External acidity as performance descriptor in polyolefin cracking using zeolite-based materials
Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could h...
Uložené v:
| Vydané v: | Nature communications Ročník 16; číslo 1; s. 2980 - 12 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
26.03.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited.
Catalytic cracking is an emerging technology allowing to convert plastic waste into hydrocarbon feedstocks. Here, the authors show that the activity of ultrastable zeolite Y depends on the concentration of acid sites located outside of micropores. |
|---|---|
| AbstractList | Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited.
Catalytic cracking is an emerging technology allowing to convert plastic waste into hydrocarbon feedstocks. Here, the authors show that the activity of ultrastable zeolite Y depends on the concentration of acid sites located outside of micropores. Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited.Catalytic cracking is an emerging technology allowing to convert plastic waste into hydrocarbon feedstocks. Here, the authors show that the activity of ultrastable zeolite Y depends on the concentration of acid sites located outside of micropores. Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited. Abstract Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited. Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited.Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction temperature and relatively low selectivity. Utilizing a catalyst in the process, moving from thermal pyrolysis to catalytic cracking could help overcome both challenges. In order to develop efficient catalyst materials for this process, understanding structure-composition-performance relationships is critical. In this work, we show that in contrast to cracking of small molecules, plastic cracking activity using ultrastable zeolite Y materials does not depend on the bulk Brønsted acid site content, but rather on the concentration of acid sites located on the outer surface and in mesopores. This external acidity, however, fails to capture all the observed performance trends. Detailed kinetic experiments reveal that the scaling of the reaction rate with the catalyst loading differs drastically between highly similar catalyst materials. More specifically, doubling the catalyst loading leads to doubling of the reaction rate for one material, while for another it leads to more than fivefold increase. When very bulky reactants, such as polyolefins, are converted over microporous catalysts, structure-composition-performance relationships established for smaller molecules need to be revisited. |
| ArticleNumber | 2980 |
| Author | Bör, Zeynep van der Waal, Jan-Kees Weckhuysen, Bert M. Vogt, Eelco T. C. Louwen, Jaap N. Dorresteijn, Joren M. Vollmer, Ina Rejman, Sebastian Reverdy, Zoé M. Rieg, Carolin |
| Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0001-7976-6372 surname: Rejman fullname: Rejman, Sebastian organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 2 givenname: Zoé M. orcidid: 0009-0003-3545-7422 surname: Reverdy fullname: Reverdy, Zoé M. organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University, ENS de Lyon, Département de Chimie – sequence: 3 givenname: Zeynep surname: Bör fullname: Bör, Zeynep organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 4 givenname: Jaap N. orcidid: 0000-0001-5175-6973 surname: Louwen fullname: Louwen, Jaap N. organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 5 givenname: Carolin orcidid: 0000-0002-7299-3414 surname: Rieg fullname: Rieg, Carolin organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 6 givenname: Joren M. orcidid: 0000-0002-0858-3146 surname: Dorresteijn fullname: Dorresteijn, Joren M. organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 7 givenname: Jan-Kees orcidid: 0000-0002-9830-6109 surname: van der Waal fullname: van der Waal, Jan-Kees organization: TNO – sequence: 8 givenname: Eelco T. C. orcidid: 0000-0003-4556-4283 surname: Vogt fullname: Vogt, Eelco T. C. organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 9 givenname: Ina orcidid: 0000-0001-9917-1499 surname: Vollmer fullname: Vollmer, Ina email: i.vollmer@uu.nl organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University – sequence: 10 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. email: b.m.weckhuysen@uu.nl organization: Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40140345$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFu1TAQjFARLaU_wAFF4sIl4I3tZ-eEUFWgUiUucLY29ubhRxIHOw_x-HqcppS2h_rgXdkz47F2nhdHYxipKF4CewuM63dJgNioitWykgqkruBJcVIzARWomh_d6Y-Ls5R2LC_egBbiWXEsGAjGhTwpzMXvmeKIfYnWOz8fSkzlRLELccDRUuko2einOcTSj-UU-kPoqcutjWh_-HFb7tOy_6HQ-5mqFhO5csCs6rFPL4qnXS50dlNPi28fL76ef66uvny6PP9wVVkp-FyRdhvFm7qrO11bQs42XLa2k1orwo1y3AHwRglSmGGMtIbWslo3vGWyI35aXK66LuDOTNEPGA8moDfXByFuDcbZ254MtIjCgcSOt0KgRZTMdW4RZdy1TdZ6v2pN-3YgZ2mcI_b3RO_fjP672YZfBqARChqWFd7cKMTwc09pNoNPlvoeRwr7ZDho0KxRSmbo6wfQXdgvA1lRstacLZZe3bV06-XfIDOgXgE2hpQidbcQYGYJjFkDY3JgzHVgDGSSfkCyfsbZh-Vbvn-cyldqyu-MW4r_bT_C-gtrSdXU |
| CitedBy_id | crossref_primary_10_1021_acs_energyfuels_5c02781 crossref_primary_10_1016_j_apcata_2025_120574 crossref_primary_10_1038_s41467_025_63116_8 crossref_primary_10_1021_jacs_5c05824 crossref_primary_10_3390_catal15090862 crossref_primary_10_1016_j_apcatb_2025_125884 |
| Cites_doi | 10.1016/S0167-2991(08)64897-1 10.1021/acs.chemmater.3c00256 10.1016/0021-9517(91)90208-L 10.1021/la5026679 10.1002/anie.201915651 10.1002/cctc.201402499 10.1038/309589a0 10.1002/anie.202110107 10.1103/PhysRev.17.273 10.1021/cm9905601 10.1016/j.jcat.2004.02.003 10.1016/S0167-2991(09)60934-4 10.1021/acs.macromol.8b00966 10.1016/S0926-860X(00)00495-6 10.1016/S0167-2991(08)61903-5 10.1002/jcc.21759 10.1002/cphc.202000062 10.1021/acscatal.3c00076 10.1039/D3CY01473H 10.1002/adfm.200800871 10.1016/S0144-2449(88)80025-3 10.1021/jp953006x 10.1039/C1CP22666E 10.1038/s41929-020-00519-4 10.1016/j.jaap.2004.11.037 10.1039/C5CS00376H 10.1002/pol.1967.110050404 10.1021/acscatal.5b02268 10.1006/jcat.1998.2233 10.1002/anie.202104110 10.5281/ZENODO.3823841 10.1002/cctc.201300345 10.1002/cctc.201000158 10.1021/acs.est.7b04573 10.1016/j.apsusc.2006.12.089 10.1016/S0165-2370(03)00036-6 10.1002/3527602658 10.1016/S0920-5861(00)00577-0 10.1016/j.chroma.2006.02.076 10.1021/acs.jpcc.0c10097 10.1002/wcms.1159 10.1016/j.jcat.2020.03.003 10.1016/j.micromeso.2022.112170 10.1038/s41893-018-0195-9 10.1038/s41592-019-0686-2 10.1039/C1CP22667C 10.1021/acscatal.2c04915 10.1103/PhysRevLett.77.3865 10.1039/dc9817200317 10.1016/j.jcat.2020.12.008 10.1039/D3SC03229A 10.1016/j.molcata.2004.11.012 10.1002/adfm.201601748 10.1002/aic.690440313 10.1007/s10450-019-00168-5 10.1103/PhysRevB.54.1703 10.1016/S0926-860X(98)00023-4 10.1063/1.2770708 10.5281/zenodo.14563455 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-025-57158-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_1baa4d15af3b44acaa50dfd20e803db9 PMC11947190 40140345 10_1038_s41467_025_57158_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) grantid: ARC CBBC funderid: https://doi.org/10.13039/501100003246 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) grantid: ARC CBBC |
| GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB SNYQT NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c543t-e8d67392f2f82cea30635bcf5887ea67d3d113974e7a3920e881bc02893b05fe3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001454467000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:51:11 EDT 2025 Tue Nov 04 02:02:50 EST 2025 Fri Sep 05 10:14:36 EDT 2025 Tue Oct 07 07:34:15 EDT 2025 Mon Jul 21 06:03:18 EDT 2025 Sat Nov 29 08:05:04 EST 2025 Tue Nov 18 20:53:25 EST 2025 Thu Mar 27 04:14:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-e8d67392f2f82cea30635bcf5887ea67d3d113974e7a3920e881bc02893b05fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4556-4283 0009-0003-3545-7422 0000-0001-5245-1426 0000-0002-9830-6109 0000-0001-5175-6973 0000-0001-9917-1499 0000-0002-0858-3146 0000-0002-7299-3414 0000-0001-7976-6372 |
| OpenAccessLink | https://doaj.org/article/1baa4d15af3b44acaa50dfd20e803db9 |
| PMID | 40140345 |
| PQID | 3181528309 |
| PQPubID | 546298 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1baa4d15af3b44acaa50dfd20e803db9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11947190 proquest_miscellaneous_3181809775 proquest_journals_3181528309 pubmed_primary_40140345 crossref_primary_10_1038_s41467_025_57158_1 crossref_citationtrail_10_1038_s41467_025_57158_1 springer_journals_10_1038_s41467_025_57158_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-26 |
| PublicationDateYYYYMMDD | 2025-03-26 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | ETC Vogt (57158_CR3) 2015; 44 C Liu (57158_CR28) 2015; 5 L Lakiss (57158_CR33) 2020; 21 A Corma (57158_CR35) 1998; 179 WO Haag (57158_CR8) 1981; 72 L Lakiss (57158_CR25) 2021; 60 DT Hayhurst (57158_CR31) 1988; 8 J Hutter (57158_CR57) 2014; 4 J Kenvin (57158_CR26) 2016; 26 JL Hor (57158_CR32) 2018; 51 57158_CR38 Z Zhang (57158_CR46) 2019; 2 BA Williams (57158_CR10) 2000; 203 A Brait (57158_CR11) 1998; 169 JP Hittinger (57158_CR21) 2022; 343 J Adolphs (57158_CR50) 2007; 253 PG Levi (57158_CR1) 2018; 52 I Vollmer (57158_CR45) 2024; 14 I Vollmer (57158_CR2) 2020; 59 H Balcom (57158_CR36) 2023; 13 I Vollmer (57158_CR44) 2021; 60 K Li (57158_CR27) 2014; 6 V Zholobenko (57158_CR55) 2020; 385 EW Washburn (57158_CR40) 1921; 17 S Rejman (57158_CR23) 2023; 14 S Goedecker (57158_CR61) 1996; 54 R Chal (57158_CR47) 2011; 3 A Galarneau (57158_CR52) 2014; 30 57158_CR54 PJ Barrie (57158_CR17) 2012; 14 WO Haag (57158_CR5) 1984; 309 57158_CR48 A Tennakoon (57158_CR43) 2020; 3 P Virtanen (57158_CR56) 2020; 17 J VandeVondele (57158_CR60) 2007; 127 Z Dong (57158_CR14) 2022; 12 JP Perdew (57158_CR58) 1996; 77 A Wielers (57158_CR9) 1991; 127 57158_CR24 J Fraissard (57158_CR13) 1980; 5 I Mastalski (57158_CR16) 2023; 35 57158_CR63 M Kruk (57158_CR53) 2000; 12 57158_CR62 J Pérez‐Ramírez (57158_CR22) 2009; 19 RA Mendelson (57158_CR39) 1967; 5 TW Beutel (57158_CR34) 2021; 125 57158_CR4 P Borges (57158_CR7) 2005; 229 WO Haag (57158_CR15) 1991; 60 JA Van Bokhoven (57158_CR19) 2004; 224 MJ Remy (57158_CR41) 1996; 100 T Macko (57158_CR29) 2006; 1115 JA Martens (57158_CR30) 2001; 65 PJ Barrie (57158_CR18) 2012; 14 S Grimme (57158_CR59) 2011; 32 RM Lago (57158_CR6) 1986; 28 F Berger (57158_CR12) 2021; 395 A Marcilla (57158_CR37) 2003; 68–69 DP Serrano (57158_CR20) 2005; 74 J Garcia-Martinez (57158_CR51) 2014; 6 G Madras (57158_CR42) 1998; 44 P Iacomi (57158_CR49) 2019; 25 |
| References_xml | – volume: 5 start-page: 343 year: 1980 ident: 57158_CR13 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(08)64897-1 – volume: 35 start-page: 3628 year: 2023 ident: 57158_CR16 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.3c00256 – volume: 127 start-page: 51 year: 1991 ident: 57158_CR9 publication-title: J. Catal. doi: 10.1016/0021-9517(91)90208-L – volume: 30 start-page: 13266 year: 2014 ident: 57158_CR52 publication-title: Langmuir doi: 10.1021/la5026679 – volume: 59 start-page: 15402 year: 2020 ident: 57158_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915651 – volume: 6 start-page: 3110 year: 2014 ident: 57158_CR51 publication-title: ChemCatChem doi: 10.1002/cctc.201402499 – volume: 309 start-page: 589 year: 1984 ident: 57158_CR5 publication-title: Nature doi: 10.1038/309589a0 – volume: 60 start-page: 26702 year: 2021 ident: 57158_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202110107 – volume: 17 start-page: 273 year: 1921 ident: 57158_CR40 publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.273 – volume: 12 start-page: 222 year: 2000 ident: 57158_CR53 publication-title: Chem. Mater. doi: 10.1021/cm9905601 – volume: 224 start-page: 50 year: 2004 ident: 57158_CR19 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.02.003 – volume: 28 start-page: 677 year: 1986 ident: 57158_CR6 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(09)60934-4 – volume: 51 start-page: 5069 year: 2018 ident: 57158_CR32 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00966 – ident: 57158_CR4 – volume: 203 start-page: 179 year: 2000 ident: 57158_CR10 publication-title: Appl. Catal. Gen. doi: 10.1016/S0926-860X(00)00495-6 – volume: 60 start-page: 255 year: 1991 ident: 57158_CR15 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(08)61903-5 – volume: 32 start-page: 1456 year: 2011 ident: 57158_CR59 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 21 start-page: 1873 year: 2020 ident: 57158_CR33 publication-title: ChemPhysChem doi: 10.1002/cphc.202000062 – volume: 13 start-page: 4470 year: 2023 ident: 57158_CR36 publication-title: ACS Catal. doi: 10.1021/acscatal.3c00076 – ident: 57158_CR48 – volume: 14 start-page: 894 year: 2024 ident: 57158_CR45 publication-title: Catal. Sci. Technol. doi: 10.1039/D3CY01473H – volume: 19 start-page: 164 year: 2009 ident: 57158_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800871 – volume: 8 start-page: 27 year: 1988 ident: 57158_CR31 publication-title: Zeolites doi: 10.1016/S0144-2449(88)80025-3 – volume: 100 start-page: 12440 year: 1996 ident: 57158_CR41 publication-title: J. Phys. Chem. doi: 10.1021/jp953006x – volume: 14 start-page: 318 year: 2012 ident: 57158_CR17 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22666E – volume: 3 start-page: 893 year: 2020 ident: 57158_CR43 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00519-4 – volume: 74 start-page: 353 year: 2005 ident: 57158_CR20 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2004.11.037 – volume: 44 start-page: 7342 year: 2015 ident: 57158_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00376H – volume: 5 start-page: 295 year: 1967 ident: 57158_CR39 publication-title: Polymer Lett. doi: 10.1002/pol.1967.110050404 – volume: 5 start-page: 7024 year: 2015 ident: 57158_CR28 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02268 – volume: 179 start-page: 451 year: 1998 ident: 57158_CR35 publication-title: J. Catal. doi: 10.1006/jcat.1998.2233 – volume: 60 start-page: 16101 year: 2021 ident: 57158_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104110 – ident: 57158_CR54 doi: 10.5281/ZENODO.3823841 – volume: 6 start-page: 46 year: 2014 ident: 57158_CR27 publication-title: ChemCatChem doi: 10.1002/cctc.201300345 – volume: 3 start-page: 67 year: 2011 ident: 57158_CR47 publication-title: ChemCatChem doi: 10.1002/cctc.201000158 – volume: 52 start-page: 1725 year: 2018 ident: 57158_CR1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04573 – volume: 253 start-page: 5645 year: 2007 ident: 57158_CR50 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.12.089 – volume: 68–69 start-page: 467 year: 2003 ident: 57158_CR37 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(03)00036-6 – ident: 57158_CR38 doi: 10.1002/3527602658 – volume: 65 start-page: 111 year: 2001 ident: 57158_CR30 publication-title: Catal. Today doi: 10.1016/S0920-5861(00)00577-0 – volume: 1115 start-page: 81 year: 2006 ident: 57158_CR29 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2006.02.076 – volume: 125 start-page: 8518 year: 2021 ident: 57158_CR34 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10097 – volume: 4 start-page: 15 year: 2014 ident: 57158_CR57 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1159 – volume: 385 start-page: 52 year: 2020 ident: 57158_CR55 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.03.003 – volume: 343 start-page: 112170 year: 2022 ident: 57158_CR21 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2022.112170 – volume: 2 start-page: 39 year: 2019 ident: 57158_CR46 publication-title: Nat. Sustain. doi: 10.1038/s41893-018-0195-9 – volume: 17 start-page: 261 year: 2020 ident: 57158_CR56 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 14 start-page: 327 year: 2012 ident: 57158_CR18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22667C – volume: 12 start-page: 14882 year: 2022 ident: 57158_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.2c04915 – volume: 77 start-page: 3865 year: 1996 ident: 57158_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 72 start-page: 317 year: 1981 ident: 57158_CR8 publication-title: Faraday Discuss. Chem. Soc. doi: 10.1039/dc9817200317 – volume: 395 start-page: 117 year: 2021 ident: 57158_CR12 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.12.008 – volume: 14 start-page: 10068 year: 2023 ident: 57158_CR23 publication-title: Chem. Sci. doi: 10.1039/D3SC03229A – volume: 229 start-page: 127 year: 2005 ident: 57158_CR7 publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2004.11.012 – volume: 26 start-page: 5621 year: 2016 ident: 57158_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601748 – volume: 44 start-page: 647 year: 1998 ident: 57158_CR42 publication-title: AIChE J. doi: 10.1002/aic.690440313 – volume: 25 start-page: 1533 year: 2019 ident: 57158_CR49 publication-title: Adsorption doi: 10.1007/s10450-019-00168-5 – volume: 54 start-page: 1703 year: 1996 ident: 57158_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.1703 – volume: 169 start-page: 299 year: 1998 ident: 57158_CR11 publication-title: Appl. Catal. Gen. doi: 10.1016/S0926-860X(98)00023-4 – volume: 127 start-page: 114105 year: 2007 ident: 57158_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 – ident: 57158_CR63 doi: 10.5281/zenodo.14563455 – ident: 57158_CR24 – ident: 57158_CR62 |
| SSID | ssj0000391844 |
| Score | 2.5222368 |
| Snippet | Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high reaction... Abstract Thermal pyrolysis is gaining industrial adoption to convert large volumes of plastic waste into hydrocarbon feedstock. However, it suffers from a high... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2980 |
| SubjectTerms | 147/135 147/28 639/301/299/1013 639/638/77/885 639/638/77/887 Acidity Catalysts Catalytic converters Catalytic cracking Composition Humanities and Social Sciences Hydrocarbons multidisciplinary Plastic debris Polyolefins Pyrolysis Raw materials Science Science (multidisciplinary) Zeolites |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBakX3tBAQUbiBlbttR07J0TRVhzQqkKAerP8SllplSybLVL59XgSb1bLoxduUexIdubhzzP2Nwi9sr4OKgRJVKkoEaqmxEWpCLU8yuSTQ-iDOV8_qtlMn59XZzng1uVjlRuf2Dvq0HqIkR8n3WNAREKrt8vvBKpGQXY1l9C4ifaBqSzp-f7JdHb2aYyyAP-5FiLflqFcH3ei9w1QxVUqJtMWamdF6on7_4Y2_zw0-VvmtF-QTu_-71TuoTsZiuJ3g-7cRzdi8wDdHopTXj1EZpoJorH185DAOrYdXm7vGeAQB5fTrvC8wct2cdUuYp0e_cp6iMBjOFR_gX9GOGMXCSyYASeEPCj9I_TldPr5_QeSyzEQLwVfk6hDqRKcqie1nvho02aDS-drmfxUtKUKPDDAkyIqm7rRqBMk9pDJ5I7KOvLHaK9pm3iIsIiU2VAFxpUT3ArLtHLUpb2m1o6GskBsIxLjM1c5lMxYmD5nzrUZxGiSGE0vRsMK9Hr8ZjkwdVzb-wQkPfYElu3-Rbu6MNloDXPWisCkrbkTwnprJQ11gKlRHlxVoKONgE02_c5spVugl2NzMlrIxNgmtpdDH00T9JYFejKo1TgSAXteLlKL3lG4naHutjTzbz0xeDKBhDUqWqA3G93cjuvf_-Lp9dN4hg4mYC6Uk0l5hPbWq8v4HN3yP9bzbvUiW9wveNY1DA priority: 102 providerName: ProQuest |
| Title | External acidity as performance descriptor in polyolefin cracking using zeolite-based materials |
| URI | https://link.springer.com/article/10.1038/s41467-025-57158-1 https://www.ncbi.nlm.nih.gov/pubmed/40140345 https://www.proquest.com/docview/3181528309 https://www.proquest.com/docview/3181809775 https://pubmed.ncbi.nlm.nih.gov/PMC11947190 https://doaj.org/article/1baa4d15af3b44acaa50dfd20e803db9 |
| Volume | 16 |
| WOSCitedRecordID | wos001454467000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA96Kvgifls9SwTfdLlkk2yyj570UNCyiEr1JeRrtVB2S9sTzr_eSbLtXf188WVZdrIQZiaT32QmMwg9Na710ntRyEqSgsuWFDYIWRDDggCb7H06zPn4Rk6najarmwutvmJOWC4PnBl3RK0x3FNhWmY5N84YQXzrSxIUYd6mq3tE1hecqWSDWQ2uCx9uyRCmjtY82YTYvVVIKsB12tuJUsH-36HMX5Mlf4qYpo3o5Ca6MSBI_CLP_Ba6FLrb6FruKXl2B-nJUNcZGzf3gLGxWePl-fUA7EO2FP0Kzzu87Bdn_SK08OpWxsWDcxxz4b_g7yGmxoUi7nMeA7DNunoXfTiZvH_5qhi6KBROcLYpgvKVBBTUlq0qXTDgIzBhXSvAvARTSc88jTCQB2lgGPAVkKyLAUhmiWgDu4cOur4LDxDmgVDja0-ZtJwZbqiSllhwEZWyxFcjRLcc1W4oMR47XSx0CnUzpbMUNEhBJyloOkLPdv8sc4GNv44-joLajYzFsdMHUBk9qIz-l8qM0OFWzHpYsWsNto3GQjcEyE92ZFhrMYBiutCf5jGKAGIWI3Q_a8VuJjy6qowDRe3py95U9ynd_Guq501pDRChJiP0fKta5_P6My8e_g9ePELXy7gmCCvK6hAdbFan4TG66r5t5uvVGF2WM5meaoyuHE-mzbtxWmjjmCPbwLMRn4HSvH7bfPoBK9gueQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHt2F47B4R4tGrVZdVDQb0Zx3bKSqtk2WxBy4_iN2I7ya6WR289cItiJ7KdbybfeMYzAM-0Ka2wlqdiIHDKRInTwnGRYk0d9zrZ2riZ82koRiN5fJwfbsDP_ixMCKvsdWJU1LY2YY9822OPhEQkOH89_ZqGqlHBu9qX0GhhceAW373J1rzaf--_7_Ms2905ereXdlUFUsMZnadO2oHwrKDMSpkZpz1nprwwJffi5vRAWGpJoEXMCe27YSc9szPBIUcLzEtH_XsvwEVPIzIcQwUPl3s6Idu6ZKw7m4Op3G5Y1EShZiwXhHuDbe3_F8sE_I3b_hmi-ZufNv7-dq__bwt3A651RBu9aSXjJmy46hZcbktvLm6D2unSXyNtxtabIkg3aLo6RYGsaxVqPUPjCk3ryaKeuNJfmpk2wb-AwpGBE_TDhQhClwY6YJHn_61I34GP5zK7u7BZ1ZW7D4g5TLTNLaGiYFQzTaQocOEtaSkLbAcJkB4CynSZ2ENBkImKEQFUqhY2ysNGRdgoksCL5TPTNg_Jmb3fBmQte4Yc4vFGPTtRnUpSpNCaWcJ1SQvGtNGaY1vaMDVMbZEnsNUDSnWKrVErNCXwdNnsVVLwM-nK1adtH4m9YcETuNfCeDkSFix6ynyLXAP42lDXW6rxl5j2nJDcM6kcJ_Cyl4XVuP69Fg_OnsYTuLJ39GGohvujg4dwNQuiimmaDbZgcz47dY_gkvk2Hzezx1HWEXw-bxn5BdFOj3U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaK1Yzt2DggB7Yqq1WoPgCourmM7ZaVVsmy2oOWn8euw89jV8uitB25RPIls55vJjOcF8EybwgpreSxSgWMmChznjosYa-q4l8nWNoc5nw7FaCSPjrLxFvzsc2FCWGUvExtBbSsTzsgHHnskFCLB2aDowiLGu8PXs69x6CAVPK19O40WIgdu-d2bb_Wr_V3_rZ8nyXDvw7v3cddhIDac0UXspE2F1xCKpJCJcdrrz5TnpuCe9ZxOhaWWBBWJOaE9GXbSa3kmOOdojnnhqH_vBbgoWCpDONmYf16d74TK65KxLk8HUzmoWSOVQv9YLgj3xtvGv7BpGfA3PffPcM3ffLbNr3B4_X_exBtwrVPA0ZuWY27ClitvweW2JefyNqi9riw20mZivYmCdI1m6-wKZF0raKs5mpRoVk2X1dQV_tLMtQl-BxRSCU7QDxciC10c1ASLvF3Qsvod-Hguq7sL22VVuvuAmMNE28wSKnJGNdNEihzn3sKWMsc2jYD0cFCmq9AeGoVMVRMpQKVqIaQ8hFQDIUUieLF6ZtbWJzmT-m1A2Yoy1BZvblTzE9WJKkVyrZklXBc0Z0wbrTm2hQ1Lw9TmWQQ7PbhUJ_BqtUZWBE9Xw15UBf-TLl112tJI7A0OHsG9FtKrmbBg6VPmR-QG2DemujlSTr405dAJybyGleEIXvZ8sZ7Xv_fiwdnLeAJXPGuow_3RwUO4mgSuxTRO0h3YXsxP3SO4ZL4tJvX8ccP2CI7Pm0V-Ab4rmF8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=External+acidity+as+performance+descriptor+in+polyolefin+cracking+using+zeolite-based+materials&rft.jtitle=Nature+communications&rft.au=Rejman%2C+Sebastian&rft.au=Reverdy%2C+Zo%C3%A9+M.&rft.au=B%C3%B6r%2C+Zeynep&rft.au=Louwen%2C+Jaap+N.&rft.date=2025-03-26&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-57158-1&rft.externalDocID=10_1038_s41467_025_57158_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |