Inferring metabolic pathway activity levels from RNA-Seq data
Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway act...
Saved in:
| Published in: | BMC genomics Vol. 17; no. Suppl 5; p. 542 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
31.08.2016
BioMed Central Ltd |
| Subjects: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs.
Results
XPathway tools have been applied to RNA-Seq data from the marine bryozoan
Bugula neritina
with and without its symbiotic bacterium “
Candidatus
Endobugula sertula”. We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR).
Conclusions
Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at
http://alan.cs.gsu.edu/NGS/?q=content/xpathway
. |
|---|---|
| AbstractList | Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs.BACKGROUNDAssessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs.XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR).RESULTSXPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR).Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .CONCLUSIONSOur results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway . Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway . Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. Results XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium “ Candidatus Endobugula sertula”. We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Conclusions Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway . |
| ArticleNumber | 542 |
| Audience | Academic |
| Author | Rodriguez, Alex Mandric, Igor Glebova, Olga Seesi, Sahar Al Cheng, Qiong Lopanik, Nicole B. Măndoiu, Ion Mathew, Meril Temate-Tiagueu, Yvette Zelikovsky, Alexander Bean, Kayla |
| Author_xml | – sequence: 1 givenname: Yvette surname: Temate-Tiagueu fullname: Temate-Tiagueu, Yvette email: ytematetiagueu1@cs.gsu.edu organization: Department of Computer Science, Georgia State University – sequence: 2 givenname: Sahar Al surname: Seesi fullname: Seesi, Sahar Al organization: Computer Science & Engineering Department, University of Connecticut – sequence: 3 givenname: Meril surname: Mathew fullname: Mathew, Meril organization: Department of Biology, Georgia State University – sequence: 4 givenname: Igor surname: Mandric fullname: Mandric, Igor organization: Department of Computer Science, Georgia State University – sequence: 5 givenname: Alex surname: Rodriguez fullname: Rodriguez, Alex organization: Department of Biology, Georgia State University – sequence: 6 givenname: Kayla surname: Bean fullname: Bean, Kayla organization: Department of Biology, Georgia State University – sequence: 7 givenname: Qiong surname: Cheng fullname: Cheng, Qiong organization: Department of Pharmacology, University of Miami – sequence: 8 givenname: Olga surname: Glebova fullname: Glebova, Olga organization: Department of Computer Science, Georgia State University – sequence: 9 givenname: Ion surname: Măndoiu fullname: Măndoiu, Ion email: ion@engr.uconn.edu organization: Computer Science & Engineering Department, University of Connecticut – sequence: 10 givenname: Nicole B. surname: Lopanik fullname: Lopanik, Nicole B. email: nicole.lopanik@eas.gatech.edu organization: Department of Biology, Georgia State University, Current address: School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology – sequence: 11 givenname: Alexander surname: Zelikovsky fullname: Zelikovsky, Alexander email: alexz@cs.gsu.edu organization: Department of Computer Science, Georgia State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27585456$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1r3DAQhk1JaT7aH9BLMfTSHJxqZFuWDw0soR8LoYWkPYtZebxRsK2NpN3W_z4yTkq2lKCDhfw8LwzzHicHgx0oSd4COwOQ4qMHLkWRMRAZlzzPxhfJERQVZBxEcfDkfpgce3_LGFSSl6-SQ16VsixKcZR8Wg4tOWeGddpTwJXtjE43GG5-45iiDmZnwph2tKPOp62zfXr1fZFd013aYMDXycsWO09vHr4nya8vn39efMsuf3xdXiwuM10WecgaBigJiaBuWAMaKizqljSBzKFoC8FQ10wTIoqSOFS6EQK4zhshgYlVfpKcz7mb7aqnRtMQHHZq40yPblQWjdr_M5gbtbY7VTJWl7yMAR8eApy925IPqjdeU9fhQHbrFUgQImeSsYi-n9E1dqTM0NqYqCdcLQpRcJHLWkTq7D9UPA31Rsc1tSa-7wmne0JkAv0Ja9x6r5bXV_vsu6fj_p3zcW0RqGZAO-u9o1ZpEzAYO01vOgVMTQVRc0FULIiaCqLGaMI_5mP4cw6fHb-ZikJO3dqtG-LCn5HuAWyozDg |
| CitedBy_id | crossref_primary_10_1007_s00253_020_10672_2 crossref_primary_10_3390_cancers15061787 crossref_primary_10_1007_s00227_017_3266_y crossref_primary_10_1038_s41590_021_00936_y crossref_primary_10_1093_biomtc_ujae131 crossref_primary_10_3389_fmicb_2018_01388 |
| Cites_doi | 10.1101/gr.120618.111 10.1007/s00442-004-1487-5 10.1093/nar/gkm306 10.3354/meps327183 10.2307/2963489 10.1038/nbt.1883 10.1101/gr.217802 10.1016/S0168-1656(99)00163-7 10.1371/journal.pone.0108783 10.1371/journal.pcbi.1000465 10.1128/AEM.63.11.4612-4616.1997 10.1089/cmb.2010.0260 10.1093/database/bar009 10.1186/1471-2164-15-S8-S2 10.1214/07-AOAS101 10.1186/1471-2105-14-202 10.1073/pnas.0506580102 10.1006/meth.2001.1262 10.1093/nar/29.9.e45 10.1021/np060361d 10.1093/nar/28.1.27 10.1016/j.copbio.2010.09.018 10.1128/AEM.67.10.4531-4537.2001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 COPYRIGHT 2016 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM |
| DOI | 10.1186/s12864-016-2823-y |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| ExternalDocumentID | PMC5009525 A464263896 27585456 10_1186_s12864_016_2823_y |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c543t-d01a8eaee19d0d1c17a49fece18314f460ac90ceaaa65e217cd6612c3d68106b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383625900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2164 |
| IngestDate | Tue Nov 04 01:57:38 EST 2025 Fri Sep 05 06:48:42 EDT 2025 Tue Nov 11 09:57:35 EST 2025 Tue Nov 04 18:05:40 EST 2025 Thu Nov 13 15:39:34 EST 2025 Thu Jan 02 22:20:25 EST 2025 Sat Nov 29 03:39:31 EST 2025 Tue Nov 18 21:24:53 EST 2025 Sat Sep 06 07:30:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 5 |
| Keywords | Differential Expression Analysis Permutation Model Pathway Activity Pathway Graph Ortholog Group |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-d01a8eaee19d0d1c17a49fece18314f460ac90ceaaa65e217cd6612c3d68106b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s12864-016-2823-y |
| PMID | 27585456 |
| PQID | 1816630800 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009525 proquest_miscellaneous_1816630800 gale_infotracmisc_A464263896 gale_infotracacademiconefile_A464263896 gale_incontextgauss_ISR_A464263896 pubmed_primary_27585456 crossref_citationtrail_10_1186_s12864_016_2823_y crossref_primary_10_1186_s12864_016_2823_y springer_journals_10_1186_s12864_016_2823_y |
| PublicationCentury | 2000 |
| PublicationDate | 20160831 2016-8-31 2016-08-31 |
| PublicationDateYYYYMMDD | 2016-08-31 |
| PublicationDate_xml | – month: 8 year: 2016 text: 20160831 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | C Mitrea (2823_CR8) 2013; 4 S Al Seesi (2823_CR9) 2014; 15 KJ Livak (2823_CR21) 2001; 25 Q Cheng (2823_CR10) 2011; 2 O Thellin (2823_CR23) 1999; 75 MG Grabherr (2823_CR17) 2011; 29 S Sudek (2823_CR19) 2007; 70 A Untergasser (2823_CR20) 2007; 35 Y Ye (2823_CR4) 2009; 5 S Davidson (2823_CR13) 2001; 67 MW Pfaffl (2823_CR25) 2001; 29 J Linneman (2823_CR18) 2014; 9 N Lindquist (2823_CR15) 1996; 66 N Lopanik (2823_CR14) 2004; 139 PD Lee (2823_CR22) 2002; 12 B Efron (2823_CR7) 2007; 1 KM Konwar (2823_CR2) 2013; 14 NB Lopanik (2823_CR16) 2006; 327 AE Trindade-Silva (2823_CR11) 2010; 21 A Subramanian (2823_CR6) 2005; 102 MG Haygood (2823_CR12) 1997; 63 DH Huson (2823_CR1) 2011; 21 M Kanehisa (2823_CR3) 2000; 28 I Sharon (2823_CR5) 2011; 18 M Magrane (2823_CR24) 2011; 2011 14747940 - Oecologia. 2004 Mar;139(1):131-9 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5 25275632 - PLoS One. 2014 Oct 02;9(9):e108783 17253852 - J Nat Prod. 2007 Jan;70(1):67-74 25435284 - BMC Genomics. 2014;15 Suppl 8:S2 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 21385050 - J Comput Biol. 2011 Mar;18(3):495-505 11827948 - Genome Res. 2002 Feb;12(2):292-7 20971628 - Curr Opin Biotechnol. 2010 Dec;21(6):834-42 11846609 - Methods. 2001 Dec;25(4):402-8 24133454 - Front Physiol. 2013 Oct 10;4:278 23800136 - BMC Bioinformatics. 2013 Jun 21;14:202 11571152 - Appl Environ Microbiol. 2001 Oct;67(10):4531-7 21447597 - Database (Oxford). 2011 Mar 29;2011:bar009 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 21690186 - Genome Res. 2011 Sep;21(9):1552-60 19680427 - PLoS Comput Biol. 2009 Aug;5(8):e1000465 17485472 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 9361448 - Appl Environ Microbiol. 1997 Nov;63(11):4612-6 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 |
| References_xml | – volume: 21 start-page: 1552 issue: 9 year: 2011 ident: 2823_CR1 publication-title: Genome Res doi: 10.1101/gr.120618.111 – volume: 139 start-page: 131 year: 2004 ident: 2823_CR14 publication-title: Oecologia doi: 10.1007/s00442-004-1487-5 – volume: 35 start-page: W71 issue: suppl 2 year: 2007 ident: 2823_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm306 – volume: 327 start-page: 183 year: 2006 ident: 2823_CR16 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps327183 – volume: 66 start-page: 431 year: 1996 ident: 2823_CR15 publication-title: Ecol Monogr doi: 10.2307/2963489 – volume: 29 start-page: 644 issue: 7 year: 2011 ident: 2823_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 12 start-page: 292 issue: 2 year: 2002 ident: 2823_CR22 publication-title: Genome Res doi: 10.1101/gr.217802 – volume: 4 start-page: 1 issue: 278 year: 2013 ident: 2823_CR8 publication-title: Front Physiol – volume: 75 start-page: 291 issue: 2 year: 1999 ident: 2823_CR23 publication-title: J Biotechnol doi: 10.1016/S0168-1656(99)00163-7 – volume: 9 start-page: e108783 issue: 10 year: 2014 ident: 2823_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0108783 – volume: 5 start-page: e1000465 issue: 8 year: 2009 ident: 2823_CR4 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000465 – volume: 63 start-page: 4612 issue: 11 year: 1997 ident: 2823_CR12 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.63.11.4612-4616.1997 – volume: 18 start-page: 495 issue: 3 year: 2011 ident: 2823_CR5 publication-title: J Comput Biol doi: 10.1089/cmb.2010.0260 – volume: 2011 start-page: bar009 year: 2011 ident: 2823_CR24 publication-title: Database doi: 10.1093/database/bar009 – volume: 15 start-page: S2 issue: Suppl 8 year: 2014 ident: 2823_CR9 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-S8-S2 – volume: 1 start-page: 107 issue: 1 year: 2007 ident: 2823_CR7 publication-title: Ann Appl Stat doi: 10.1214/07-AOAS101 – volume: 14 start-page: 202 year: 2013 ident: 2823_CR2 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-14-202 – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 2823_CR6 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: 2823_CR21 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 2 start-page: 1 year: 2011 ident: 2823_CR10 publication-title: IJKDB – volume: 29 start-page: e45 issue: 9 year: 2001 ident: 2823_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 70 start-page: 67 year: 2007 ident: 2823_CR19 publication-title: J Nat Prod doi: 10.1021/np060361d – volume: 28 start-page: 27 year: 2000 ident: 2823_CR3 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 21 start-page: 834 issue: 6 year: 2010 ident: 2823_CR11 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2010.09.018 – volume: 67 start-page: 4531 issue: 10 year: 2001 ident: 2823_CR13 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.10.4531-4537.2001 – reference: 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5 – reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 – reference: 21385050 - J Comput Biol. 2011 Mar;18(3):495-505 – reference: 25435284 - BMC Genomics. 2014;15 Suppl 8:S2 – reference: 11571152 - Appl Environ Microbiol. 2001 Oct;67(10):4531-7 – reference: 20971628 - Curr Opin Biotechnol. 2010 Dec;21(6):834-42 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 17485472 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 – reference: 21690186 - Genome Res. 2011 Sep;21(9):1552-60 – reference: 23800136 - BMC Bioinformatics. 2013 Jun 21;14:202 – reference: 9361448 - Appl Environ Microbiol. 1997 Nov;63(11):4612-6 – reference: 21447597 - Database (Oxford). 2011 Mar 29;2011:bar009 – reference: 17253852 - J Nat Prod. 2007 Jan;70(1):67-74 – reference: 11846609 - Methods. 2001 Dec;25(4):402-8 – reference: 25275632 - PLoS One. 2014 Oct 02;9(9):e108783 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 24133454 - Front Physiol. 2013 Oct 10;4:278 – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 11827948 - Genome Res. 2002 Feb;12(2):292-7 – reference: 19680427 - PLoS Comput Biol. 2009 Aug;5(8):e1000465 – reference: 14747940 - Oecologia. 2004 Mar;139(1):131-9 |
| SSID | ssj0017825 |
| Score | 2.2454512 |
| Snippet | Background
Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from... Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 542 |
| SubjectTerms | Animal Genetics and Genomics Animals Biomedical and Life Sciences Bryozoa - genetics Bryozoa - metabolism Computational Biology Gene expression Life Sciences Metabolic Networks and Pathways Microarrays Microbial Genetics and Genomics Observations Plant Genetics and Genomics Proteomics RNA sequencing Sequence Analysis, RNA Software Symbiosis Transcriptome |
| Title | Inferring metabolic pathway activity levels from RNA-Seq data |
| URI | https://link.springer.com/article/10.1186/s12864-016-2823-y https://www.ncbi.nlm.nih.gov/pubmed/27585456 https://www.proquest.com/docview/1816630800 https://pubmed.ncbi.nlm.nih.gov/PMC5009525 |
| Volume | 17 |
| WOSCitedRecordID | wos000383625900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSRe-GYERmQQEhIoIk4cx3ns0CYmQRW1gMqT5TjOVqmksLSg_vf4nKRaKkCClzzUl486d75z7ne_A3ihKaOl1YOA8ywOGE0NJgkze-BFZT22UoV70-_T8VjMZlne1XE3Pdq9T0m6ldqZteBvGruSckRM8MBuE-JgswcH1tsJtMbJ9PM2dWBdXtKlL3972sAB7S7DV_zQLkZyJ1Hq_M_p7f968jtwqws3yajVj7twzdT34EbbgHJzH7AaCakZ63Py1aysPizmmmCT4p9qQ7DkATtLkAUCixqClShkMh4FU_OdILL0AXw6Pfn49l3QNVQIdMLiVVCGVAmjjKFZGZZU01SxrDLaWLumrGI8VDoLtVFK8cTYzYourfuOdFwiaxkv4oewXy9r8wiILmwgQwtWKZMwZSKFl-BMqEiUmDPwIOxnWeqObRybXiyk23UILttZkYgww1mRGw9ebU_51lJt_E34Ob46iRQWNWJkztW6aeTZdCJHjCMLvci4By87oWppb65VV3Jg_wKyXg0kjwaS1sb0YPhZryEShxCYVpvlupEU864xht0eHLYas334CPdiNkD1IB3o0lYAqb2HI_X8wlF8Jxj6RokHr3uNkt3a0vx5Th7_k_QTuBmhSrrv40ewv7pcm6dwXf9YzZtLH_bSWeqOwoeD45NxPvHd9wof0bG5_S0_-5B_8Z3t_QLcSiQi |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BNsRe2MbHllGYQUhIQ9HixHGTxwoxdVpXobZMfbMcx-kqdSk06ab-9_PloyIVQ4KXvPicD_vsO-d-9zuAT4oyGhs9sDkPPZvRtsYgYWguPEqMxZYyKma61-73g_E4_F7lcWc12r0OSRY7dbGsA36WmZ2UI2KC2-aY4Nmrp7DNjMFCHN9geL0OHRiT51fhyz92axigzW34Nzu0iZHcCJQW9ud877_efB9eVO4m6ZT6cQBPdPoSnpUFKFevALORkJoxnZBbnRt9mE0VwSLF93JFMOUBK0uQGQKLMoKZKGTQ79hD_YsgsvQ1_Dj_NvratauCCrbymZfbsUNloKXWNIydmCralixMtNJmXVOWMO5IFTpKSym5r81hRcXGfLvKi5G1jEfeG9hK56k-AqIi48jQiCVS-0xqV-ItOAukG8QYM7DAqUdZqIptHItezERx6gi4KEdFIMIMR0WsLDhdd_lZUm38TfgjTp1ACosUMTITucwycTEciA7jyEIfhNyCz5VQMjcPV7JKOTCfgKxXDclWQ9KsMdVo_lBriMAmBKaler7MBMW4q4dutwWHpcasX97Fs5hxUC1oN3RpLYDU3s2WdHpTUHz76Pq6vgVfao0S1d6SPT4mx_8kfQLPu6Ornuhd9C_fwq6L6ln8K2_BVr5Y6newo-7yabZ4X6yvBzE9IAE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xMSZeYAzGwsfwpklIoIg4cdzksQKqoaEK0Q3xZjmOUyqVlJEU1P8eXz4qUjEkxEtefE7iy9l3l7v7HcBPRRmNjRzYnIeezWhLY5AwNBceJUZjSxkVX_q81e0G19fhRdXnNKuz3euQZFnTgChNaX50FyflFg_4UWZOVY7ZE9w2LoNnT-ZhkWHPIHTXe1fTMIJRf34VynxxWkMZzR7Jz3TSbL7kTNC00EWd1Xev4hOsVGYoaZdyswZzOv0MS2Vjysk6YJUSQjamfXKrcyMnw4Ei2Lz4UU4IlkJgxwkyxISjjGCFCrnstu2e_kcw43QD_nZO_xz_sqtGC7bymZfbsUNloKXWNIydmCrakixMtNJmv1OWMO5IFTpKSym5r40To2Kj1l3lxYhmxiPvCyyko1R_BaIiY-DQiCVS-0xqV-ItOAukG8QYS7DAqTkuVIVCjs0whqLwRgIuSq4IzDxDroiJBQfTKXclBMdrxD_wMwqEtkgxd6Yvx1kmznqXos04otMHIbdgvyJKRubhSlalCGYJiIbVoNxpUJq9pxrD32tpETiECWupHo0zQTEe66E5bsFmKT3Tl3fRRzOGqwWthlxNCRDyuzmSDm4K6G8fTWLXt-Cwli5RnTnZ_3my9SbqPfh4cdIR52fd39uw7KJ0Fr_Qd2Ahvx_rXfigHvJBdv-t2GpP_4ko5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+metabolic+pathway+activity+levels+from+RNA-Seq+data&rft.jtitle=BMC+genomics&rft.au=Temate-Tiagueu%2C+Yvette&rft.au=Seesi%2C+Sahar+Al&rft.au=Mathew%2C+Meril&rft.au=Mandric%2C+Igor&rft.date=2016-08-31&rft.eissn=1471-2164&rft.volume=17+Suppl+5&rft.spage=542&rft_id=info:doi/10.1186%2Fs12864-016-2823-y&rft_id=info%3Apmid%2F27585456&rft.externalDocID=27585456 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |