VSS-SpatioNet: a multi-scale feature fusion network for multimodal image integrations
Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that r...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 9306 - 20 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
18.03.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance (
=0.5712), Piella’s metric (
=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-93143-w |