State feedback control design for Boolean networks

Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC systems biology Ročník 10; číslo Suppl 3; s. 70
Hlavní autoři: Liu, Rongjie, Qian, Chunjiang, Liu, Shuqian, Jin, Yu-Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 26.08.2016
BioMed Central Ltd
Témata:
ISSN:1752-0509, 1752-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. Results In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. Conclusions This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.
AbstractList Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.BACKGROUNDDriving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network.In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.RESULTSIn this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results.This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.CONCLUSIONSThis control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.
Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.
Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. Results In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. Conclusions This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.
ArticleNumber 70
Audience Academic
Author Qian, Chunjiang
Jin, Yu-Fang
Liu, Rongjie
Liu, Shuqian
Author_xml – sequence: 1
  givenname: Rongjie
  surname: Liu
  fullname: Liu, Rongjie
  organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio
– sequence: 2
  givenname: Chunjiang
  surname: Qian
  fullname: Qian, Chunjiang
  organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio
– sequence: 3
  givenname: Shuqian
  surname: Liu
  fullname: Liu, Shuqian
  organization: Department of Biomedical Engineering, Northwestern University
– sequence: 4
  givenname: Yu-Fang
  surname: Jin
  fullname: Jin, Yu-Fang
  email: yufang.jin@utsa.edu
  organization: Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio Cardiovascular Proteomics Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27586140$$D View this record in MEDLINE/PubMed
BookMark eNp9kltr1jAYx4NM3EE_gDdS8EYvOnNoDr0RtjF1MBCcXoc0fVKz9U1m0qrbpzelc-wVGbl4QvL7P-d9tBNiAIReEnxIiBLvMqEtUTUmosaMNPXtE7RHJKc15rjdeXDfRfs5X2LMGaXyGdqlkitBGryH6MVkJqgcQN8Ze1XZGKYUx6qH7IdQuZiq4xhHMKEKMP2K6So_R0-dGTO8uLMH6NuH068nn-rzzx_PTo7Oa8sbNtW9U61wDjvWtQZL5oRTTpa0ue0aRzthqMCgeuGajhXDmGwUEYJTK4yTnB2g96vf67nbQG-hZGZGfZ38xqQbHY3X2z_Bf9dD_Kk5xq2ibXHw5s5Bij9myJPe-GxhHE2AOGdNlnCMYNUU9PWKDmYE7YOLxaNdcH3UCNpIhsVCHf6HKqeHjS-dA-fL-5bg7ZZg6S78ngYz56zPLr5ss68elntf599ZFYCsgE0x5wTuHiFYL_ug133QZR_0sg_6tmjkPxrry8D9MmXjx0eVdFXmEiUMkPRlnFMoA39E9AccMsd2
CitedBy_id crossref_primary_10_1186_s12859_019_3304_5
crossref_primary_10_1186_s12918_016_0305_0
crossref_primary_10_1109_LCSYS_2018_2821240
crossref_primary_10_1109_TCNS_2017_2746345
crossref_primary_10_1016_j_jfranklin_2025_107767
crossref_primary_10_1631_FITEE_1900447
crossref_primary_10_1007_s11424_025_4270_9
Cites_doi 10.1103/PhysRevE.75.046103
10.1016/j.neunet.2012.06.002
10.1016/j.automatica.2009.03.006
10.1093/bioinformatics/btl210
10.4310/MAA.2003.v10.n4.a5
10.1039/C0MB00263A
10.1073/pnas.1100600108
10.1016/j.jtbi.2006.08.014
10.1109/TAC.2010.2043294
10.1093/bioinformatics/18.2.261
10.1109/TNN.2008.2011359
10.1038/nature10011
10.1016/j.automatica.2009.10.036
10.1109/TCBB.2013.128
10.1515/9781400833344
10.1016/0022-5193(69)90015-0
10.1016/j.molcel.2008.03.016
ContentType Journal Article
Copyright The Author(s) 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12918-016-0314-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1752-0509
ExternalDocumentID PMC5009829
A462473064
27586140
10_1186_s12918_016_0314_z
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SJN
SOJ
SV3
TR2
TUS
UKHRP
WOQ
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c543t-df896ff0f3b9a073f6f8f71865cb4f2b6a260e8d6f4b38d63374816652c6af753
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392596400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-0509
IngestDate Tue Nov 04 01:59:54 EST 2025
Fri Sep 05 06:38:59 EDT 2025
Tue Nov 11 10:36:12 EST 2025
Tue Nov 04 17:47:40 EST 2025
Thu Nov 13 14:48:25 EST 2025
Thu Apr 03 07:10:23 EDT 2025
Tue Nov 18 21:26:57 EST 2025
Sat Nov 29 02:47:24 EST 2025
Sat Sep 06 07:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Keywords Boolean network
State feedback control
Controllability
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-df896ff0f3b9a073f6f8f71865cb4f2b6a260e8d6f4b38d63374816652c6af753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12918-016-0314-z
PMID 27586140
PQID 1816631084
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009829
proquest_miscellaneous_1816631084
gale_infotracmisc_A462473064
gale_infotracacademiconefile_A462473064
gale_incontextgauss_ISR_A462473064
pubmed_primary_27586140
crossref_primary_10_1186_s12918_016_0314_z
crossref_citationtrail_10_1186_s12918_016_0314_z
springer_journals_10_1186_s12918_016_0314_z
PublicationCentury 2000
PublicationDate 20160826
2016-8-26
2016-08-26
PublicationDateYYYYMMDD 2016-08-26
PublicationDate_xml – month: 8
  year: 2016
  text: 20160826
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC systems biology
PublicationTitleAbbrev BMC Syst Biol
PublicationTitleAlternate BMC Syst Biol
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References RK Layek (314_CR16) 2011; 7
A Fauré (314_CR2) 2006; 22
Z Yuan (314_CR9) 2013; 4
D Cheng (314_CR15) 2010; 46
F Sorrentino (314_CR7) 2007; 75
I Shmulevich (314_CR1) 2002; 18
S Gupta (314_CR3) 2007; 244
D Luenberger (314_CR6) 1979
XP Zhang (314_CR18) 2011; 108
D Cheng (314_CR10) 2003; 10
D Cheng (314_CR11) 2009; 45
DS Bernstein (314_CR20) 2009
YY Liu (314_CR8) 2011; 473
E Batchelor (314_CR17) 2008; 30
SA Kauffman (314_CR5) 1969; 22
D Cheng (314_CR21) 2010
F Li (314_CR13) 2012; 34
S Srihari (314_CR4) 2014; 11
D Cheng (314_CR14) 2009; 20
D Cheng (314_CR12) 2010; 55
D Cheng (314_CR19) 2009; 45
26355510 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):83-94
17500957 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046103
24025746 - Nat Commun. 2013;4:2447
19224735 - IEEE Trans Neural Netw. 2009 Mar;20(3):512-21
11847074 - Bioinformatics. 2002 Feb;18(2):261-74
21562557 - Nature. 2011 May 12;473(7346):167-73
22784925 - Neural Netw. 2012 Oct;34:10-7
21161088 - Mol Biosyst. 2011 Mar;7(3):843-51
17010384 - J Theor Biol. 2007 Feb 7;244(3):463-9
21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
5803332 - J Theor Biol. 1969 Mar;22(3):437-67
18471974 - Mol Cell. 2008 May 9;30(3):277-89
16873462 - Bioinformatics. 2006 Jul 15;22(14):e124-31
References_xml – volume: 75
  start-page: 046103
  year: 2007
  ident: 314_CR7
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.75.046103
– volume: 34
  start-page: 10
  year: 2012
  ident: 314_CR13
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.06.002
– volume: 45
  start-page: 1659
  issue: 7
  year: 2009
  ident: 314_CR19
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.03.006
– volume: 22
  start-page: 124
  issue: 14
  year: 2006
  ident: 314_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl210
– volume: 45
  start-page: 1659
  issue: 7
  year: 2009
  ident: 314_CR11
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.03.006
– volume: 10
  start-page: 565
  issue: 4
  year: 2003
  ident: 314_CR10
  publication-title: Methods Appl Anal
  doi: 10.4310/MAA.2003.v10.n4.a5
– volume-title: Introduction to Dynamic Systems Theory, Models and Applications
  year: 1979
  ident: 314_CR6
– volume: 7
  start-page: 843
  year: 2011
  ident: 314_CR16
  publication-title: Mol BioSyst
  doi: 10.1039/C0MB00263A
– volume-title: Analysis and control of Boolean networks: a semi-tensor product approach
  year: 2010
  ident: 314_CR21
– volume: 108
  start-page: 8990
  issue: 22
  year: 2011
  ident: 314_CR18
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1100600108
– volume: 4
  start-page: 1
  issue: 2447
  year: 2013
  ident: 314_CR9
  publication-title: Nature
– volume: 244
  start-page: 463
  issue: 3
  year: 2007
  ident: 314_CR3
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.08.014
– volume: 55
  start-page: 2251
  issue: 10
  year: 2010
  ident: 314_CR12
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2043294
– volume: 18
  start-page: 261
  issue: 2
  year: 2002
  ident: 314_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.261
– volume: 20
  start-page: 512
  issue: 3
  year: 2009
  ident: 314_CR14
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2008.2011359
– volume: 473
  start-page: 167
  issue: 7346
  year: 2011
  ident: 314_CR8
  publication-title: Nat Commun
  doi: 10.1038/nature10011
– volume: 46
  start-page: 62
  year: 2010
  ident: 314_CR15
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.036
– volume: 11
  start-page: 83
  year: 2014
  ident: 314_CR4
  publication-title: IEEE/ACM Trans Comput Biol. Bioinforma
  doi: 10.1109/TCBB.2013.128
– volume-title: Matrix mathematics: theory, facts, and formulas
  year: 2009
  ident: 314_CR20
  doi: 10.1515/9781400833344
– volume: 22
  start-page: 437
  issue: 3
  year: 1969
  ident: 314_CR5
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(69)90015-0
– volume: 30
  start-page: 277
  issue: 3
  year: 2008
  ident: 314_CR17
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.03.016
– reference: 21161088 - Mol Biosyst. 2011 Mar;7(3):843-51
– reference: 26355510 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):83-94
– reference: 22784925 - Neural Netw. 2012 Oct;34:10-7
– reference: 19224735 - IEEE Trans Neural Netw. 2009 Mar;20(3):512-21
– reference: 18471974 - Mol Cell. 2008 May 9;30(3):277-89
– reference: 16873462 - Bioinformatics. 2006 Jul 15;22(14):e124-31
– reference: 17500957 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046103
– reference: 21562557 - Nature. 2011 May 12;473(7346):167-73
– reference: 5803332 - J Theor Biol. 1969 Mar;22(3):437-67
– reference: 17010384 - J Theor Biol. 2007 Feb 7;244(3):463-9
– reference: 11847074 - Bioinformatics. 2002 Feb;18(2):261-74
– reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
– reference: 24025746 - Nat Commun. 2013;4:2447
SSID ssj0053227
Score 2.167658
Snippet Background Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological...
Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 70
SubjectTerms Algebra, Boolean
Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Cellular and Medical Topics
Computational Biology - methods
Computational Biology/Bioinformatics
Evolution
Feedback
Influence
Life Sciences
Physiological
Simulation and Modeling
Systems Biology
Tumor proteins
Title State feedback control design for Boolean networks
URI https://link.springer.com/article/10.1186/s12918-016-0314-z
https://www.ncbi.nlm.nih.gov/pubmed/27586140
https://www.proquest.com/docview/1816631084
https://pubmed.ncbi.nlm.nih.gov/PMC5009829
Volume 10
WOSCitedRecordID wos000392596400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RBZ
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190131
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RSV
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9sq-CL3x_RekQRBCV4STab3ce2tNgHj3BVOZ-WzSarxZJIc1do_3pnNpujOVTQl4SwE7KZzM4H-8tvAF5jxlExTJUjacs6YjqPI8ENVilS6FqKmGdZ5ZpN5LOZWCxk4f_j7ga0-7Al6Ty1W9aCv-8wMsUEvMIKOI1ZdLUFOxjtBPVrmJ98Gdxvhhaa--3L3942CkCbbvhaHNrESG5slLr4c3T3v2Z-D-74dDPc6-3jPtyomwdwq29AefkQEpdrhhZDWKnNj9AD18PK4TpCTGjD_bY9q3UTNj1evHsEn48OPx18iHwXhchkLF1GlRWSWzu1aSk1LmjLrbAYkXhmSmaTkmssaWpRccvKFE8pEdLEnGeJ4dpiNfMYtpu2qZ9CiLrVqdTEARezstKay7K2OtWSV7G2JoDpoFplPMU4dbo4U67UEFz1qlAEKyNVqKsA3q5v-dnza_xN-BV9L0W8FQ0BY77pVdep45O52mM8YTmVUwG88UK2xYcb7f8zwFcgqquR5O5IEheWGQ2_HMxC0RCh0Zq6XXUqJv1gXixQ5klvJuvJJ1iAYcozDSAfGdBagPi8xyPN6XfH650RuWsiA3g3mJHyDqX7s06e_ZP0c7idODtE98h3YXt5vqpfwE1zsTztziewlS9ydxQT2Nk_nBXzCYFhC7wqjj8WXyduqf0CdSwfVw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_MTdGX-a2d01URBKV426Zp8jjHxsbmRbYpewtpmuhwtLLeK7i_3nPS9GIvKuhTH3JC09OT80F--R2Al5hx1AxT5US6yiZMl2kiuMEqRQptpUh5UdS-2UQ5nYqzM_kh3OPuBrT7cCTpPbXf1oK_7TAypQS8wgo4T1lydQ3WGAYsIsw_Pvk0uN8CLbQMx5e_nTYKQMtu-Jc4tIyRXDoo9fFn7_Z_rfwOrId0M97u7eMurNjmHtzoG1D-uA-ZzzVjhyGs0uZrHIDrce1xHTEmtPG7tr2wuombHi_ePYCPe7unO_tJ6KKQmILls6R2QnLnJi6vpMYN7bgTDiMSL0zFXFZxjSWNFTV3rMrxkRMhTcp5kRmuHVYzD2G1aRv7GGLUrc6lJg64lFW11lxW1ulcS16n2pkIJoNqlQkU49Tp4kL5UkNw1atCEayMVKGuIni9mPKt59f4m_AL-l-KeCsaAsZ81vOuUwcnx2qb8YyVVE5F8CoIuRZfbnS4Z4CfQFRXI8nNkSRuLDMafj6YhaIhQqM1tp13KiX9YF4sUOZRbyaLxWdYgGHKM4mgHBnQQoD4vMcjzfkXz-tdELlrJiN4M5iRCg6l-7NONv5Jegtu7p--P1JHB9PDJ3Ar8zaJrpJvwurscm6fwnXzfXbeXT7zm-on8KAcKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_a9UwED906vCX-V3rplYRhEnZa5umyY-b-nAoj-FU9ltI08QNRzrW9wT313vXpo_1oYL4U3_IhTbXu9wd-eRzAC8x46gZpsqJdJVNmC7TRHCDVYoU2kqR8qKou2YT5Wwmjo7kQehz2g5o9-FIsr_TQCxNfr5zVrvexQXfaTFKpQTCwmo4T1lycRWuMcLRU7l--HXYigu01jIcZf522igYrW7Jl2LSKl5y5dC0i0XTW_-9ituwEdLQeLe3mztwxfq7cKNvTPnzHmRdDho7DG2VNt_jAGiP6w7vEWOiG-81zanVPvY9jry9D1-m7z6_eZ-E7gqJKVg-T2onJHdu4vJKanR0x51wGKl4YSrmsoprLHWsqLljVY6PnIhqUs6LzHDtsMp5AGu-8fYRxKhnnUtN3HApq2qtuays07mWvE61MxFMBjUrE6jHqQPGqepKEMFVrwpFcDNShbqIYHs55azn3fib8Av6d4r4LDwBZr7pRduq_cNPapfxjJVUZkXwKgi5Bl9udLh_gEsgCqyR5NZIEh3OjIafDyaiaIhQat42i1alpB_MlwXKPOxNZvnxGRZmmApNIihHxrQUIJ7v8Yg_Oe74vgsifc1kBK8Hk1Jho2n_rJPH_yT9DNYP3k7Vx_3Zh024mXUmiTso34K1-fnCPoHr5sf8pD1_2vnXL2G5JQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+feedback+control+design+for+Boolean+networks&rft.jtitle=BMC+systems+biology&rft.au=Liu%2C+Rongjie&rft.au=Qian%2C+Chunjiang&rft.au=Liu%2C+Shuqian&rft.au=Jin%2C+Yu-Fang&rft.date=2016-08-26&rft.issn=1752-0509&rft.eissn=1752-0509&rft.volume=10&rft.issue=S3&rft_id=info:doi/10.1186%2Fs12918-016-0314-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12918_016_0314_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon