VSS-SpatioNet: a multi-scale feature fusion network for multimodal image integrations
Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that r...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 9306 - 20 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
18.03.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance (
=0.5712), Piella’s metric (
=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. |
|---|---|
| AbstractList | Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance (=0.5712), Piella’s metric (=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ( =0.5712), Piella’s metric ( =0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ([Formula: see text]=0.5712), Piella's metric ([Formula: see text]=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework's efficacy in medical applications, particularly precise tissue characterization.Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ([Formula: see text]=0.5712), Piella's metric ([Formula: see text]=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework's efficacy in medical applications, particularly precise tissue characterization. Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ([Formula: see text]=0.5712), Piella's metric ([Formula: see text]=0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework's efficacy in medical applications, particularly precise tissue characterization. Abstract Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ( $$\:{\text{Q}}_{\text{G}}$$ =0.5712), Piella’s metric ( $$\:{\text{Q}}_{\text{S}}$$ =0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based methods face computational inefficiencies in modeling global dependencies. The author proposes VSS-SpatioNet, a lightweight architecture that replaces self-attention in Transformers with a Visual State Space (VSS) module for efficient dependency modeling. The framework employs an asymmetric encoder-decoder with a multi-scale autoencoder and a novel VSS-Spatial (VS) fusion block for local-global feature integration. Evaluations on TNO, Harvard Medical, and RoadScene datasets demonstrate superior performance. On TNO, VSS-SpatioNet achieves state-of-the-art Entropy (En = 7.0058) and Mutual Information (MI = 14.0116), outperforming 12 benchmark methods. For RoadScene, it attains gradient-based fusion performance ( $$\:{\text{Q}}_{\text{G}}$$ =0.5712), Piella’s metric ( $$\:{\text{Q}}_{\text{S}}$$ =0.7926), and average gradient (AG = 5.2994), surpassing prior works. On Harvard Medical, the VS strategy improves Mean Gradient by 18.7% (0.0224 vs. 0.0198) against FusionGAN, validating enhanced feature preservation. Results confirm the framework’s efficacy in medical applications, particularly precise tissue characterization. |
| ArticleNumber | 9306 |
| Author | Xiang, Zeyu |
| Author_xml | – sequence: 1 givenname: Zeyu surname: Xiang fullname: Xiang, Zeyu email: 221410060124@stu.haust.edu.cn, zeyuxiang@foxmail.com organization: College of Information Engineering, Henan University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40102490$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9v1DAQxSNUREvpF-CAInHhErDHTuJwQajiT6UKDku5Wo49Wbwk9mI7rPj2eDcttD3Ul7Hs93569szT4sh5h0XxnJLXlDDxJnJad6IiUFcdo5xVu0fFCRBeV8AAjm7tj4uzGDckrxo6TrsnxTEnlADvyElx9X21qlZblaz_gultqcppHpOtolYjlgOqNIdc52i9Kx2mnQ8_y8GHRTZ5o8bSTmqNpXUJ12EPcvFZ8XhQY8Sz63paXH388O38c3X59dPF-fvLStecpWoQoBU1OLDWcNO0PUdoqW6gRwKD6YUSvEZuOjRM9D0DLQgVLRqDNW-Hmp0WFwvXeLWR25CThD_SKysPBz6spQrJ6hEl501PaaNraJFT0nSZxLDPYMIIgM6sdwtrO_cTGo0uBTXegd69cfaHXPvfktIOCOlIJry6JgT_a8aY5GSjxnFUDv0cJaOtEIy0LWTpy3vSjZ-Dy391UHGgAPvnvbgd6V-Wm_ZlgVgEOvgYAw5S23RoQU5oR0mJ3A-LXIZF5mGRh2GRu2yFe9Yb-oMmtphiFrs1hv-xH3D9BYW60cQ |
| CitedBy_id | crossref_primary_10_3390_app15116224 |
| Cites_doi | 10.3390/electronics13204115 10.48550/arXiv.2404.18861 10.1016/j.inffus.2015.11.003 10.1038/s41598-022-16329-6 10.1109/CVPR42600.2020.01098 10.1364/OL.533666 10.1109/CVPR52688.2022.00564 10.1007/s11760-013-0556-9 10.1109/TIM.2020.3005230 10.1109/LSP.2016.2618776 10.1109/ICIP46576.2022.9897280 10.1016/j.bspc.2023.105534 10.48550/arXiv.1706.03762 10.1016/j.inffus.2018.09.004 10.1109/TPAMI.2020.3012548 10.1117/1.2945910 10.1049/el:20000267 10.1109/TIP.2020.2999855 10.1016/j.inffus.2024.102870 10.1364/JOT.90.000590 10.1016/j.patcog.2024.111091 10.1109/TNNLS.2013.2248094 10.1109/TPAMI.2011.109 10.1002/jmri.21049 10.1007/s12559-013-9235-y 10.1016/j.inffus.2023.101828 10.1016/j.optlaseng.2023.107925 10.1364/OE.492954 10.1016/j.inffus.2005.04.003 10.1038/s41598-021-97636-2 10.1049/el:20020212 10.1016/j.inffus.2019.07.011 10.48550/arXiv.2405.04404 10.1016/j.ijleo.2018.06.123 10.48550/arXiv.1406.2661 10.1016/j.inffus.2023.102075 10.1364/OE.496484 10.1016/j.inffus.2021.06.008 10.1109/TIP.2015.2442920 10.1016/j.imavis.2020.103964 10.1109/5.726791 10.1016/j.optcom.2014.12.032 10.1364/AO.55.006480 10.1109/TIP.2020.2975984 10.1016/j.jksuci.2024.102150 10.1142/S0219691316500247 10.1109/ICPR.2018.8546006 10.1364/AO.427245 10.1364/OPTICA.502857 10.1364/OE.492126 10.1007/978-3-030-87586-2_9 10.1609/aaai.v34i07.6975 10.3390/app131910891 10.1109/TITS.2024.3373370 10.1007/978-981-97-1068-3_1 10.1016/j.buildenv.2023.110949 10.1364/OL.481395 10.3390/app122110989 10.1016/j.inffus.2021.02.023 10.1016/j.isci.2024.110915 10.3390/rs14030755 10.1109/TIP.2018.2887342 10.1109/TNN.2008.2005601 10.1109/TIP.2020.2977573 10.1016/j.cmpb.2021.106236 10.3390/rs15122969 10.48550/arXiv.2312.00752 10.48550/arXiv.2404.09498 10.1007/s11760-012-0361-x 10.1088/0957-0233/8/4/002 10.1109/TPAMI.2023.3261282 10.1016/j.aeue.2015.09.004 10.48550/arXiv.2402.02491 10.1038/s41568-023-00576-4 10.48550/arXiv.2401.10166 10.3390/app142210111 10.1007/s12596-013-0148-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-93143-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_446b116c527e410690183ebd3803022c PMC11920090 40102490 10_1038_s41598_025_93143_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Education Department of Henan Province grantid: 202410464018 funderid: http://dx.doi.org/10.13039/501100009101 – fundername: Education Department of Henan Province grantid: 202410464018 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB AJTQC NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c543t-f82ca1def37d4d67b4e271c62be02fdb8a845e4d9ed38bb32c80187edde547f53 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449568100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:34:48 EDT 2025 Tue Nov 04 02:02:25 EST 2025 Thu Sep 04 17:47:26 EDT 2025 Tue Oct 07 09:05:45 EDT 2025 Thu Apr 03 07:01:40 EDT 2025 Sun Nov 09 14:44:03 EST 2025 Tue Nov 18 22:24:37 EST 2025 Thu May 22 04:29:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Visual state space (VSS) module Multi-scale feature integration Medical imaging applications Lightweight asymmetric encoder-decoder Infrared and visible image fusion |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-f82ca1def37d4d67b4e271c62be02fdb8a845e4d9ed38bb32c80187edde547f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3178421225?pq-origsite=%requestingapplication% |
| PMID | 40102490 |
| PQID | 3178421225 |
| PQPubID | 2041939 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_446b116c527e410690183ebd3803022c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11920090 proquest_miscellaneous_3178830772 proquest_journals_3178421225 pubmed_primary_40102490 crossref_citationtrail_10_1038_s41598_025_93143_w crossref_primary_10_1038_s41598_025_93143_w springer_journals_10_1038_s41598_025_93143_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-18 |
| PublicationDateYYYYMMDD | 2025-03-18 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | L Chen (93143_CR73) 2024; 14 T Wang (93143_CR2) 2023; 48 93143_CR46 93143_CR45 H Li (93143_CR35) 2021; 73 Z Zhou (93143_CR58) 2016; 55 CS Xydeas (93143_CR68) 2000; 36 Y Luo (93143_CR79) 2023; 13 H Li (93143_CR61) 2020; 29 Y Dong (93143_CR36) 2022; 12 93143_CR42 J Ruan (93143_CR44) 2024 K Ma (93143_CR24) 2015; 24 C Liu (93143_CR6) 2014; 22 A Gu (93143_CR20) 2023 Y Li (93143_CR77) 2021; 2 X Zhang (93143_CR80) 2023; 45 Y Zhang (93143_CR12) 2023; 31 K Li (93143_CR41) 2023; 31 H Xu (93143_CR62) 2020; 29 W Liu (93143_CR38) 2024; 13 Y Zhang (93143_CR32) 2020; 54 K Zhou (93143_CR22) 2022; 14 V Saragadam (93143_CR78) 2024; 11 Y Zhou (93143_CR8) 2023; 31 B Yang (93143_CR7) 2016; 14 Z Zhou (93143_CR59) 2016; 30 J Ding (93143_CR13) 2025; 117 H Li (93143_CR34) 2020; 69 93143_CR76 J Ma (93143_CR67) 2020; 29 93143_CR30 Y Liu (93143_CR29) 2016; 23 L Chen (93143_CR39) 2021; 60 Y Li (93143_CR19) 2024; 36 V Aslantas (93143_CR25) 2015; 69 S Yang (93143_CR1) 2024; 49 YJ Rao (93143_CR66) 1997; 8 D Lu (93143_CR53) 2022; 12 A Vaswani (93143_CR17) 2017 J Ding (93143_CR33) 2024; 25 X Li (93143_CR37) 2023; 15 LI Kuncheva (93143_CR9) 2013; 25 93143_CR27 BKS Kumar (93143_CR57) 2015; 9 J Schwenck (93143_CR5) 2023; 23 PA Estevez (93143_CR70) 2009; 20 93143_CR60 93143_CR21 93143_CR65 93143_CR64 Y Qian (93143_CR49) 2024; 173 93143_CR63 BKS Kumar (93143_CR28) 2013; 7 CR Jack Jr (93143_CR4) 2008; 27 J Wang (93143_CR26) 2024; 27 S Huang (93143_CR47) 2021; 11 Y Zheng (93143_CR72) 2007; 8 A Ng (93143_CR16) 2011; 72 H Xu (93143_CR43) 2020; 44 X Huo (93143_CR52) 2024; 87 93143_CR14 L Pan (93143_CR18) 2020; 101 J Ma (93143_CR40) 2019; 48 G Qu (93143_CR56) 2002; 38 J Ding (93143_CR75) 2025; 159 93143_CR15 JW Roberts (93143_CR23) 2008; 2 93143_CR50 93143_CR54 F Pérez-García (93143_CR55) 2021; 208 93143_CR51 H Li (93143_CR31) 2018; 28 S Umirzakova (93143_CR3) 2024; 103 MK Ermachenkova (93143_CR10) 2023; 90 D Wang (93143_CR48) 2023; 98 Z Liu (93143_CR69) 2012; 34 G Cui (93143_CR71) 2015; 341 K Intharachathorn (93143_CR74) 2023; 246 H Zhang (93143_CR11) 2021; 76 |
| References_xml | – volume: 13 start-page: 4115 issue: 20 year: 2024 ident: 93143_CR38 publication-title: Electronics doi: 10.3390/electronics13204115 – ident: 93143_CR46 doi: 10.48550/arXiv.2404.18861 – volume: 30 start-page: 15 year: 2016 ident: 93143_CR59 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2015.11.003 – volume: 12 start-page: 11968 year: 2022 ident: 93143_CR53 publication-title: Sci. Rep. doi: 10.1038/s41598-022-16329-6 – ident: 93143_CR76 doi: 10.1109/CVPR42600.2020.01098 – volume: 49 start-page: 5163 year: 2024 ident: 93143_CR1 publication-title: Opt. Lett. doi: 10.1364/OL.533666 – ident: 93143_CR51 doi: 10.1109/CVPR52688.2022.00564 – volume: 9 start-page: 1193 year: 2015 ident: 93143_CR57 publication-title: Signal. Image Video Process. doi: 10.1007/s11760-013-0556-9 – volume: 69 start-page: 9645 year: 2020 ident: 93143_CR34 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3005230 – volume: 72 start-page: 1 year: 2011 ident: 93143_CR16 publication-title: CS294A Lecture Notes – volume: 23 start-page: 1882 year: 2016 ident: 93143_CR29 publication-title: IEEE. Signal. Process. Lett. doi: 10.1109/LSP.2016.2618776 – ident: 93143_CR42 doi: 10.1109/ICIP46576.2022.9897280 – volume: 87 start-page: 105534 year: 2024 ident: 93143_CR52 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105534 – year: 2017 ident: 93143_CR17 publication-title: Preprint arXiv doi: 10.48550/arXiv.1706.03762 – volume: 48 start-page: 11 year: 2019 ident: 93143_CR40 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 44 start-page: 502 year: 2020 ident: 93143_CR43 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 2 start-page: 023522 year: 2008 ident: 93143_CR23 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.2945910 – volume: 36 start-page: 308 year: 2000 ident: 93143_CR68 publication-title: Electron. Lett. doi: 10.1049/el:20000267 – volume: 29 start-page: 7203 year: 2020 ident: 93143_CR62 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2999855 – volume: 117 start-page: 102870 year: 2025 ident: 93143_CR13 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2024.102870 – volume: 90 start-page: 590 year: 2023 ident: 93143_CR10 publication-title: J. Opt. Technol. doi: 10.1364/JOT.90.000590 – volume: 159 start-page: 111091 year: 2025 ident: 93143_CR75 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2024.111091 – volume: 25 start-page: 69 year: 2013 ident: 93143_CR9 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2013.2248094 – volume: 34 start-page: 94 issue: 1 year: 2012 ident: 93143_CR69 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.109 – volume: 27 start-page: 685 year: 2008 ident: 93143_CR4 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – ident: 93143_CR60 doi: 10.1007/s12559-013-9235-y – volume: 98 start-page: 101828 year: 2023 ident: 93143_CR48 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.101828 – volume: 173 start-page: 107925 year: 2024 ident: 93143_CR49 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2023.107925 – volume: 31 start-page: 25781 year: 2023 ident: 93143_CR41 publication-title: Opt. Express doi: 10.1364/OE.492954 – volume: 8 start-page: 177 issue: 2 year: 2007 ident: 93143_CR72 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2005.04.003 – volume: 11 start-page: 18396 year: 2021 ident: 93143_CR47 publication-title: Sci. Rep. doi: 10.1038/s41598-021-97636-2 – volume: 38 start-page: 1 year: 2002 ident: 93143_CR56 publication-title: Electron. Lett. doi: 10.1049/el:20020212 – volume: 54 start-page: 99 year: 2020 ident: 93143_CR32 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2019.07.011 – ident: 93143_CR45 doi: 10.48550/arXiv.2405.04404 – ident: 93143_CR65 doi: 10.1016/j.ijleo.2018.06.123 – ident: 93143_CR15 doi: 10.48550/arXiv.1406.2661 – volume: 103 start-page: 102075 year: 2024 ident: 93143_CR3 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.102075 – volume: 31 start-page: 36171 year: 2023 ident: 93143_CR8 publication-title: Opt. Express doi: 10.1364/OE.496484 – volume: 76 start-page: 323 year: 2021 ident: 93143_CR11 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.06.008 – volume: 2 start-page: 21 year: 2021 ident: 93143_CR77 publication-title: Int. J. Cogn. Comput. Eng. – volume: 24 start-page: 3345 year: 2015 ident: 93143_CR24 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2442920 – volume: 101 start-page: 103964 year: 2020 ident: 93143_CR18 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103964 – ident: 93143_CR14 doi: 10.1109/5.726791 – volume: 341 start-page: 199 year: 2015 ident: 93143_CR71 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.12.032 – volume: 55 start-page: 23 year: 2016 ident: 93143_CR58 publication-title: Appl. Opt. doi: 10.1364/AO.55.006480 – volume: 29 start-page: 4733 year: 2020 ident: 93143_CR61 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975984 – volume: 36 start-page: 102150 issue: 7 year: 2024 ident: 93143_CR19 publication-title: J. King Saud Univ. - Comput. Inform. Sci. doi: 10.1016/j.jksuci.2024.102150 – volume: 14 start-page: 1650024 year: 2016 ident: 93143_CR7 publication-title: Int. J. Wavelets Multiresolut Inf. Process. doi: 10.1142/S0219691316500247 – ident: 93143_CR30 doi: 10.1109/ICPR.2018.8546006 – volume: 60 start-page: 7017 year: 2021 ident: 93143_CR39 publication-title: Appl. Opt. doi: 10.1364/AO.427245 – volume: 11 start-page: 18 year: 2024 ident: 93143_CR78 publication-title: Optica doi: 10.1364/OPTICA.502857 – volume: 31 start-page: 19463 year: 2023 ident: 93143_CR12 publication-title: Opt. Express doi: 10.1364/OE.492126 – ident: 93143_CR50 doi: 10.1007/978-3-030-87586-2_9 – ident: 93143_CR63 doi: 10.1609/aaai.v34i07.6975 – volume: 13 start-page: 10891 year: 2023 ident: 93143_CR79 publication-title: Appl. Sci. doi: 10.3390/app131910891 – volume: 25 start-page: 12464 issue: 9 year: 2024 ident: 93143_CR33 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3373370 – ident: 93143_CR54 doi: 10.1007/978-981-97-1068-3_1 – volume: 246 start-page: 110949 year: 2023 ident: 93143_CR74 publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110949 – volume: 48 start-page: 485 year: 2023 ident: 93143_CR2 publication-title: Opt. Lett. doi: 10.1364/OL.481395 – volume: 22 start-page: 220 year: 2014 ident: 93143_CR6 publication-title: IEEE. Signal. Process. Lett. – volume: 12 start-page: 10989 issue: 21 year: 2022 ident: 93143_CR36 publication-title: Appl. Sci. doi: 10.3390/app122110989 – volume: 73 start-page: 72 year: 2021 ident: 93143_CR35 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.02.023 – volume: 27 start-page: 110915 year: 2024 ident: 93143_CR26 publication-title: iScience doi: 10.1016/j.isci.2024.110915 – volume: 14 start-page: 755 year: 2022 ident: 93143_CR22 publication-title: Remote Sens. doi: 10.3390/rs14030755 – volume: 28 start-page: 2614 year: 2018 ident: 93143_CR31 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 20 start-page: 189 issue: 1 year: 2009 ident: 93143_CR70 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2008.2005601 – volume: 29 start-page: 4980 year: 2020 ident: 93143_CR67 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2977573 – volume: 208 start-page: 106236 year: 2021 ident: 93143_CR55 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106236 – volume: 15 start-page: 2969 issue: 12 year: 2023 ident: 93143_CR37 publication-title: Remote Sens. doi: 10.3390/rs15122969 – year: 2023 ident: 93143_CR20 publication-title: Preprint arXiv doi: 10.48550/arXiv.2312.00752 – ident: 93143_CR27 doi: 10.48550/arXiv.2404.09498 – volume: 7 start-page: 1125 year: 2013 ident: 93143_CR28 publication-title: Signal. Image Video Process. doi: 10.1007/s11760-012-0361-x – volume: 8 start-page: 355 year: 1997 ident: 93143_CR66 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/8/4/002 – volume: 45 start-page: 10535 year: 2023 ident: 93143_CR80 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3261282 – volume: 69 start-page: 1890 year: 2015 ident: 93143_CR25 publication-title: AEU - Int. J. Electron. Commun. doi: 10.1016/j.aeue.2015.09.004 – year: 2024 ident: 93143_CR44 publication-title: Preprint arXiv doi: 10.48550/arXiv.2402.02491 – volume: 23 start-page: 474 year: 2023 ident: 93143_CR5 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-023-00576-4 – ident: 93143_CR21 doi: 10.48550/arXiv.2401.10166 – volume: 14 start-page: 10111 year: 2024 ident: 93143_CR73 publication-title: Appl. Sci. doi: 10.3390/app142210111 – ident: 93143_CR64 doi: 10.1007/s12596-013-0148-7 |
| SSID | ssj0000529419 |
| Score | 2.450786 |
| Snippet | Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and Transformer-based... Abstract Infrared and visible image fusion (vis-ir) enhances diagnostic accuracy in medical imaging and biological analysis. Existing CNN-based and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9306 |
| SubjectTerms | 631/114/1305 631/114/1564 631/114/2401 639/624/1075 639/705/117 639/705/258 Biological analysis Deep learning Efficiency Humanities and Social Sciences Infrared and visible image fusion Lightweight asymmetric encoder-decoder Medical imaging Medical imaging applications Multi-scale feature integration multidisciplinary Science Science (multidisciplinary) Sensors Visual state space (VSS) module Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5CSKCX0jZ9bJMUBXprRazHWlJvSUjooZiAm5KbWD2WGpp1iO2G_vuMpLUT93npdVdahtGnmdHO6BuAt-jVAw9SU-f4kMrQSqrRQlLvNAYbTe1D6VrySY1G-vLSnD9o9ZVqwgo9cFHcIR5XHGNDX3MVJUu8ugjC6ILQCE_OfbK-A2UeHKYKqzc3kpn-lsxA6MMZeqp0m4zX1AgMEujtmifKhP2_izJ_LZb8KWOaHdHZE3jcR5DkqEj-FDZi9wy2S0_JHztw8WU8puNcJz2K8w-kIblmkM5wMSJpYybyJO0i_SUjXSkCJxi5lmFX04DfnlyhlSFLJokEzOdwcXb6-eQj7XsnUF9LMaet5r5hIbZCBRmGysnIFfND7uKAt8HpRss6ymAiatI5wb1O7fkiWrtaqrYWL2Czm3bxFRCBq9lIxlTrWcqyOhWNiQ1P1G14IBEVsKUere-JxVN_i282J7iFtkX3FnVvs-7tbQXvVnOuC63GX0cfp-VZjUyU2PkBAsX2QLH_AkoFe8vFtf0-nVmMnnTKifO6goPVa9xhKW3SdHG6KGM0mkLFK3hZsLCSRCZKPmkGFeg1lKyJuv6mm3zNLN4MY2sMcHHq-yWg7uX6sy5e_w9d7MIjnnZCqkvUe7A5v1nEfdjy3-eT2c2bvJXuAGH1Hjg priority: 102 providerName: Directory of Open Access Journals |
| Title | VSS-SpatioNet: a multi-scale feature fusion network for multimodal image integrations |
| URI | https://link.springer.com/article/10.1038/s41598-025-93143-w https://www.ncbi.nlm.nih.gov/pubmed/40102490 https://www.proquest.com/docview/3178421225 https://www.proquest.com/docview/3178830772 https://pubmed.ncbi.nlm.nih.gov/PMC11920090 https://doaj.org/article/446b116c527e410690183ebd3803022c |
| Volume | 15 |
| WOSCitedRecordID | wos001449568100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RBiQuvB-GEhmJG6yaXa-zay6IolYg0SgiFIWT5X0YIlG7xAkV_56ZteMqPHrhsgd7be16njsz_gbgGVp1J5zUzBgxZtKVkmnUkMwajc5GkVrXdi15ryYTPZ9n0y7g1nRllRudGBS1qy3FyPfRzmnKXor01dl3Rl2jKLvatdDYgQF6NpxKuo7FtI-xUBZL8qz7V2aU6P0G7RX9UyZSliXoKrDzLXsUYPv_5mv-WTL5W940mKOjm_-7kVtwo3NE49ct59yGK766A9fa1pQ_78LJp9mMzUK59cSvXsZFHEoPWYM09XHpAx5oXK4p2BZXbS15jA5wO-20dvjuxSkqq3gDSEH8fQ9Ojg4_vnnLuhYMzKYyWbFSC1tw58tEOenGykgvFLdjYfxIlM7oQsvUS5d5l2hjEmE1dfnzqDRTqco0uQ-7VV35hxAnyBSF5FyVllOy1iifZb4QhACH55okAr4hRG47fHJqk_EtD3nyROct8XIkXh6Il59H8Lx_5qxF57h09gHRt59JyNrhQr38kneCmuPx2HA-trgsLznhOKPS8wa3h-pQCBvB3oaseSfuTX5B0wie9rdRUCn7UlS-XrdzNGpUJSJ40DJTvxJJyH4yG0Wgt9hsa6nbd6rF1wAGztFFRz8ZH32x4ciLdf37Wzy6fBuP4bogIaHCRb0Hu6vl2j-Bq_bHatEsh7Cj5iqMegiDg8PJ9MMwBDOGQf5oVDgOpu-Op59_ASrpNSM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB5VBQQv3EegQJDgCayuHWfjICHEVbXqsqq0LeqbiY_ASjQpe7Dqn-I3MuMkWy1H3_rAa-JEdvLNNzOe8QzAU9TqTjipmDGiz6QrJVPIkMwahcZGkVrXdC0ZZMOhOjzM99bgZ3cWhtIqO04MRO1qS3vkm6jnFEUvRfr6-DujrlEUXe1aaDSw2PUnC3TZpq923uP_fSbE1of9d9us7SrAbCqTGSuVsAV3vkwyJ10_M9KLjNu-ML4nSmdUoWTqpcu9S5QxibCKGtd55IFUZiV1iUDKvyCpshilCoq95Z4ORc0kz9uzOb1EbU5RP9IZNpGyPEHThC1W9F9oE_A32_bPFM3f4rRB_W1d-98-3HW42hra8ZtGMm7Amq9uwqWm9ebJLTj4NBqxUUgnH_rZy7iIQ2olmyJmfVz6UO80Lue0mRhXTa58jAZ-M-yodvju8RGScdwV3CD5vQ0H57KmO7Be1ZW_B3GCoC8k51lpOQWjTebz3BeCKtyh35ZEwLsfr21bf53agHzTIQ8gUboBi0aw6AAWvYjg-fKZ46b6yJmj3xKeliOpcni4UE--6JaINLr_hvO-xWl5yalONZK6N7g8pHshbAQbHYx0S2dTfYqhCJ4sbyMRUXSpqHw9b8Yo1BiZiOBuA97lTCRVLpR5LwK1AuuVqa7eqcZfQ7Fzji4I-gH46ItOAk7n9e9vcf_sZTyGy9v7Hwd6sDPcfQBXBAkoJWmqDVifTeb-IVy0P2bj6eRRkPAYPp-3ZPwCMRWNrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB5VKSBeuI-FAosET2Al9nqzXiSEgBIRtUSRQlH7ZNbHtpHopuQg6l_j1zGzR6pw9K0PvO7aK9v7zTdjz3gG4BlqdSecVMwY0WXS5ZIpZEhmjUJjI4utq6qW7CaDgdrfT4cb8LO5C0NhlQ0nlkTtJpbOyNuo5xR5L0XczuuwiOF2783Jd0YVpMjT2pTTqCCy40-XuH2bve5v479-LkTvw-f3H1ldYYDZWEZzlithM-58HiVOum5ipBcJt11hfEfkzqhMydhLl3oXKWMiYRUVsfPICbFMcqoYgfS_iSa5FC3YHPY_DQ9WJzzkQ5M8rW_qdCLVnqG2pBttImZphIYKW65pw7JowN8s3T8DNn_z2pbKsHf9f17GG3CtNsHDt5XM3IQNX9yCy1VRztPbsPdlNGKjMtB84Oevwiwsgy7ZDNHsw9yXmVDDfEHHjGFRRdGHaPpXzY4nDr89PkaaDptUHCTZd2DvQuZ0F1rFpPD3IYxQHDLJeZJbTm5qk_g09Zmg3He4o4sC4A0ItK0zs1OBkG-6jBCIlK6AoxE4ugSOXgbwYtXnpMpLcm7rd4StVUvKKV4-mEwPdU1RWsqu4bxrcVhecspgjXTvDU4PFYEQNoCtBlK6JrqZPsNTAE9Xr5GiyO-UFX6yqNoo1CWJCOBeBeTVSCTlNJRpJwC1BvG1oa6_KcZHZRp0jpsT3CFg15eNNJyN699r8eD8aTyBKygQerc_2HkIVwXJKkVvqi1ozacL_wgu2R_z8Wz6uBb3EL5etGj8AmoXl_U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VSS-SpatioNet%3A+a+multi-scale+feature+fusion+network+for+multimodal+image+integrations&rft.jtitle=Scientific+reports&rft.au=Xiang%2C+Zeyu&rft.date=2025-03-18&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-93143-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_93143_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |