An adaptive hierarchical hybrid kernel ELM optimized by aquila optimizer algorithm for bearing fault diagnosis

As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 11990 - 26
Hauptverfasser: Yan, Hao, Shang, Liangliang, Chen, Wan, Jiang, Mengyao, lu, Tianqi, Li, Fei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 08.04.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
AbstractList As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
Abstract As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter $$G_2$$ , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter $$G_2$$ , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.
ArticleNumber 11990
Author Yan, Hao
Shang, Liangliang
Chen, Wan
Li, Fei
Jiang, Mengyao
lu, Tianqi
Author_xml – sequence: 1
  givenname: Hao
  surname: Yan
  fullname: Yan, Hao
  organization: School of Electrical Engineering and Automation, Nantong University
– sequence: 2
  givenname: Liangliang
  surname: Shang
  fullname: Shang, Liangliang
  email: shangliangliang@ntu.edu.cn
  organization: School of Electrical Engineering and Automation, Nantong University
– sequence: 3
  givenname: Wan
  surname: Chen
  fullname: Chen, Wan
  organization: School of Electrical Engineering and Automation, Nantong University
– sequence: 4
  givenname: Mengyao
  surname: Jiang
  fullname: Jiang, Mengyao
  organization: School of Electrical Engineering and Automation, Nantong University
– sequence: 5
  givenname: Tianqi
  surname: lu
  fullname: lu, Tianqi
  organization: School of Electrical Engineering and Automation, Nantong University
– sequence: 6
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Anhui Provincial Key Laboratory of Power Electronics and Motion Control, Anhui University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40199988$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOyxKWXgD_ixD6hqipQaREXOFsvzsuul6y9tZNWy6_H27Sl7aG--Ol5ZjTyzNviwAePRfGe0U-MCvU5VUxqVVIuS101VJQ3r4ojTitZcsH5waP5sDhJaU3zkVxXTL8pDivKtNZKHRX-zBPoYDu6ayQrhxGiXTkLA1nt2ug68gejx4FcLH6QkFEb9xc70u4IXE1ugIddJDAsQ3TjakP6EEmLEJ1fkh6mYSSdg6UPyaV3xesehoQnd_dx8fvrxa_z7-Xi57fL87NFaWUlxrLnTU2Z7LqWaokSQdnaMuB5rPq6kVbVjKOiCBZ73feiQWabTnNrNXJRi-PictbtAqzNNroNxJ0J4MztIsSlgTg6O6BpO5Bt2_KGC1mxugKFqCkyxTWlbU2z1pdZazu1G-ws-jHC8ET06Yt3K7MM14Yx3SjNRFY4vVOI4WrCNJqNSxaHATyGKRnBlKJKqIZl6Mdn0HWYos9_NaNkzl5l1IfHlh683OeaAWoG2BhSitgb60YYXdg7dINh1OxbZOYWmdwic9sic5Op_Bn1Xv1FkphJabuPHeN_2y-w_gFw79wo
CitedBy_id crossref_primary_10_1007_s40430_025_05763_y
crossref_primary_10_1016_j_aej_2025_08_003
Cites_doi 10.1252/jcej.19we080
10.1016/j.ymssp.2022.109727
10.1109/TPEL.2024.3484469
10.1177/1077546314547533
10.3390/act12100391
10.1016/j.ymssp.2013.11.011
10.1109/TII.2023.3323675
10.1038/s41598-024-78784-7
10.1038/s41598-025-86063-2
10.1088/1742-6596/628/1/012079
10.1155/2021/2530315
10.1109/TSMCB.2011.2168604
10.3390/s23115137
10.1016/j.ymssp.2013.07.006
10.1016/j.ijfatigue.2024.108503
10.1088/1361-6501/abeea7
10.1016/j.ress.2022.108445
10.3390/e26050409
10.1016/j.ymssp.2024.112203
10.1109/TPEL.2024.3510792
10.1016/j.ijheatfluidflow.2024.109644
10.1016/j.asoc.2021.108138
10.1016/j.engfailanal.2024.108701
10.1002/cjce.22897
10.1109/JSEN.2022.3173446
10.1038/s41598-024-82918-2
10.1016/j.isatra.2017.03.017
10.1016/j.triboint.2024.109874
10.1016/j.ymssp.2020.107327
10.1016/j.sigpro.2016.07.028
10.1016/j.ymssp.2024.112194
10.1007/s42417-021-00414-7
10.1088/1402-4896/ad8af8
10.1109/ACCESS.2020.3012053
10.1016/j.measurement.2021.109923
10.1007/s12559-018-9557-x
10.1007/s11661-024-07669-1
10.1016/j.jsv.2016.08.026
10.3390/s24072156
10.1016/j.apacoust.2024.109943
10.1088/1361-6501/ac2cf2
10.1109/JSEN.2023.3245186
10.1016/j.ymssp.2017.03.034
10.1109/TPEL.2024.3432163
10.1016/j.measurement.2013.09.019
10.1109/JSEN.2024.3386679
10.1016/j.measurement.2021.109389
10.1142/S0218126622501730
10.1109/JSEN.2012.2191402
10.3390/s21010018
10.1016/j.isatra.2024.08.029
10.1016/j.jprocont.2021.02.002
10.1109/JSEN.2022.3223980
10.1109/JSEN.2024.3446170
10.1109/JSEN.2022.3232707
10.1016/j.measurement.2023.113754
10.3233/JAE-162080
10.1016/j.engappai.2024.108904
10.1016/j.cie.2021.107250
10.1109/MIS.2013.4
10.1109/ACCESS.2021.3124948
10.1016/j.measurement.2024.116426
10.1016/j.engappai.2023.107662
10.1016/j.isatra.2023.02.022
10.3390/machines10080649
10.3390/s22228906
10.1177/14759217231221214
10.1063/5.0217495
10.1016/j.ymssp.2019.106272
10.3390/electronics12132826
10.1784/insi.2023.65.4.217
10.1088/1361-6501/ada178
10.1016/j.measurement.2021.110460
10.1016/j.ress.2024.110292
10.1109/TIE.2024.3349520
10.1109/JSEN.2020.3030910
10.1016/j.matchar.2022.111736
10.1016/j.measurement.2023.113411
10.1016/j.cma.2024.117170
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-94703-w
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60
PMC11978913
40199988
10_1038_s41598_025_94703_w
Genre Journal Article
GrantInformation_xml – fundername: Industry-University-Research Collaboration Project of Jiangsu Province
  grantid: BY20230351
– fundername: National Natural Science Foundation of China
  grantid: 62273188
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: SJCX23_1784
– fundername: The Opening Project of Key Laboratory of Power Electronics and Motion Control of Anhui Higher Education Institutions
  grantid: PEMC24001; PEMC24001
– fundername: The Opening Project of Key Laboratory of Power Electronics and Motion Control of Anhui Higher Education Institutions
  grantid: PEMC24001
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-f276015ddb095e5ea8c6c1a2e5e4f675c8612e80eacef9ff37e1c7d92cc9e2363
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463206500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:31:16 EST 2025
Tue Nov 04 02:06:05 EST 2025
Fri Sep 05 17:42:14 EDT 2025
Tue Oct 07 08:02:34 EDT 2025
Mon Jul 21 05:56:49 EDT 2025
Sat Nov 29 01:31:00 EST 2025
Tue Nov 18 22:04:21 EST 2025
Mon Jul 21 06:06:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fault diagnosis
Extreme learning machine
Stacked denoising autoencoders
Rolling bearings
Aquila optimizer algorithm
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-f276015ddb095e5ea8c6c1a2e5e4f675c8612e80eacef9ff37e1c7d92cc9e2363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bda5bbb272354164a8ee90e182900b60
PMID 40199988
PQID 3188050388
PQPubID 2041939
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11978913
proquest_miscellaneous_3188083871
proquest_journals_3188050388
pubmed_primary_40199988
crossref_citationtrail_10_1038_s41598_025_94703_w
crossref_primary_10_1038_s41598_025_94703_w
springer_journals_10_1038_s41598_025_94703_w
PublicationCentury 2000
PublicationDate 2025-04-08
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 94703_CR21
Q Lu (94703_CR13) 2021; 2021
F Liu (94703_CR32) 2023; 184
GG Tejani (94703_CR34) 2024; 14
X Ju (94703_CR7) 2023; 138
S Zhi (94703_CR31) 2024; 219
L Shang (94703_CR70) 2018; 96
B Jiang (94703_CR18) 2016; 22
Y Tang (94703_CR77) 2024; 129
94703_CR60
S Zhi (94703_CR3) 2024; 26
G Vashishtha (94703_CR53) 2021; 178
Y An (94703_CR11) 2022; 22
A Tong (94703_CR22) 2024; 24
CD Nguyen (94703_CR43) 2020; 21
LLC Kasun (94703_CR55) 2013; 28
94703_CR27
F Wang (94703_CR6) 2024; 24
L Yuan (94703_CR15) 2020; 8
94703_CR28
H Fan (94703_CR30) 2024; 429
Y Yang (94703_CR5) 2023; 23
94703_CR68
94703_CR10
Z Liu (94703_CR50) 2024; 164
L Ni (94703_CR29) 2024; 136
X Song (94703_CR74) 2023; 23
D Zhao (94703_CR80) 2024; 154
S Mitra (94703_CR2) 2023; 23
P Peng (94703_CR38) 2022; 114
X Liu (94703_CR49) 2024; 188
Q Chen (94703_CR54) 2021; 184
E Çelik (94703_CR33) 2025; 15
Z Zhu (94703_CR26) 2022; 31
C Hu (94703_CR63) 2022; 10
L Abualigah (94703_CR67) 2021; 157
Z Yang (94703_CR35) 2022; 189
X Zhang (94703_CR23) 2013; 41
Y Lu (94703_CR51) 2024; 250
Y Cheng (94703_CR25) 2016; 52
Y Xia (94703_CR36) 2023; 65
94703_CR17
94703_CR14
Z Qiu (94703_CR48) 2024; 99
Y Zhao (94703_CR41) 2023; 12
94703_CR9
Z Chen (94703_CR52) 2019; 133
94703_CR56
T Wang (94703_CR81) 2014; 45
G Vashishtha (94703_CR20) 2024; 36
94703_CR85
K You (94703_CR16) 2022; 22
94703_CR42
94703_CR84
94703_CR82
C Li (94703_CR72) 2018; 10
Q Wang (94703_CR8) 2024; 14
G Vashishtha (94703_CR66) 2021; 33
K Zhu (94703_CR62) 2014; 47
T Wang (94703_CR83) 2016; 385
Z Tao (94703_CR59) 2024; 110
L Shang (94703_CR73) 2022; 55
T Li (94703_CR58) 2025; 224
L Shang (94703_CR69) 2021; 9
M Cui (94703_CR46) 2020; 21
D He (94703_CR4) 2025; 224
P Pan (94703_CR40) 2023; 237
H Shao (94703_CR24) 2017; 69
94703_CR45
Y Li (94703_CR1) 2023; 23
94703_CR75
K Zhao (94703_CR19) 2023; 223
G Vashishtha (94703_CR65) 2021; 32
Y Li (94703_CR44) 2021; 101
L Shang (94703_CR76) 2023; 220
94703_CR71
C Lu (94703_CR47) 2017; 130
K Li (94703_CR64) 2012; 12
L Hua (94703_CR57) 2022; 185
C Zhang (94703_CR61) 2022; 222
W Li (94703_CR12) 2022; 2022
H Shao (94703_CR37) 2017; 95
L Hua (94703_CR79) 2025; 56
94703_CR78
X Wu (94703_CR39) 2021; 149
References_xml – volume: 55
  start-page: 29
  year: 2022
  ident: 94703_CR73
  publication-title: Journal of Chemical Engineering of Japan
  doi: 10.1252/jcej.19we080
– volume: 184
  year: 2023
  ident: 94703_CR32
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2022.109727
– ident: 94703_CR82
  doi: 10.1109/TPEL.2024.3484469
– volume: 22
  start-page: 2420
  year: 2016
  ident: 94703_CR18
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546314547533
– ident: 94703_CR56
  doi: 10.3390/act12100391
– ident: 94703_CR75
– volume: 45
  start-page: 139
  year: 2014
  ident: 94703_CR81
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.11.011
– ident: 94703_CR45
  doi: 10.1109/TII.2023.3323675
– volume: 14
  start-page: 30713
  year: 2024
  ident: 94703_CR8
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-78784-7
– volume: 15
  start-page: 2101
  year: 2025
  ident: 94703_CR33
  publication-title: Scientific reports
  doi: 10.1038/s41598-025-86063-2
– ident: 94703_CR17
  doi: 10.1088/1742-6596/628/1/012079
– volume: 2021
  start-page: 2530315
  year: 2021
  ident: 94703_CR13
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/2530315
– ident: 94703_CR71
  doi: 10.1109/TSMCB.2011.2168604
– volume: 23
  start-page: 5137
  year: 2023
  ident: 94703_CR74
  publication-title: Sensors
  doi: 10.3390/s23115137
– ident: 94703_CR78
– volume: 41
  start-page: 127
  year: 2013
  ident: 94703_CR23
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.07.006
– volume: 188
  year: 2024
  ident: 94703_CR49
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2024.108503
– volume: 32
  year: 2021
  ident: 94703_CR65
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/abeea7
– volume: 222
  year: 2022
  ident: 94703_CR61
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2022.108445
– volume: 26
  start-page: 409
  year: 2024
  ident: 94703_CR3
  publication-title: Entropy
  doi: 10.3390/e26050409
– volume: 224
  year: 2025
  ident: 94703_CR4
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2024.112203
– ident: 94703_CR9
  doi: 10.1109/TPEL.2024.3510792
– volume: 110
  year: 2024
  ident: 94703_CR59
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2024.109644
– volume: 114
  year: 2022
  ident: 94703_CR38
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108138
– volume: 2022
  start-page: 5242106
  year: 2022
  ident: 94703_CR12
  publication-title: Shock and Vibration
– volume: 164
  year: 2024
  ident: 94703_CR50
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2024.108701
– volume: 96
  start-page: 205
  year: 2018
  ident: 94703_CR70
  publication-title: The Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.22897
– volume: 22
  start-page: 12044
  year: 2022
  ident: 94703_CR11
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3173446
– volume: 14
  start-page: 31553
  year: 2024
  ident: 94703_CR34
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-82918-2
– volume: 69
  start-page: 187
  year: 2017
  ident: 94703_CR24
  publication-title: ISA transactions
  doi: 10.1016/j.isatra.2017.03.017
– ident: 94703_CR27
  doi: 10.1016/j.triboint.2024.109874
– volume: 149
  year: 2021
  ident: 94703_CR39
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107327
– volume: 130
  start-page: 377
  year: 2017
  ident: 94703_CR47
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 224
  year: 2025
  ident: 94703_CR58
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2024.112194
– ident: 94703_CR14
  doi: 10.1007/s42417-021-00414-7
– volume: 99
  year: 2024
  ident: 94703_CR48
  publication-title: Physica Scripta
  doi: 10.1088/1402-4896/ad8af8
– volume: 8
  start-page: 137395
  year: 2020
  ident: 94703_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012053
– volume: 184
  year: 2021
  ident: 94703_CR54
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109923
– volume: 10
  start-page: 827
  year: 2018
  ident: 94703_CR72
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-018-9557-x
– volume: 56
  start-page: 640
  year: 2025
  ident: 94703_CR79
  publication-title: Metallurgical and Materials Transactions A
  doi: 10.1007/s11661-024-07669-1
– volume: 385
  start-page: 330
  year: 2016
  ident: 94703_CR83
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.08.026
– volume: 24
  start-page: 2156
  year: 2024
  ident: 94703_CR22
  publication-title: Sensors
  doi: 10.3390/s24072156
– volume: 219
  year: 2024
  ident: 94703_CR31
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2024.109943
– volume: 33
  year: 2021
  ident: 94703_CR66
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac2cf2
– volume: 23
  start-page: 7992
  year: 2023
  ident: 94703_CR2
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2023.3245186
– volume: 95
  start-page: 187
  year: 2017
  ident: 94703_CR37
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.03.034
– ident: 94703_CR85
  doi: 10.1109/TPEL.2024.3432163
– volume: 47
  start-page: 669
  year: 2014
  ident: 94703_CR62
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.019
– volume: 24
  start-page: 17885
  year: 2024
  ident: 94703_CR6
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2024.3386679
– volume: 178
  year: 2021
  ident: 94703_CR53
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109389
– volume: 31
  start-page: 2250173
  year: 2022
  ident: 94703_CR26
  publication-title: Journal of Circuits, Systems and Computers
  doi: 10.1142/S0218126622501730
– volume: 237
  start-page: 625
  year: 2023
  ident: 94703_CR40
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
– volume: 12
  start-page: 2474
  year: 2012
  ident: 94703_CR64
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2191402
– volume: 21
  start-page: 18
  year: 2020
  ident: 94703_CR43
  publication-title: Sensors
  doi: 10.3390/s21010018
– volume: 154
  start-page: 335
  year: 2024
  ident: 94703_CR80
  publication-title: ISA transactions
  doi: 10.1016/j.isatra.2024.08.029
– ident: 94703_CR60
– volume: 101
  start-page: 24
  year: 2021
  ident: 94703_CR44
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2021.02.002
– volume: 23
  start-page: 567
  year: 2023
  ident: 94703_CR1
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3223980
– ident: 94703_CR28
  doi: 10.1109/JSEN.2024.3446170
– volume: 23
  start-page: 3848
  year: 2023
  ident: 94703_CR5
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3232707
– volume: 223
  year: 2023
  ident: 94703_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113754
– volume: 52
  start-page: 95
  year: 2016
  ident: 94703_CR25
  publication-title: International Journal of Applied Electromagnetics and Mechanics
  doi: 10.3233/JAE-162080
– volume: 136
  year: 2024
  ident: 94703_CR29
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108904
– volume: 157
  year: 2021
  ident: 94703_CR67
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– volume: 28
  start-page: 31
  year: 2013
  ident: 94703_CR55
  publication-title: IEEE intelligent systems
  doi: 10.1109/MIS.2013.4
– volume: 9
  start-page: 149050
  year: 2021
  ident: 94703_CR69
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2021.3124948
– ident: 94703_CR21
  doi: 10.1016/j.measurement.2024.116426
– volume: 129
  year: 2024
  ident: 94703_CR77
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107662
– volume: 138
  start-page: 133
  year: 2023
  ident: 94703_CR7
  publication-title: ISA transactions
  doi: 10.1016/j.isatra.2023.02.022
– ident: 94703_CR68
– volume: 10
  start-page: 649
  year: 2022
  ident: 94703_CR63
  publication-title: Machines
  doi: 10.3390/machines10080649
– volume: 22
  start-page: 8906
  year: 2022
  ident: 94703_CR16
  publication-title: Sensors
  doi: 10.3390/s22228906
– ident: 94703_CR42
  doi: 10.1177/14759217231221214
– ident: 94703_CR10
  doi: 10.1063/5.0217495
– volume: 133
  year: 2019
  ident: 94703_CR52
  publication-title: Mechanical systems and signal processing
  doi: 10.1016/j.ymssp.2019.106272
– volume: 12
  start-page: 2826
  year: 2023
  ident: 94703_CR41
  publication-title: Electronics
  doi: 10.3390/electronics12132826
– volume: 65
  start-page: 217
  year: 2023
  ident: 94703_CR36
  publication-title: Insight-Non-Destructive Testing and Condition Monitoring
  doi: 10.1784/insi.2023.65.4.217
– volume: 36
  year: 2024
  ident: 94703_CR20
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ada178
– volume: 189
  year: 2022
  ident: 94703_CR35
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110460
– volume: 250
  year: 2024
  ident: 94703_CR51
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2024.110292
– ident: 94703_CR84
  doi: 10.1109/TIE.2024.3349520
– volume: 21
  start-page: 4927
  year: 2020
  ident: 94703_CR46
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.3030910
– volume: 185
  year: 2022
  ident: 94703_CR57
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2022.111736
– volume: 220
  year: 2023
  ident: 94703_CR76
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113411
– volume: 429
  year: 2024
  ident: 94703_CR30
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2024.117170
SSID ssj0000529419
Score 2.46351
Snippet As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a...
Abstract As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11990
SubjectTerms 639/166/987
639/166/988
Algorithms
Aquila optimizer algorithm
Classification
Extreme learning machine
Fault diagnosis
Humanities and Social Sciences
Learning algorithms
multidisciplinary
Rolling bearings
Science
Science (multidisciplinary)
Stacked denoising autoencoders
SummonAdditionalLinks – databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdV1HG_sEyqoFQeoegCpt8h2nG7UNNkmWarl1zPjZFMtj164RbGt2Jmn_Y1nCHlruUgTaVLmEl2wRErFwMpppq3nvhCh4nYoNpEeHamTE308Hrh1Y1jlRicGRZ03Ds_I9wQmDgu5Sz4sLxhWjUJ0dSyhcZPcwiwJcQjdO57OWBDFSrge78rA2L0O7BXeKYsl0wkwO7vcskchbf_ffM0_QyZ_w02DOTq8_78LeUDujY4o3R845yG54etH5M5QmnL9mNT7NTW5WaI2pFgvOyAOQFC6WOMlL3rm29pX9ODLV9pAr_Pyp8-pXVNzsSorM71rqalO4fP94pyCf0wtSBYsiBZmVfU0HwL9yu4J-X548O3TZzbWZmBOJqJnRYzBNDLPLfhoXnqj3NxxE8NjUsAmxClwnbyagV73hS6A6p67NNexc9rHYi6ekp26qf1zQmfSFByaxZybJDVSO2W4cNxL6wSY2IjwDYUyNyYux_oZVRYAdKGygaoZUDULVM0uI_JuGrMc0nZc2_sjEn7qiSm3w4umPc1GCc5sbqS1Nk5jIcGLTYzyXs88RyR6Zucwzd0NvbNRD3TZFbEj8mZqBglGWMbUvlmNfZSAnWtEng1cNs0Edr_gweNotcV_W1PdbqnLRcgSjvgwYtAReb9h1at5_ftfvLh-GS_J3RilB2OX1C7Z6duVf0Vuux992bWvg_j9AoJWOIo
  priority: 102
  providerName: ProQuest
Title An adaptive hierarchical hybrid kernel ELM optimized by aquila optimizer algorithm for bearing fault diagnosis
URI https://link.springer.com/article/10.1038/s41598-025-94703-w
https://www.ncbi.nlm.nih.gov/pubmed/40199988
https://www.proquest.com/docview/3188050388
https://www.proquest.com/docview/3188083871
https://pubmed.ncbi.nlm.nih.gov/PMC11978913
https://doaj.org/article/bda5bbb272354164a8ee90e182900b60
Volume 15
WOSCitedRecordID wos001463206500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgA4kXxDeBURmJN4gWx3FjP26oE0i0ihBI5cmyHWeNyNItTTeVv56zk4aVzxderCi2pZPvznenO_8OoVea0DRhKg1NIoowYYyHYOVEKLQltqC-47ZvNpHOZnw-F9m1Vl-uJqyDB-4O7lDnimmt4zSmDJyHRHFrRWSJSwBGeuyj9SgV14KpDtU7FgkR_SuZiPLDFVgq95osZqFIQMzDqx1L5AH7f-dl_los-VPG1Buik3vobu9B4qOO8vvohq0foNtdT8nNQ1Qf1Vjl6txdY9g1uvapAuAEXmzc6yz81Ta1rfDkwxQvYdVZ-c3mWG-wuliXlRr-NVhVp8umbBdnGBxbrEElgB5cqHXV4ryr0CtXj9Dnk8mnt-_CvqlCaFhC27CIXRUMy3MNzpVlVnEzNkTF8JkUED0YDj6P5RFcyLYQBbDLEpPmIjZG2JiO6WO0Vy9r-xThiKmCwDQdE5WkignDFaGGWKYNBdsYILI9YGl6xHHX-KKSPvNNueyYIoEp0jNFXgXo9bDnvMPb-OvqY8e3YaXDyvY_QIJkL0HyXxIUoIMt12WvwCtJHU6dh8oJ0MthGlTP5VNUbZfrfg2nEHIG6EknJAMlELaC6-128x3x2SF1d6YuFx7e2yV2XfI4QG-2kvaDrj-fxbP_cRbP0Z3YqYgrTeIHaK9t1vYFumUu23LVjNDNdJ76kY_Q_vFkln0ceb2DcRpnbkxh3M_eT7Mv3wEdtjEK
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAQX3rSBAkaCE6war9dZ-4BQC6laNY0qVKTejO31NhHpJs2DKPwofiPjfVXh0VsP3FZr72rs_ea1M54BeG0oiyOu48BGMg0izkWAWk4G0jjqUpZ33M6bTcS9njg9lcdr8LM6C-PTKiuZmAvqZGT9P_Jt5guH5bVLPowvAt81ykdXqxYaBSwO3XKBLtv0_cEn_L5vwnCvc_JxPyi7CgSWR2wWpKFPA-FJYtC6cNxpYduW6hAvoxTNZytQ6TvRQonkUpkivY7aOJGhtdKFrM3wvTdgPWIo1huwvtvpHX-u_-r4uFlEZXk6B6ndnqKG9KfYQh7ICNkrWKxowLxRwN-s2z-TNH-L1OYKcO_e_7Z19-FuaWqTnYI3HsCayx7CraL55vIRZDsZ0Ykee3lPfEfwPKaCkCX9pT_GRr65SeaGpNM9IiOcdT744RJilkRfzAdDXd-bED08w-XO-ucEPQBicKW4gSTV8-GMJEUq42D6GL5cy2KfQCMbZW4TSIvrlOIwa1MdxZpLKzRlljpuLEMjogm0QoSyZWl23yFkqPIUASZUgSKFKFI5itSiCW_rZ8ZFYZIrZ-96oNUzfVHx_MZocqZKGaVMorkxJoxDxtFOj7RwTrYc9bH2lmkjmVsVvlQp6abqElxNeFUPo4zygSedudG8nCMY-uZN2ChQXVOC_j36KP5psYL3FVJXR7JBP6-D7iPgPsrehHcVa1zS9e-9eHr1Ml7C7f2To67qHvQOn8Gd0HOuz9QSW9CYTebuOdy032eD6eRFyfwEvl430_wCHv2Y7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKeYgL70eggJHgBKvE63XWPiBUaCuqligHkHpzba-3iUg3aR5E4afx65jxPqrw6K0Hbqu1dzX2fvPaGc8Q8soynibCpJFLVB4lQsgItJyKlPXM5zx03A7NJtJeTx4dqf4G-VmfhcG0ylomBkGdjR3-I29zLBwWape08yotor-z935yFmEHKYy01u00Sogc-NUS3LfZu_0d-Nav43hv98vHT1HVYSByIuHzKI8xJURkmQVLwwtvpOs6ZmK4THIwpZ0EA8DLDkgnn6scaPfMpZmKnVM-5l0O771CrqZJtyND2mC_-b-DEbSEqeqcDtDdnoGuxPNssYhUAowWLdd0YWgZ8Dc79890zd9itkEV7t3-nzfxDrlVGeB0u-SYu2TDF_fI9bIl5-o-KbYLajIzQS1AsU94iLQAkOlghYfb6Dc_LfyI7h5-pmOYdTr84TNqV9ScLYYj09ybUjM6geXOB6cU_AJqYaWwmTQ3i9GcZmWC43D2gHy9lMU-JJvFuPCPCe0IkzMY5l1mktQI5aRh3DEvrONgWrQIq9GhXVWwHfuGjHRIHOBSl4jSgCgdEKWXLfKmeWZSliu5cPYHBF0zE0uNhxvj6YmuJJe2mRHW2jiNuQDrPTHSe9XxDCPwHdsFMrdqrOlK_s30OdBa5GUzDJILw1Gm8ONFNUdy8Nhb5FGJ8IYS8PrBc8Gn5Rr210hdHymGg1AdHePiGHtvkbc1m5zT9e-9eHLxMl6QG8Ap-nC_d_CU3IyRiTF9S26Rzfl04Z-Ra-77fDibPg9SgJLjy-aYX2qtoGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+hierarchical+hybrid+kernel+ELM+optimized+by+aquila+optimizer+algorithm+for+bearing+fault+diagnosis&rft.jtitle=Scientific+reports&rft.au=Hao+Yan&rft.au=Liangliang+Shang&rft.au=Wan+Chen&rft.au=Mengyao+Jiang&rft.date=2025-04-08&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1038%2Fs41598-025-94703-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon