738
  year: 2014
  ident: 730_CR41
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2372852
– volume: 17
  start-page: 4104
  year: 2018
  ident: 730_CR15
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2820077
– volume: 14
  start-page: 27813
  year: 2024
  ident: 730_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-79464-2
– ident: 730_CR53
  doi: 10.1017/9781009489843
– volume: 8
  start-page: 12968
  year: 2021
  ident: 730_CR26
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3064186
SSID ssj0000529419
Score 2.4657295
Snippet With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining operations....
Abstract With the development of the industrial internet of things, an increasing number of intelligent terminal devices are being deployed in mining...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16170
SubjectTerms 639/705/1042
639/705/258
Algorithms
Collaboration
Computer applications
Decision making
Edge computing
Energy consumption
Genetic algorithms
Humanities and Social Sciences
Immunoglobulin A
Internet of Things
Latency
Mining edge computing
Multi-objective optimization
multidisciplinary
Resource allocation
Resource utilization
Science
Science (multidisciplinary)
Task offloading
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BAakXdkqgICNxA6uJtzgnBIiKA1Q9AOotirfyaEnKS4r0_j0eJy_VY-kFKYco9kh2xjOexf4G4LkuGm-jXUGVZyUVQea0ClbQKtdOORmJUi2CLx_KgwN9dFQdTgG3fjpWudaJSVG7zmKMfI8zxDIXXKtXZz8oVo3C7OpUQuMqXIuWTYFHuj6ywznGglksUVTTXZmc670-7ld4p4xJijmqnK429qME2_83W_PPI5O_5U3TdrR_638nchtuToYoeT2unDtwxbd34cZYmnJ1D07SzVyKMQzyrVu0Axma_oR0IZx26dg9aVpHllPwn2D6fgz-EdwXHYkv3zsTVQ7BgB2xqXgEki1iQypKQRBHKnrqXX8fPu-_-_T2PZ0KM1ArBR9oaLixJrqWZcijvJeuYUZqFgxXVRmM0cwgsp6xpfQIAI-YQg1XVkTvSbng-APYarvWPwQSLRZWemWiKeFEdOxNEUKBZI2TZRB5BsWaPbWdUMuxeMZpnbLnXNcjS-vI0jqxtF5l8GKmORsxOy7t_Qa5PvdEvO30oVse15P41kog6JH2Dc-dUJWvrDSV8UGX2hutigx218yuJyXQ1xeczuDZ3BzFF3MyTeu789Qn2lRFUekMdsYlNo9E5FwgXn4GemPxbQx1s6VdfE0Q4QWLpqaSMoOX63V6Ma5__4tHl0_jMWyzJDrxqXZha1ie-ydw3f4cFv3yaZK9X51SNzk
  priority: 102
  providerName: ProQuest
Title Multi-user joint task offloading and resource allocation based on mobile edge computing in mining scenarios
URI https://link.springer.com/article/10.1038/s41598-025-00730-y
https://www.ncbi.nlm.nih.gov/pubmed/40346170
https://www.proquest.com/docview/3203914386
https://www.proquest.com/docview/3202401198
https://pubmed.ncbi.nlm.nih.gov/PMC12064655
https://doaj.org/article/6476748ea30d469e9c5b9bef878eb861
Volume 15
WOSCitedRecordID wos001485688100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TuFexG-r5xLBNy3XJmmTPHpyh4K3LKKyPpWmTbj1zvbY9oT9751Ju-utny9CCaVJIMxHZyaT_AbguU5LV6FfEeeOq1j6LImNr2RsEl3ndYaTQi2CT-_UdKrnczO7UuqLzoQN8MAD4Q5ySXAz2pUiqTGUc6bKrLHOa6Wd1UPgkyhzJZgaUL25kakZb8kkQh90aKnoNhnPYspOJfFqyxIFwP7feZm_Hpb8KWMaDNHxbbg1epDs1bDyO3DNNXfh5lBTcnUPzsKV2pg2H9iXdtH0rC-7M9Z6f96G8_KsbGq2HHftGeXdh107RgatZvjytbX4r2C008aqUPWBpi2wI1STYAQAhSF2292Hj8dHH16_iceKCnGVSdHHvhS2shgTKp-goqq65DbT3FuRG-Wt1dwSJJ6tVOYIuZ3AgEqRVxLDnrz2tXgAO03buEfA0NXgyuUWfYBaYkRuU-9TmlbWmfIyiSBdU7eoRrhxqnpxXoS0t9DFwJECOVIEjhSrCF5s5lwMYBt_HX1ITNuMJKDs8AHFpxjFp_iX-ESwv2Z5MWpvVwhOuPlS6DyCZ5tu1DtKppSNay_DGHSG0tToCB4OErJZiUyEJKD7CPSW7GwtdbunWZwGbO-Uo4-YZ1kEL9di9mNdf6bF4_9Biyewx4N-4GP2YadfXrqncKP61i-65QSuq7kKrZ7A7uHRdPZ-EpQO2xM-o1Zhuzt7ezL7_B3O3jA1
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET23GcA0K8qlZdVj0U1Fsav2BpScpmC9o_xW_E4yRbLY_eekDaw2ptr5zkm_FkHt8APJFpZbW3K2JhaR5zlyVx4TSPi0QaYTK_KPQi-DjKx2O5t1fsrMDPoRYG0yoHnRgUtWk0-sjXGUUuc86keHn0LcauURhdHVpodLDYtvMf_pWtfbH11j_fp5RuvNt9sxn3XQVinXE2i13FlFb-vSh3iQdrbiqqMkmdYqLInVKSKqSFUzrPLLKXIyFOxYTm3vQXxhnm__ccnOfILIapgnRn4dPBqBlPi742J2FyvfXnI9aw0SzGmFgSz5fOv9Am4G-27Z8pmr_FacPxt3H1f7tx1-BKb2iTV51kXIcVW9-Ai13rzflNOAiVxzH6aMiXZlLPyKxqD0jj3GETygpIVRsy7YMbBNMTOucmwXPfEP_la6O8SiXokCQ6NMfAZRM_EJpuEOTJqqaTpr0FH87kSm_Dat3U9i4Qb5HR3ArlTSXDrWIqdS7FZZXJcseTCNIBDqXuWdmxOchhGbIDmCw7CJUeQmWAUDmP4NlizVHHSXLq7NeIssVM5BMPPzTTT2WvnkrBkdRJ2oolhovCFjpThbJO5tIqKdII1gZwlb2Sa8sTZEXweDHs1RPGnKraNsdhjrcZ07SQEdzpIL3YCU8Yx34AEcglsC9tdXmknnwOFOgp9aa0yLIIng9ycbKvf9-Le6dfxiO4tLn7flSOtsbb9-EyDWLrP8UarM6mx_YBXNDfZ5N2-jDIPYH9s5aXXw8ak1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJTmA1sZ3EOSAELBXVLlUPgJaTiRMbyi7J0nRB_Wv8OjxO0lV57G0PSD1EtR05yTfj8YznG4CHMspN4ewKmhiWUmHjkGa2EDQLZZmUsRvkaxG8300nE7m3l0034GefC4PHKnud6BV1WRfoIx9yhlzmgstkaLtjEdPt0bPDbxQrSGGktS-n0UJkxyx_uO1b83S87b71I8ZGr96-fE27CgO0iAVfUJtzXWi3R0pt6ICbljnTsWRW8yRLrdaSaaSI00UaG2QyR3KcnCeFcNuApLQld_c9A5vOJBdsAJvT8Zvph5WHB2NoIsq6TJ2Qy2HjVkvMaGMxxQhZSJdrq6EvGvA3S_fPA5u_RW39Yji69D-_xstwsTPByfNWZq7Ahqmuwrm2KOfyGuz7nGSK3hvypZ5VC7LIm31SW3tQ-4QDklclmXdhD4IHF1q3J0GLoCTu4mutnbIl6KokhS-bgcNmrsGX4yDIoJXPZ3VzHd6dypPegEFVV-YWEGersdQk2hlRpTCa68jaCIflZZxaEQYQ9dBQRcfXjmVDDpQ_N8ClauGkHJyUh5NaBvB4NeawZSs5sfcLRNyqJzKN-z_q-SfVKS6VCKR7kibnYSmSzGRFrDNtrEyl0TKJAtjqgaY69deoY5QF8GDV7BQXRqPyytRHvo-zJqMokwHcbOG9mokIucBKAQHINeCvTXW9pZp99uToEXNGdhLHATzpZeR4Xv9-F7dPfoz7cN6JidodT3buwAXmJdj9si0YLOZH5i6cLb4vZs38XqcECHw8bYH5BR-AnaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-user+joint+task+offloading+and+resource+allocation+based+on+mobile+edge+computing+in+mining+scenarios&rft.jtitle=Scientific+reports&rft.au=Li%2C+Siqi&rft.au=Li%2C+Weidong&rft.au=Zheng%2C+Wanbo&rft.au=Xia%2C+Yunni&rft.date=2025-05-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-00730-y&rft_id=info%3Apmid%2F40346170&rft.externalDocID=PMC12064655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon