State feedback control design for Boolean networks
Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllab...
Saved in:
| Published in: | BMC systems biology Vol. 10; no. Suppl 3; p. 70 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
26.08.2016
BioMed Central Ltd |
| Subjects: | |
| ISSN: | 1752-0509, 1752-0509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.
Results
In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.
Conclusions
This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design. |
|---|---|
| AbstractList | Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.
In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.
This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design. Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.BACKGROUNDDriving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.RESULTSIn this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.CONCLUSIONSThis control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design. Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. Results In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. Conclusions This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design. |
| ArticleNumber | 70 |
| Audience | Academic |
| Author | Qian, Chunjiang Jin, Yu-Fang Liu, Rongjie Liu, Shuqian |
| Author_xml | – sequence: 1 givenname: Rongjie surname: Liu fullname: Liu, Rongjie organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio – sequence: 2 givenname: Chunjiang surname: Qian fullname: Qian, Chunjiang organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio – sequence: 3 givenname: Shuqian surname: Liu fullname: Liu, Shuqian organization: Department of Biomedical Engineering, Northwestern University – sequence: 4 givenname: Yu-Fang surname: Jin fullname: Jin, Yu-Fang email: yufang.jin@utsa.edu organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio Cardiovascular Proteomics Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27586140$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kltr1jAYx4NM3EE_gDdS8EYvOnNoDr0RtjF1MBCcXoc0fVKz9U1m0qrbpzelc-wVGbl4QvL7P-d9tBNiAIReEnxIiBLvMqEtUTUmosaMNPXtE7RHJKc15rjdeXDfRfs5X2LMGaXyGdqlkitBGryH6MVkJqgcQN8Ze1XZGKYUx6qH7IdQuZiq4xhHMKEKMP2K6So_R0-dGTO8uLMH6NuH068nn-rzzx_PTo7Oa8sbNtW9U61wDjvWtQZL5oRTTpa0ue0aRzthqMCgeuGajhXDmGwUEYJTK4yTnB2g96vf67nbQG-hZGZGfZ38xqQbHY3X2z_Bf9dD_Kk5xq2ibXHw5s5Bij9myJPe-GxhHE2AOGdNlnCMYNUU9PWKDmYE7YOLxaNdcH3UCNpIhsVCHf6HKqeHjS-dA-fL-5bg7ZZg6S78ngYz56zPLr5ss68elntf599ZFYCsgE0x5wTuHiFYL_ug133QZR_0sg_6tmjkPxrry8D9MmXjx0eVdFXmEiUMkPRlnFMoA39E9AccMsd2 |
| CitedBy_id | crossref_primary_10_1186_s12859_019_3304_5 crossref_primary_10_1186_s12918_016_0305_0 crossref_primary_10_1109_LCSYS_2018_2821240 crossref_primary_10_1109_TCNS_2017_2746345 crossref_primary_10_1016_j_jfranklin_2025_107767 crossref_primary_10_1631_FITEE_1900447 crossref_primary_10_1007_s11424_025_4270_9 |
| Cites_doi | 10.1103/PhysRevE.75.046103 10.1016/j.neunet.2012.06.002 10.1016/j.automatica.2009.03.006 10.1093/bioinformatics/btl210 10.4310/MAA.2003.v10.n4.a5 10.1039/C0MB00263A 10.1073/pnas.1100600108 10.1016/j.jtbi.2006.08.014 10.1109/TAC.2010.2043294 10.1093/bioinformatics/18.2.261 10.1109/TNN.2008.2011359 10.1038/nature10011 10.1016/j.automatica.2009.10.036 10.1109/TCBB.2013.128 10.1515/9781400833344 10.1016/0022-5193(69)90015-0 10.1016/j.molcel.2008.03.016 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 COPYRIGHT 2016 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM |
| DOI | 10.1186/s12918-016-0314-z |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science in Context MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1752-0509 |
| ExternalDocumentID | PMC5009829 A462473064 27586140 10_1186_s12918_016_0314_z |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBS EJD EMOBN ESX F5P FYUFA GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SJN SOJ SV3 TR2 TUS UKHRP WOQ ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c543t-df896ff0f3b9a073f6f8f71865cb4f2b6a260e8d6f4b38d63374816652c6af753 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392596400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1752-0509 |
| IngestDate | Tue Nov 04 01:59:54 EST 2025 Fri Sep 05 06:38:59 EDT 2025 Tue Nov 11 10:36:12 EST 2025 Tue Nov 04 17:47:40 EST 2025 Thu Nov 13 14:48:25 EST 2025 Thu Apr 03 07:10:23 EDT 2025 Tue Nov 18 21:26:57 EST 2025 Sat Nov 29 02:47:24 EST 2025 Sat Sep 06 07:24:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 3 |
| Keywords | Boolean network State feedback control Controllability |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-df896ff0f3b9a073f6f8f71865cb4f2b6a260e8d6f4b38d63374816652c6af753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s12918-016-0314-z |
| PMID | 27586140 |
| PQID | 1816631084 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009829 proquest_miscellaneous_1816631084 gale_infotracmisc_A462473064 gale_infotracacademiconefile_A462473064 gale_incontextgauss_ISR_A462473064 pubmed_primary_27586140 crossref_primary_10_1186_s12918_016_0314_z crossref_citationtrail_10_1186_s12918_016_0314_z springer_journals_10_1186_s12918_016_0314_z |
| PublicationCentury | 2000 |
| PublicationDate | 20160826 2016-8-26 2016-08-26 |
| PublicationDateYYYYMMDD | 2016-08-26 |
| PublicationDate_xml | – month: 8 year: 2016 text: 20160826 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC systems biology |
| PublicationTitleAbbrev | BMC Syst Biol |
| PublicationTitleAlternate | BMC Syst Biol |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | RK Layek (314_CR16) 2011; 7 A Fauré (314_CR2) 2006; 22 Z Yuan (314_CR9) 2013; 4 D Cheng (314_CR15) 2010; 46 F Sorrentino (314_CR7) 2007; 75 I Shmulevich (314_CR1) 2002; 18 S Gupta (314_CR3) 2007; 244 D Luenberger (314_CR6) 1979 XP Zhang (314_CR18) 2011; 108 D Cheng (314_CR10) 2003; 10 D Cheng (314_CR11) 2009; 45 DS Bernstein (314_CR20) 2009 YY Liu (314_CR8) 2011; 473 E Batchelor (314_CR17) 2008; 30 SA Kauffman (314_CR5) 1969; 22 D Cheng (314_CR21) 2010 F Li (314_CR13) 2012; 34 S Srihari (314_CR4) 2014; 11 D Cheng (314_CR14) 2009; 20 D Cheng (314_CR12) 2010; 55 D Cheng (314_CR19) 2009; 45 26355510 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):83-94 17500957 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046103 24025746 - Nat Commun. 2013;4:2447 19224735 - IEEE Trans Neural Netw. 2009 Mar;20(3):512-21 11847074 - Bioinformatics. 2002 Feb;18(2):261-74 21562557 - Nature. 2011 May 12;473(7346):167-73 22784925 - Neural Netw. 2012 Oct;34:10-7 21161088 - Mol Biosyst. 2011 Mar;7(3):843-51 17010384 - J Theor Biol. 2007 Feb 7;244(3):463-9 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 5803332 - J Theor Biol. 1969 Mar;22(3):437-67 18471974 - Mol Cell. 2008 May 9;30(3):277-89 16873462 - Bioinformatics. 2006 Jul 15;22(14):e124-31 |
| References_xml | – volume: 75 start-page: 046103 year: 2007 ident: 314_CR7 publication-title: Phys Rev E doi: 10.1103/PhysRevE.75.046103 – volume: 34 start-page: 10 year: 2012 ident: 314_CR13 publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.06.002 – volume: 45 start-page: 1659 issue: 7 year: 2009 ident: 314_CR19 publication-title: Automatica doi: 10.1016/j.automatica.2009.03.006 – volume: 22 start-page: 124 issue: 14 year: 2006 ident: 314_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl210 – volume: 45 start-page: 1659 issue: 7 year: 2009 ident: 314_CR11 publication-title: Automatica doi: 10.1016/j.automatica.2009.03.006 – volume: 10 start-page: 565 issue: 4 year: 2003 ident: 314_CR10 publication-title: Methods Appl Anal doi: 10.4310/MAA.2003.v10.n4.a5 – volume-title: Introduction to Dynamic Systems Theory, Models and Applications year: 1979 ident: 314_CR6 – volume: 7 start-page: 843 year: 2011 ident: 314_CR16 publication-title: Mol BioSyst doi: 10.1039/C0MB00263A – volume-title: Analysis and control of Boolean networks: a semi-tensor product approach year: 2010 ident: 314_CR21 – volume: 108 start-page: 8990 issue: 22 year: 2011 ident: 314_CR18 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1100600108 – volume: 4 start-page: 1 issue: 2447 year: 2013 ident: 314_CR9 publication-title: Nature – volume: 244 start-page: 463 issue: 3 year: 2007 ident: 314_CR3 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2006.08.014 – volume: 55 start-page: 2251 issue: 10 year: 2010 ident: 314_CR12 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2043294 – volume: 18 start-page: 261 issue: 2 year: 2002 ident: 314_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.261 – volume: 20 start-page: 512 issue: 3 year: 2009 ident: 314_CR14 publication-title: IEEE Trans. Neural Netw doi: 10.1109/TNN.2008.2011359 – volume: 473 start-page: 167 issue: 7346 year: 2011 ident: 314_CR8 publication-title: Nat Commun doi: 10.1038/nature10011 – volume: 46 start-page: 62 year: 2010 ident: 314_CR15 publication-title: Automatica doi: 10.1016/j.automatica.2009.10.036 – volume: 11 start-page: 83 year: 2014 ident: 314_CR4 publication-title: IEEE/ACM Trans Comput Biol. Bioinforma doi: 10.1109/TCBB.2013.128 – volume-title: Matrix mathematics: theory, facts, and formulas year: 2009 ident: 314_CR20 doi: 10.1515/9781400833344 – volume: 22 start-page: 437 issue: 3 year: 1969 ident: 314_CR5 publication-title: J Theor Biol doi: 10.1016/0022-5193(69)90015-0 – volume: 30 start-page: 277 issue: 3 year: 2008 ident: 314_CR17 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.03.016 – reference: 21161088 - Mol Biosyst. 2011 Mar;7(3):843-51 – reference: 26355510 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):83-94 – reference: 22784925 - Neural Netw. 2012 Oct;34:10-7 – reference: 19224735 - IEEE Trans Neural Netw. 2009 Mar;20(3):512-21 – reference: 18471974 - Mol Cell. 2008 May 9;30(3):277-89 – reference: 16873462 - Bioinformatics. 2006 Jul 15;22(14):e124-31 – reference: 17500957 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046103 – reference: 21562557 - Nature. 2011 May 12;473(7346):167-73 – reference: 5803332 - J Theor Biol. 1969 Mar;22(3):437-67 – reference: 17010384 - J Theor Biol. 2007 Feb 7;244(3):463-9 – reference: 11847074 - Bioinformatics. 2002 Feb;18(2):261-74 – reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 – reference: 24025746 - Nat Commun. 2013;4:2447 |
| SSID | ssj0053227 |
| Score | 2.1675544 |
| Snippet | Background
Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological... Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 70 |
| SubjectTerms | Algebra, Boolean Algorithms Analysis Bioinformatics Biomedical and Life Sciences Cellular and Medical Topics Computational Biology - methods Computational Biology/Bioinformatics Evolution Feedback Influence Life Sciences Physiological Simulation and Modeling Systems Biology Tumor proteins |
| Title | State feedback control design for Boolean networks |
| URI | https://link.springer.com/article/10.1186/s12918-016-0314-z https://www.ncbi.nlm.nih.gov/pubmed/27586140 https://www.proquest.com/docview/1816631084 https://pubmed.ncbi.nlm.nih.gov/PMC5009829 |
| Volume | 10 |
| WOSCitedRecordID | wos000392596400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RBZ dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1752-0509 dateEnd: 20190131 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RSV dateStart: 20070601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-8OwVf_P6onksVQVCKbZqm6eOd3OE9uJQ9lfUpJGmjh0cr113B--udSdvFLiroy5YlU9pOJ_ObaX6ZAXiOIQfCrsgirROJCQrnkS7oAzyPHUKCS62RvtlEPp_L5bIoh33c3ch2H5ckvaf201qK1x0iU0LEK8yA04RHlzuwh2gnqV_D4vTj6H4ztNB8WL787WkTANp2w7_g0DZHcmuh1OPP8c3_uvNbcGMIN8OD3j5uw5W6uQPX-gaUP-4C87Fm6BDCjLZfw4G4Hlae1xFiQBsetu15rZuw6fni3T34cHz0_s3baOiiENmMp6uocrIQzsUuNYXGCe2Ekw4RSWTWcMeM0JjS1LISjpsUDykVpEmEyJgV2mE2cx92m7apH0IYG-tYmsbOcMGN00ZUFe1Jr2srmdMsgHhUrbJDiXHqdHGufKohhepVoYhWRqpQlwG83Jzyra-v8TfhZ_S-FNWtaIgY81mvu06dnC7UAReM55ROBfBiEHItXtzqYZ8BPgKVuppI7k8kcWLZyfDT0SwUDREbranbdacS0g_GxRJlHvRmsrl5hgkYhjxxAPnEgDYCVM97OtKcffF1vTMq7sqKAF6NZqQGh9L9WSeP_kn6MVxn3g7RPYp92F1drOsncNV-X511FzPYyZe5_5Uz2Ds8mpeLGZFhS_xXnrwrP838VPsJ_hEfCw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB60Kvri7x_RqlEEQQkmm83e5rGKpcV6SFulb8vuJqPFkkhzJ9i_3plNcphDBX3Kw064ZG52vpnst98CPKOSg2BXFYm1maYGRcrElvwBXqZIkIC5dzocNjGbz_XRUflh2MfdjWz3cUkyZOowrbV61REyZUy8og44z2Rydh4uSAIsFszfP_g0pt-CInQ2LF_-9rYJAK2n4V9waJ0jubZQGvBn-9p_Pfl1uDqUm_FWHx834Fzd3IRL_QGUP26BCLVmjARhzvqv8UBcj6vA64ipoI1ft-1JbZu46fni3W34uP328M1OMpyikPhC5oukQl0qxBRzV1qa0KhQIyGSKryTKJyy1NLUulIoXU6XnAVpMqUK4ZVF6mbuwEbTNvU9iFPnUeR5ik4q6dA6VVW8J72uvRZoRQTp6FrjB4lxPunixIRWQyvTu8IwrYxdYc4ieLG65Vuvr_E346f8fxnWrWiYGPPZLrvO7B7smy2phJxxOxXB88EIW_pxb4d9BvQKLHU1sdycWNLE8pPhJ2NYGB5iNlpTt8vOZOwfqos12dztw2T18IIaMCp50ghmkwBaGbCe93SkOf4SdL0LFncVZQQvxzAyQ0Lp_uyT-_9k_Rgu7xy-3zN7u_N3D-CKCDFJqVJtwsbidFk_hIv---K4O30UJtVPgBwb3w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0avGlfmts1SiCUAlNNpu9zWOrHhblKFalb8vuJmOLJSnNnWD_emfycTSHCuJTHnaWJJOZnZnsb38D8JJSDgq7KousTTQVKFJGNucf8DJGCgmYeqfbZhOT2UwfHeUHfZ_TZkC7D1uS3ZkGZmmq5jtnBXYurtVOQ1EqYRAWVcNpIqOLq3BNMo6ey_XDr8NSnJG1TvqtzN9OGwWj1SX5UkxaxUuubJq2sWh667_f4jZs9GlouNvZzR24UlZ34UbXmPLnPRBtDhoihTZn_fewB7SHRYv3CCnRDffq-rS0VVh1OPLmPnyZvvv85n3Ud1eIfCbTeVSgzhVijKnLLTk6KtRIkUpl3kkUTlkqdUpdKJQupUvKRDWJUpnwyiJVOQ9graqr8hGEsfMo0jRGJ5V0aJ0qCj6rXpZeC7QigHhQs_E99Th3wDg1bQmilelUYRhuxqowFwFsL6ecdbwbfxN-wd_OMJ9FxYCZb3bRNGb_8JPZlUrICZdZAbzqhbCmm3vbnz-gV2AKrJHk1kiSHM6Php8PJmJ4iFFqVVkvGpOwfihf1iTzsDOZ5cMLKswoFYoDmIyMaSnAPN_jkerkuOX7zpj0VeQBvB5MyvQLTfNnnTz-J-lnsH7wdmo-7s8-bMJN0ZokraBqC9bm54vyCVz3P-YnzfnT1r9-AeW6JMM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+feedback+control+design+for+Boolean+networks&rft.jtitle=BMC+systems+biology&rft.au=Liu%2C+Rongjie&rft.au=Qian%2C+Chunjiang&rft.au=Liu%2C+Shuqian&rft.au=Jin%2C+Yu-Fang&rft.date=2016-08-26&rft.pub=BioMed+Central&rft.eissn=1752-0509&rft.volume=10&rft.issue=Suppl+3&rft_id=info:doi/10.1186%2Fs12918-016-0314-z&rft.externalDocID=10_1186_s12918_016_0314_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon |