A BiLSTM model enhanced with multi-objective arithmetic optimization for COVID-19 diagnosis from CT images

In response to the relentless mutation of the coronavirus disease, current artificial intelligence algorithms for the automated diagnosis of COVID-19 via CT imaging exhibit suboptimal accuracy and efficiency. This manuscript proposes a multi-objective optimization algorithm (MOAOA) to enhance the Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 10841 - 19
Hauptverfasser: Chen, Liang, Lin, Xin, Ma, Liangliang, Wang, Chao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 29.03.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In response to the relentless mutation of the coronavirus disease, current artificial intelligence algorithms for the automated diagnosis of COVID-19 via CT imaging exhibit suboptimal accuracy and efficiency. This manuscript proposes a multi-objective optimization algorithm (MOAOA) to enhance the BiLSTM model for COVID-19 automated diagnosis. The proposed approach involves configuring several hyperparameters for the bidirectional long short-term memory (BiLSTM), optimized using the MOAOA intelligent optimization algorithm, and subsequently validated on publicly accessible medical datasets. Remarkably, our model achieves an impressive 95.32% accuracy and 95.09% specificity. Comparative analysis with state-of-the-art techniques demonstrates that the proposed model significantly enhances accuracy, efficiency, and other performance metrics, yielding superior results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-94654-2