An adaptive hierarchical hybrid kernel ELM optimized by aquila optimizer algorithm for bearing fault diagnosis
As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operat...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 11990 - 26 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
08.04.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter
, which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. |
|---|---|
| AbstractList | As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods.As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. Abstract As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter $$G_2$$ , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE's deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter [Formula: see text], which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter $$G_2$$ , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a far-reaching impact on social security. Hence, ensuring an effective diagnosis of faults in rolling bearings is paramount in maintaining operational integrity. This paper proposes an intelligent bearing fault diagnosis method that improves classification accuracy using a stacked denoising autoencoder (SDAE) and adaptive hierarchical hybrid kernel extreme learning machine (AHHKELM). First, a hybrid kernel extreme learning machine (HKELM) is initially constructed, leveraging SDAE’s deep network architecture for automatic feature extraction. The hybrid kernel functions address the limitations of single kernel functions by effectively capturing both linear and nonlinear patterns in the data. Subsequently, the hierarchical hybrid kernel extreme learning machine (HHKELM) is refined through an enhanced Aquila Optimizer (AO) algorithm, which iteratively optimizes the kernel hyperparameter combination. The AO algorithm is further enhanced by incorporating chaos mapping, implementing a refined balanced search strategy, and fine-tuning parameter , which collectively improve its ability to escape local optima and conduct global searches, thus strengthening the robustness of the model during parameter optimization. Experimental results on the CWRU , MFPT and JNU datasets demonstrate that stacked denoising autoencoder-adaptive hierarchical hybrid kernel extreme learning machine (SDAE-AHHKELM) has better fault classification accuracy, robustness, and generalization than KELM and other methods. |
| ArticleNumber | 11990 |
| Author | Yan, Hao Shang, Liangliang Chen, Wan Li, Fei Jiang, Mengyao lu, Tianqi |
| Author_xml | – sequence: 1 givenname: Hao surname: Yan fullname: Yan, Hao organization: School of Electrical Engineering and Automation, Nantong University – sequence: 2 givenname: Liangliang surname: Shang fullname: Shang, Liangliang email: shangliangliang@ntu.edu.cn organization: School of Electrical Engineering and Automation, Nantong University – sequence: 3 givenname: Wan surname: Chen fullname: Chen, Wan organization: School of Electrical Engineering and Automation, Nantong University – sequence: 4 givenname: Mengyao surname: Jiang fullname: Jiang, Mengyao organization: School of Electrical Engineering and Automation, Nantong University – sequence: 5 givenname: Tianqi surname: lu fullname: lu, Tianqi organization: School of Electrical Engineering and Automation, Nantong University – sequence: 6 givenname: Fei surname: Li fullname: Li, Fei organization: Anhui Provincial Key Laboratory of Power Electronics and Motion Control, Anhui University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40199988$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAUjFARLaV_gAOyxKWXgD_ixD6hqipQaREXOFsvzsuul6y9tZNWy6_H27Sl7aG--Ol5ZjTyzNviwAePRfGe0U-MCvU5VUxqVVIuS101VJQ3r4ojTitZcsH5waP5sDhJaU3zkVxXTL8pDivKtNZKHRX-zBPoYDu6ayQrhxGiXTkLA1nt2ug68gejx4FcLH6QkFEb9xc70u4IXE1ugIddJDAsQ3TjakP6EEmLEJ1fkh6mYSSdg6UPyaV3xesehoQnd_dx8fvrxa_z7-Xi57fL87NFaWUlxrLnTU2Z7LqWaokSQdnaMuB5rPq6kVbVjKOiCBZ73feiQWabTnNrNXJRi-PictbtAqzNNroNxJ0J4MztIsSlgTg6O6BpO5Bt2_KGC1mxugKFqCkyxTWlbU2z1pdZazu1G-ws-jHC8ET06Yt3K7MM14Yx3SjNRFY4vVOI4WrCNJqNSxaHATyGKRnBlKJKqIZl6Mdn0HWYos9_NaNkzl5l1IfHlh683OeaAWoG2BhSitgb60YYXdg7dINh1OxbZOYWmdwic9sic5Op_Bn1Xv1FkphJabuPHeN_2y-w_gFw79wo |
| CitedBy_id | crossref_primary_10_1007_s40430_025_05763_y crossref_primary_10_1016_j_aej_2025_08_003 |
| Cites_doi | 10.1252/jcej.19we080 10.1016/j.ymssp.2022.109727 10.1109/TPEL.2024.3484469 10.1177/1077546314547533 10.3390/act12100391 10.1016/j.ymssp.2013.11.011 10.1109/TII.2023.3323675 10.1038/s41598-024-78784-7 10.1038/s41598-025-86063-2 10.1088/1742-6596/628/1/012079 10.1155/2021/2530315 10.1109/TSMCB.2011.2168604 10.3390/s23115137 10.1016/j.ymssp.2013.07.006 10.1016/j.ijfatigue.2024.108503 10.1088/1361-6501/abeea7 10.1016/j.ress.2022.108445 10.3390/e26050409 10.1016/j.ymssp.2024.112203 10.1109/TPEL.2024.3510792 10.1016/j.ijheatfluidflow.2024.109644 10.1016/j.asoc.2021.108138 10.1016/j.engfailanal.2024.108701 10.1002/cjce.22897 10.1109/JSEN.2022.3173446 10.1038/s41598-024-82918-2 10.1016/j.isatra.2017.03.017 10.1016/j.triboint.2024.109874 10.1016/j.ymssp.2020.107327 10.1016/j.sigpro.2016.07.028 10.1016/j.ymssp.2024.112194 10.1007/s42417-021-00414-7 10.1088/1402-4896/ad8af8 10.1109/ACCESS.2020.3012053 10.1016/j.measurement.2021.109923 10.1007/s12559-018-9557-x 10.1007/s11661-024-07669-1 10.1016/j.jsv.2016.08.026 10.3390/s24072156 10.1016/j.apacoust.2024.109943 10.1088/1361-6501/ac2cf2 10.1109/JSEN.2023.3245186 10.1016/j.ymssp.2017.03.034 10.1109/TPEL.2024.3432163 10.1016/j.measurement.2013.09.019 10.1109/JSEN.2024.3386679 10.1016/j.measurement.2021.109389 10.1142/S0218126622501730 10.1109/JSEN.2012.2191402 10.3390/s21010018 10.1016/j.isatra.2024.08.029 10.1016/j.jprocont.2021.02.002 10.1109/JSEN.2022.3223980 10.1109/JSEN.2024.3446170 10.1109/JSEN.2022.3232707 10.1016/j.measurement.2023.113754 10.3233/JAE-162080 10.1016/j.engappai.2024.108904 10.1016/j.cie.2021.107250 10.1109/MIS.2013.4 10.1109/ACCESS.2021.3124948 10.1016/j.measurement.2024.116426 10.1016/j.engappai.2023.107662 10.1016/j.isatra.2023.02.022 10.3390/machines10080649 10.3390/s22228906 10.1177/14759217231221214 10.1063/5.0217495 10.1016/j.ymssp.2019.106272 10.3390/electronics12132826 10.1784/insi.2023.65.4.217 10.1088/1361-6501/ada178 10.1016/j.measurement.2021.110460 10.1016/j.ress.2024.110292 10.1109/TIE.2024.3349520 10.1109/JSEN.2020.3030910 10.1016/j.matchar.2022.111736 10.1016/j.measurement.2023.113411 10.1016/j.cma.2024.117170 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-94703-w |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60 PMC11978913 40199988 10_1038_s41598_025_94703_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Industry-University-Research Collaboration Project of Jiangsu Province grantid: BY20230351 – fundername: National Natural Science Foundation of China grantid: 62273188 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province grantid: SJCX23_1784 – fundername: The Opening Project of Key Laboratory of Power Electronics and Motion Control of Anhui Higher Education Institutions grantid: PEMC24001; PEMC24001 – fundername: The Opening Project of Key Laboratory of Power Electronics and Motion Control of Anhui Higher Education Institutions grantid: PEMC24001 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c543t-f276015ddb095e5ea8c6c1a2e5e4f675c8612e80eacef9ff37e1c7d92cc9e2363 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463206500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:31:16 EST 2025 Tue Nov 04 02:06:05 EST 2025 Fri Sep 05 17:42:14 EDT 2025 Tue Oct 07 08:02:34 EDT 2025 Mon Jul 21 05:56:49 EDT 2025 Sat Nov 29 01:31:00 EST 2025 Tue Nov 18 22:04:21 EST 2025 Mon Jul 21 06:06:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fault diagnosis Extreme learning machine Stacked denoising autoencoders Rolling bearings Aquila optimizer algorithm |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-f276015ddb095e5ea8c6c1a2e5e4f675c8612e80eacef9ff37e1c7d92cc9e2363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/bda5bbb272354164a8ee90e182900b60 |
| PMID | 40199988 |
| PQID | 3188050388 |
| PQPubID | 2041939 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11978913 proquest_miscellaneous_3188083871 proquest_journals_3188050388 pubmed_primary_40199988 crossref_citationtrail_10_1038_s41598_025_94703_w crossref_primary_10_1038_s41598_025_94703_w springer_journals_10_1038_s41598_025_94703_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-08 |
| PublicationDateYYYYMMDD | 2025-04-08 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 94703_CR21 Q Lu (94703_CR13) 2021; 2021 F Liu (94703_CR32) 2023; 184 GG Tejani (94703_CR34) 2024; 14 X Ju (94703_CR7) 2023; 138 S Zhi (94703_CR31) 2024; 219 L Shang (94703_CR70) 2018; 96 B Jiang (94703_CR18) 2016; 22 Y Tang (94703_CR77) 2024; 129 94703_CR60 S Zhi (94703_CR3) 2024; 26 G Vashishtha (94703_CR53) 2021; 178 Y An (94703_CR11) 2022; 22 A Tong (94703_CR22) 2024; 24 CD Nguyen (94703_CR43) 2020; 21 LLC Kasun (94703_CR55) 2013; 28 94703_CR27 F Wang (94703_CR6) 2024; 24 L Yuan (94703_CR15) 2020; 8 94703_CR28 H Fan (94703_CR30) 2024; 429 Y Yang (94703_CR5) 2023; 23 94703_CR68 94703_CR10 Z Liu (94703_CR50) 2024; 164 L Ni (94703_CR29) 2024; 136 X Song (94703_CR74) 2023; 23 D Zhao (94703_CR80) 2024; 154 S Mitra (94703_CR2) 2023; 23 P Peng (94703_CR38) 2022; 114 X Liu (94703_CR49) 2024; 188 Q Chen (94703_CR54) 2021; 184 E Çelik (94703_CR33) 2025; 15 Z Zhu (94703_CR26) 2022; 31 C Hu (94703_CR63) 2022; 10 L Abualigah (94703_CR67) 2021; 157 Z Yang (94703_CR35) 2022; 189 X Zhang (94703_CR23) 2013; 41 Y Lu (94703_CR51) 2024; 250 Y Cheng (94703_CR25) 2016; 52 Y Xia (94703_CR36) 2023; 65 94703_CR17 94703_CR14 Z Qiu (94703_CR48) 2024; 99 Y Zhao (94703_CR41) 2023; 12 94703_CR9 Z Chen (94703_CR52) 2019; 133 94703_CR56 T Wang (94703_CR81) 2014; 45 G Vashishtha (94703_CR20) 2024; 36 94703_CR85 K You (94703_CR16) 2022; 22 94703_CR42 94703_CR84 94703_CR82 C Li (94703_CR72) 2018; 10 Q Wang (94703_CR8) 2024; 14 G Vashishtha (94703_CR66) 2021; 33 K Zhu (94703_CR62) 2014; 47 T Wang (94703_CR83) 2016; 385 Z Tao (94703_CR59) 2024; 110 L Shang (94703_CR73) 2022; 55 T Li (94703_CR58) 2025; 224 L Shang (94703_CR69) 2021; 9 M Cui (94703_CR46) 2020; 21 D He (94703_CR4) 2025; 224 P Pan (94703_CR40) 2023; 237 H Shao (94703_CR24) 2017; 69 94703_CR45 Y Li (94703_CR1) 2023; 23 94703_CR75 K Zhao (94703_CR19) 2023; 223 G Vashishtha (94703_CR65) 2021; 32 Y Li (94703_CR44) 2021; 101 L Shang (94703_CR76) 2023; 220 94703_CR71 C Lu (94703_CR47) 2017; 130 K Li (94703_CR64) 2012; 12 L Hua (94703_CR57) 2022; 185 C Zhang (94703_CR61) 2022; 222 W Li (94703_CR12) 2022; 2022 H Shao (94703_CR37) 2017; 95 L Hua (94703_CR79) 2025; 56 94703_CR78 X Wu (94703_CR39) 2021; 149 |
| References_xml | – volume: 55 start-page: 29 year: 2022 ident: 94703_CR73 publication-title: Journal of Chemical Engineering of Japan doi: 10.1252/jcej.19we080 – volume: 184 year: 2023 ident: 94703_CR32 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2022.109727 – ident: 94703_CR82 doi: 10.1109/TPEL.2024.3484469 – volume: 22 start-page: 2420 year: 2016 ident: 94703_CR18 publication-title: Journal of Vibration and Control doi: 10.1177/1077546314547533 – ident: 94703_CR56 doi: 10.3390/act12100391 – ident: 94703_CR75 – volume: 45 start-page: 139 year: 2014 ident: 94703_CR81 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.11.011 – ident: 94703_CR45 doi: 10.1109/TII.2023.3323675 – volume: 14 start-page: 30713 year: 2024 ident: 94703_CR8 publication-title: Scientific Reports doi: 10.1038/s41598-024-78784-7 – volume: 15 start-page: 2101 year: 2025 ident: 94703_CR33 publication-title: Scientific reports doi: 10.1038/s41598-025-86063-2 – ident: 94703_CR17 doi: 10.1088/1742-6596/628/1/012079 – volume: 2021 start-page: 2530315 year: 2021 ident: 94703_CR13 publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/2530315 – ident: 94703_CR71 doi: 10.1109/TSMCB.2011.2168604 – volume: 23 start-page: 5137 year: 2023 ident: 94703_CR74 publication-title: Sensors doi: 10.3390/s23115137 – ident: 94703_CR78 – volume: 41 start-page: 127 year: 2013 ident: 94703_CR23 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.07.006 – volume: 188 year: 2024 ident: 94703_CR49 publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2024.108503 – volume: 32 year: 2021 ident: 94703_CR65 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/abeea7 – volume: 222 year: 2022 ident: 94703_CR61 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2022.108445 – volume: 26 start-page: 409 year: 2024 ident: 94703_CR3 publication-title: Entropy doi: 10.3390/e26050409 – volume: 224 year: 2025 ident: 94703_CR4 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2024.112203 – ident: 94703_CR9 doi: 10.1109/TPEL.2024.3510792 – volume: 110 year: 2024 ident: 94703_CR59 publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2024.109644 – volume: 114 year: 2022 ident: 94703_CR38 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108138 – volume: 2022 start-page: 5242106 year: 2022 ident: 94703_CR12 publication-title: Shock and Vibration – volume: 164 year: 2024 ident: 94703_CR50 publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2024.108701 – volume: 96 start-page: 205 year: 2018 ident: 94703_CR70 publication-title: The Canadian Journal of Chemical Engineering doi: 10.1002/cjce.22897 – volume: 22 start-page: 12044 year: 2022 ident: 94703_CR11 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3173446 – volume: 14 start-page: 31553 year: 2024 ident: 94703_CR34 publication-title: Scientific Reports doi: 10.1038/s41598-024-82918-2 – volume: 69 start-page: 187 year: 2017 ident: 94703_CR24 publication-title: ISA transactions doi: 10.1016/j.isatra.2017.03.017 – ident: 94703_CR27 doi: 10.1016/j.triboint.2024.109874 – volume: 149 year: 2021 ident: 94703_CR39 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2020.107327 – volume: 130 start-page: 377 year: 2017 ident: 94703_CR47 publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 – volume: 224 year: 2025 ident: 94703_CR58 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2024.112194 – ident: 94703_CR14 doi: 10.1007/s42417-021-00414-7 – volume: 99 year: 2024 ident: 94703_CR48 publication-title: Physica Scripta doi: 10.1088/1402-4896/ad8af8 – volume: 8 start-page: 137395 year: 2020 ident: 94703_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012053 – volume: 184 year: 2021 ident: 94703_CR54 publication-title: Measurement doi: 10.1016/j.measurement.2021.109923 – volume: 10 start-page: 827 year: 2018 ident: 94703_CR72 publication-title: Cognitive Computation doi: 10.1007/s12559-018-9557-x – volume: 56 start-page: 640 year: 2025 ident: 94703_CR79 publication-title: Metallurgical and Materials Transactions A doi: 10.1007/s11661-024-07669-1 – volume: 385 start-page: 330 year: 2016 ident: 94703_CR83 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.08.026 – volume: 24 start-page: 2156 year: 2024 ident: 94703_CR22 publication-title: Sensors doi: 10.3390/s24072156 – volume: 219 year: 2024 ident: 94703_CR31 publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2024.109943 – volume: 33 year: 2021 ident: 94703_CR66 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ac2cf2 – volume: 23 start-page: 7992 year: 2023 ident: 94703_CR2 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2023.3245186 – volume: 95 start-page: 187 year: 2017 ident: 94703_CR37 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.03.034 – ident: 94703_CR85 doi: 10.1109/TPEL.2024.3432163 – volume: 47 start-page: 669 year: 2014 ident: 94703_CR62 publication-title: Measurement doi: 10.1016/j.measurement.2013.09.019 – volume: 24 start-page: 17885 year: 2024 ident: 94703_CR6 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2024.3386679 – volume: 178 year: 2021 ident: 94703_CR53 publication-title: Measurement doi: 10.1016/j.measurement.2021.109389 – volume: 31 start-page: 2250173 year: 2022 ident: 94703_CR26 publication-title: Journal of Circuits, Systems and Computers doi: 10.1142/S0218126622501730 – volume: 237 start-page: 625 year: 2023 ident: 94703_CR40 publication-title: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment – volume: 12 start-page: 2474 year: 2012 ident: 94703_CR64 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2191402 – volume: 21 start-page: 18 year: 2020 ident: 94703_CR43 publication-title: Sensors doi: 10.3390/s21010018 – volume: 154 start-page: 335 year: 2024 ident: 94703_CR80 publication-title: ISA transactions doi: 10.1016/j.isatra.2024.08.029 – ident: 94703_CR60 – volume: 101 start-page: 24 year: 2021 ident: 94703_CR44 publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2021.02.002 – volume: 23 start-page: 567 year: 2023 ident: 94703_CR1 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3223980 – ident: 94703_CR28 doi: 10.1109/JSEN.2024.3446170 – volume: 23 start-page: 3848 year: 2023 ident: 94703_CR5 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3232707 – volume: 223 year: 2023 ident: 94703_CR19 publication-title: Measurement doi: 10.1016/j.measurement.2023.113754 – volume: 52 start-page: 95 year: 2016 ident: 94703_CR25 publication-title: International Journal of Applied Electromagnetics and Mechanics doi: 10.3233/JAE-162080 – volume: 136 year: 2024 ident: 94703_CR29 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.108904 – volume: 157 year: 2021 ident: 94703_CR67 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107250 – volume: 28 start-page: 31 year: 2013 ident: 94703_CR55 publication-title: IEEE intelligent systems doi: 10.1109/MIS.2013.4 – volume: 9 start-page: 149050 year: 2021 ident: 94703_CR69 publication-title: IEEE access doi: 10.1109/ACCESS.2021.3124948 – ident: 94703_CR21 doi: 10.1016/j.measurement.2024.116426 – volume: 129 year: 2024 ident: 94703_CR77 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107662 – volume: 138 start-page: 133 year: 2023 ident: 94703_CR7 publication-title: ISA transactions doi: 10.1016/j.isatra.2023.02.022 – ident: 94703_CR68 – volume: 10 start-page: 649 year: 2022 ident: 94703_CR63 publication-title: Machines doi: 10.3390/machines10080649 – volume: 22 start-page: 8906 year: 2022 ident: 94703_CR16 publication-title: Sensors doi: 10.3390/s22228906 – ident: 94703_CR42 doi: 10.1177/14759217231221214 – ident: 94703_CR10 doi: 10.1063/5.0217495 – volume: 133 year: 2019 ident: 94703_CR52 publication-title: Mechanical systems and signal processing doi: 10.1016/j.ymssp.2019.106272 – volume: 12 start-page: 2826 year: 2023 ident: 94703_CR41 publication-title: Electronics doi: 10.3390/electronics12132826 – volume: 65 start-page: 217 year: 2023 ident: 94703_CR36 publication-title: Insight-Non-Destructive Testing and Condition Monitoring doi: 10.1784/insi.2023.65.4.217 – volume: 36 year: 2024 ident: 94703_CR20 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ada178 – volume: 189 year: 2022 ident: 94703_CR35 publication-title: Measurement doi: 10.1016/j.measurement.2021.110460 – volume: 250 year: 2024 ident: 94703_CR51 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2024.110292 – ident: 94703_CR84 doi: 10.1109/TIE.2024.3349520 – volume: 21 start-page: 4927 year: 2020 ident: 94703_CR46 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.3030910 – volume: 185 year: 2022 ident: 94703_CR57 publication-title: Materials Characterization doi: 10.1016/j.matchar.2022.111736 – volume: 220 year: 2023 ident: 94703_CR76 publication-title: Measurement doi: 10.1016/j.measurement.2023.113411 – volume: 429 year: 2024 ident: 94703_CR30 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2024.117170 |
| SSID | ssj0000529419 |
| Score | 2.46351 |
| Snippet | As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also has a... Abstract As a critical component of rotating machinery, the operating status of rolling bearings is not only related to significant economic interests but also... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11990 |
| SubjectTerms | 639/166/987 639/166/988 Algorithms Aquila optimizer algorithm Classification Extreme learning machine Fault diagnosis Humanities and Social Sciences Learning algorithms multidisciplinary Rolling bearings Science Science (multidisciplinary) Stacked denoising autoencoders |
| SummonAdditionalLinks | – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdV1HG_sEyqoFQeoegCpt8h2nG7UNNkmWarl1zPjZFMtj164RbGt2Jmn_Y1nCHlruUgTaVLmEl2wRErFwMpppq3nvhCh4nYoNpEeHamTE308Hrh1Y1jlRicGRZ03Ds_I9wQmDgu5Sz4sLxhWjUJ0dSyhcZPcwiwJcQjdO57OWBDFSrge78rA2L0O7BXeKYsl0wkwO7vcskchbf_ffM0_QyZ_w02DOTq8_78LeUDujY4o3R845yG54etH5M5QmnL9mNT7NTW5WaI2pFgvOyAOQFC6WOMlL3rm29pX9ODLV9pAr_Pyp8-pXVNzsSorM71rqalO4fP94pyCf0wtSBYsiBZmVfU0HwL9yu4J-X548O3TZzbWZmBOJqJnRYzBNDLPLfhoXnqj3NxxE8NjUsAmxClwnbyagV73hS6A6p67NNexc9rHYi6ekp26qf1zQmfSFByaxZybJDVSO2W4cNxL6wSY2IjwDYUyNyYux_oZVRYAdKGygaoZUDULVM0uI_JuGrMc0nZc2_sjEn7qiSm3w4umPc1GCc5sbqS1Nk5jIcGLTYzyXs88RyR6Zucwzd0NvbNRD3TZFbEj8mZqBglGWMbUvlmNfZSAnWtEng1cNs0Edr_gweNotcV_W1PdbqnLRcgSjvgwYtAReb9h1at5_ftfvLh-GS_J3RilB2OX1C7Z6duVf0Vuux992bWvg_j9AoJWOIo priority: 102 providerName: ProQuest |
| Title | An adaptive hierarchical hybrid kernel ELM optimized by aquila optimizer algorithm for bearing fault diagnosis |
| URI | https://link.springer.com/article/10.1038/s41598-025-94703-w https://www.ncbi.nlm.nih.gov/pubmed/40199988 https://www.proquest.com/docview/3188050388 https://www.proquest.com/docview/3188083871 https://pubmed.ncbi.nlm.nih.gov/PMC11978913 https://doaj.org/article/bda5bbb272354164a8ee90e182900b60 |
| Volume | 15 |
| WOSCitedRecordID | wos001463206500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgA4kXxDeBURmJN4gWx3FjP26oE0i0ihBI5cmyHWeNyNItTTeVv56zk4aVzxderCi2pZPvznenO_8OoVea0DRhKg1NIoowYYyHYOVEKLQltqC-47ZvNpHOZnw-F9m1Vl-uJqyDB-4O7lDnimmt4zSmDJyHRHFrRWSJSwBGeuyj9SgV14KpDtU7FgkR_SuZiPLDFVgq95osZqFIQMzDqx1L5AH7f-dl_los-VPG1Buik3vobu9B4qOO8vvohq0foNtdT8nNQ1Qf1Vjl6txdY9g1uvapAuAEXmzc6yz81Ta1rfDkwxQvYdVZ-c3mWG-wuliXlRr-NVhVp8umbBdnGBxbrEElgB5cqHXV4ryr0CtXj9Dnk8mnt-_CvqlCaFhC27CIXRUMy3MNzpVlVnEzNkTF8JkUED0YDj6P5RFcyLYQBbDLEpPmIjZG2JiO6WO0Vy9r-xThiKmCwDQdE5WkignDFaGGWKYNBdsYILI9YGl6xHHX-KKSPvNNueyYIoEp0jNFXgXo9bDnvMPb-OvqY8e3YaXDyvY_QIJkL0HyXxIUoIMt12WvwCtJHU6dh8oJ0MthGlTP5VNUbZfrfg2nEHIG6EknJAMlELaC6-128x3x2SF1d6YuFx7e2yV2XfI4QG-2kvaDrj-fxbP_cRbP0Z3YqYgrTeIHaK9t1vYFumUu23LVjNDNdJ76kY_Q_vFkln0ceb2DcRpnbkxh3M_eT7Mv3wEdtjEK |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAQX3rSBAkaCE6war9dZ-4BQC6laNY0qVKTejO31NhHpJs2DKPwofiPjfVXh0VsP3FZr72rs_ea1M54BeG0oiyOu48BGMg0izkWAWk4G0jjqUpZ33M6bTcS9njg9lcdr8LM6C-PTKiuZmAvqZGT9P_Jt5guH5bVLPowvAt81ykdXqxYaBSwO3XKBLtv0_cEn_L5vwnCvc_JxPyi7CgSWR2wWpKFPA-FJYtC6cNxpYduW6hAvoxTNZytQ6TvRQonkUpkivY7aOJGhtdKFrM3wvTdgPWIo1huwvtvpHX-u_-r4uFlEZXk6B6ndnqKG9KfYQh7ICNkrWKxowLxRwN-s2z-TNH-L1OYKcO_e_7Z19-FuaWqTnYI3HsCayx7CraL55vIRZDsZ0Ykee3lPfEfwPKaCkCX9pT_GRr65SeaGpNM9IiOcdT744RJilkRfzAdDXd-bED08w-XO-ucEPQBicKW4gSTV8-GMJEUq42D6GL5cy2KfQCMbZW4TSIvrlOIwa1MdxZpLKzRlljpuLEMjogm0QoSyZWl23yFkqPIUASZUgSKFKFI5itSiCW_rZ8ZFYZIrZ-96oNUzfVHx_MZocqZKGaVMorkxJoxDxtFOj7RwTrYc9bH2lmkjmVsVvlQp6abqElxNeFUPo4zygSedudG8nCMY-uZN2ChQXVOC_j36KP5psYL3FVJXR7JBP6-D7iPgPsrehHcVa1zS9e-9eHr1Ml7C7f2To67qHvQOn8Gd0HOuz9QSW9CYTebuOdy032eD6eRFyfwEvl430_wCHv2Y7g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKeYgL70eggJHgBKvE63XWPiBUaCuqligHkHpzba-3iUg3aR5E4afx65jxPqrw6K0Hbqu1dzX2fvPaGc8Q8soynibCpJFLVB4lQsgItJyKlPXM5zx03A7NJtJeTx4dqf4G-VmfhcG0ylomBkGdjR3-I29zLBwWape08yotor-z935yFmEHKYy01u00Sogc-NUS3LfZu_0d-Nav43hv98vHT1HVYSByIuHzKI8xJURkmQVLwwtvpOs6ZmK4THIwpZ0EA8DLDkgnn6scaPfMpZmKnVM-5l0O771CrqZJtyND2mC_-b-DEbSEqeqcDtDdnoGuxPNssYhUAowWLdd0YWgZ8Dc79890zd9itkEV7t3-nzfxDrlVGeB0u-SYu2TDF_fI9bIl5-o-KbYLajIzQS1AsU94iLQAkOlghYfb6Dc_LfyI7h5-pmOYdTr84TNqV9ScLYYj09ybUjM6geXOB6cU_AJqYaWwmTQ3i9GcZmWC43D2gHy9lMU-JJvFuPCPCe0IkzMY5l1mktQI5aRh3DEvrONgWrQIq9GhXVWwHfuGjHRIHOBSl4jSgCgdEKWXLfKmeWZSliu5cPYHBF0zE0uNhxvj6YmuJJe2mRHW2jiNuQDrPTHSe9XxDCPwHdsFMrdqrOlK_s30OdBa5GUzDJILw1Gm8ONFNUdy8Nhb5FGJ8IYS8PrBc8Gn5Rr210hdHymGg1AdHePiGHtvkbc1m5zT9e-9eHLxMl6QG8Ap-nC_d_CU3IyRiTF9S26Rzfl04Z-Ra-77fDibPg9SgJLjy-aYX2qtoGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+hierarchical+hybrid+kernel+ELM+optimized+by+aquila+optimizer+algorithm+for+bearing+fault+diagnosis&rft.jtitle=Scientific+reports&rft.au=Hao+Yan&rft.au=Liangliang+Shang&rft.au=Wan+Chen&rft.au=Mengyao+Jiang&rft.date=2025-04-08&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1038%2Fs41598-025-94703-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bda5bbb272354164a8ee90e182900b60 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |