Inferring metabolic pathway activity levels from RNA-Seq data

Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway act...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics Vol. 17; no. Suppl 5; p. 542
Main Authors: Temate-Tiagueu, Yvette, Seesi, Sahar Al, Mathew, Meril, Mandric, Igor, Rodriguez, Alex, Bean, Kayla, Cheng, Qiong, Glebova, Olga, Măndoiu, Ion, Lopanik, Nicole B., Zelikovsky, Alexander
Format: Journal Article
Language:English
Published: London BioMed Central 31.08.2016
BioMed Central Ltd
Subjects:
ISSN:1471-2164, 1471-2164
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. Results XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium “ Candidatus Endobugula sertula”. We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Conclusions Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .
AbstractList Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs.BACKGROUNDAssessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs.XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR).RESULTSXPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR).Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .CONCLUSIONSOur results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .
Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium "Candidatus Endobugula sertula". We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .
Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray expression data. Wide availability of NGS technology has triggered a demand for bioinformatics tools capable of analyzing pathway activity directly from RNA-Seq data. In this paper we introduce XPathway, a set of tools that compares pathway activity analyzing mapping of contigs assembled from RNA-Seq reads to KEGG pathways. The XPathway analysis of pathway activity is based on expectation maximization and topological properties of pathway graphs. Results XPathway tools have been applied to RNA-Seq data from the marine bryozoan Bugula neritina with and without its symbiotic bacterium “ Candidatus Endobugula sertula”. We successfully identified several metabolic pathways with differential activity levels. The expression of enzymes from the identified pathways has been further validated through quantitative PCR (qPCR). Conclusions Our results show that XPathway is able to detect and quantify the metabolic difference in two samples. The software is implemented in C, Python and shell scripting and is capable of running on Linux/Unix platforms. The source code and installation instructions are available at http://alan.cs.gsu.edu/NGS/?q=content/xpathway .
ArticleNumber 542
Audience Academic
Author Rodriguez, Alex
Mandric, Igor
Glebova, Olga
Seesi, Sahar Al
Cheng, Qiong
Lopanik, Nicole B.
Măndoiu, Ion
Mathew, Meril
Temate-Tiagueu, Yvette
Zelikovsky, Alexander
Bean, Kayla
Author_xml – sequence: 1
  givenname: Yvette
  surname: Temate-Tiagueu
  fullname: Temate-Tiagueu, Yvette
  email: ytematetiagueu1@cs.gsu.edu
  organization: Department of Computer Science, Georgia State University
– sequence: 2
  givenname: Sahar Al
  surname: Seesi
  fullname: Seesi, Sahar Al
  organization: Computer Science & Engineering Department, University of Connecticut
– sequence: 3
  givenname: Meril
  surname: Mathew
  fullname: Mathew, Meril
  organization: Department of Biology, Georgia State University
– sequence: 4
  givenname: Igor
  surname: Mandric
  fullname: Mandric, Igor
  organization: Department of Computer Science, Georgia State University
– sequence: 5
  givenname: Alex
  surname: Rodriguez
  fullname: Rodriguez, Alex
  organization: Department of Biology, Georgia State University
– sequence: 6
  givenname: Kayla
  surname: Bean
  fullname: Bean, Kayla
  organization: Department of Biology, Georgia State University
– sequence: 7
  givenname: Qiong
  surname: Cheng
  fullname: Cheng, Qiong
  organization: Department of Pharmacology, University of Miami
– sequence: 8
  givenname: Olga
  surname: Glebova
  fullname: Glebova, Olga
  organization: Department of Computer Science, Georgia State University
– sequence: 9
  givenname: Ion
  surname: Măndoiu
  fullname: Măndoiu, Ion
  email: ion@engr.uconn.edu
  organization: Computer Science & Engineering Department, University of Connecticut
– sequence: 10
  givenname: Nicole B.
  surname: Lopanik
  fullname: Lopanik, Nicole B.
  email: nicole.lopanik@eas.gatech.edu
  organization: Department of Biology, Georgia State University, Current address: School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology
– sequence: 11
  givenname: Alexander
  surname: Zelikovsky
  fullname: Zelikovsky, Alexander
  email: alexz@cs.gsu.edu
  organization: Department of Computer Science, Georgia State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27585456$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1r3DAQhk1JaT7aH9BLMfTSHJxqZFuWDw0soR8LoYWkPYtZebxRsK2NpN3W_z4yTkq2lKCDhfw8LwzzHicHgx0oSd4COwOQ4qMHLkWRMRAZlzzPxhfJERQVZBxEcfDkfpgce3_LGFSSl6-SQ16VsixKcZR8Wg4tOWeGddpTwJXtjE43GG5-45iiDmZnwph2tKPOp62zfXr1fZFd013aYMDXycsWO09vHr4nya8vn39efMsuf3xdXiwuM10WecgaBigJiaBuWAMaKizqljSBzKFoC8FQ10wTIoqSOFS6EQK4zhshgYlVfpKcz7mb7aqnRtMQHHZq40yPblQWjdr_M5gbtbY7VTJWl7yMAR8eApy925IPqjdeU9fhQHbrFUgQImeSsYi-n9E1dqTM0NqYqCdcLQpRcJHLWkTq7D9UPA31Rsc1tSa-7wmne0JkAv0Ja9x6r5bXV_vsu6fj_p3zcW0RqGZAO-u9o1ZpEzAYO01vOgVMTQVRc0FULIiaCqLGaMI_5mP4cw6fHb-ZikJO3dqtG-LCn5HuAWyozDg
CitedBy_id crossref_primary_10_1007_s00253_020_10672_2
crossref_primary_10_3390_cancers15061787
crossref_primary_10_1007_s00227_017_3266_y
crossref_primary_10_1038_s41590_021_00936_y
crossref_primary_10_1093_biomtc_ujae131
crossref_primary_10_3389_fmicb_2018_01388
Cites_doi 10.1101/gr.120618.111
10.1007/s00442-004-1487-5
10.1093/nar/gkm306
10.3354/meps327183
10.2307/2963489
10.1038/nbt.1883
10.1101/gr.217802
10.1016/S0168-1656(99)00163-7
10.1371/journal.pone.0108783
10.1371/journal.pcbi.1000465
10.1128/AEM.63.11.4612-4616.1997
10.1089/cmb.2010.0260
10.1093/database/bar009
10.1186/1471-2164-15-S8-S2
10.1214/07-AOAS101
10.1186/1471-2105-14-202
10.1073/pnas.0506580102
10.1006/meth.2001.1262
10.1093/nar/29.9.e45
10.1021/np060361d
10.1093/nar/28.1.27
10.1016/j.copbio.2010.09.018
10.1128/AEM.67.10.4531-4537.2001
ContentType Journal Article
Copyright The Author(s) 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12864-016-2823-y
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID PMC5009525
A464263896
27585456
10_1186_s12864_016_2823_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c543t-d01a8eaee19d0d1c17a49fece18314f460ac90ceaaa65e217cd6612c3d68106b3
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383625900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Tue Nov 04 01:57:38 EST 2025
Fri Sep 05 06:48:42 EDT 2025
Tue Nov 11 09:57:35 EST 2025
Tue Nov 04 18:05:40 EST 2025
Thu Nov 13 15:39:34 EST 2025
Thu Jan 02 22:20:25 EST 2025
Sat Nov 29 03:39:31 EST 2025
Tue Nov 18 21:24:53 EST 2025
Sat Sep 06 07:30:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 5
Keywords Differential Expression Analysis
Permutation Model
Pathway Activity
Pathway Graph
Ortholog Group
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-d01a8eaee19d0d1c17a49fece18314f460ac90ceaaa65e217cd6612c3d68106b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12864-016-2823-y
PMID 27585456
PQID 1816630800
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5009525
proquest_miscellaneous_1816630800
gale_infotracmisc_A464263896
gale_infotracacademiconefile_A464263896
gale_incontextgauss_ISR_A464263896
pubmed_primary_27585456
crossref_citationtrail_10_1186_s12864_016_2823_y
crossref_primary_10_1186_s12864_016_2823_y
springer_journals_10_1186_s12864_016_2823_y
PublicationCentury 2000
PublicationDate 20160831
2016-8-31
2016-08-31
PublicationDateYYYYMMDD 2016-08-31
PublicationDate_xml – month: 8
  year: 2016
  text: 20160831
  day: 31
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References C Mitrea (2823_CR8) 2013; 4
S Al Seesi (2823_CR9) 2014; 15
KJ Livak (2823_CR21) 2001; 25
Q Cheng (2823_CR10) 2011; 2
O Thellin (2823_CR23) 1999; 75
MG Grabherr (2823_CR17) 2011; 29
S Sudek (2823_CR19) 2007; 70
A Untergasser (2823_CR20) 2007; 35
Y Ye (2823_CR4) 2009; 5
S Davidson (2823_CR13) 2001; 67
MW Pfaffl (2823_CR25) 2001; 29
J Linneman (2823_CR18) 2014; 9
N Lindquist (2823_CR15) 1996; 66
N Lopanik (2823_CR14) 2004; 139
PD Lee (2823_CR22) 2002; 12
B Efron (2823_CR7) 2007; 1
KM Konwar (2823_CR2) 2013; 14
NB Lopanik (2823_CR16) 2006; 327
AE Trindade-Silva (2823_CR11) 2010; 21
A Subramanian (2823_CR6) 2005; 102
MG Haygood (2823_CR12) 1997; 63
DH Huson (2823_CR1) 2011; 21
M Kanehisa (2823_CR3) 2000; 28
I Sharon (2823_CR5) 2011; 18
M Magrane (2823_CR24) 2011; 2011
14747940 - Oecologia. 2004 Mar;139(1):131-9
10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5
25275632 - PLoS One. 2014 Oct 02;9(9):e108783
17253852 - J Nat Prod. 2007 Jan;70(1):67-74
25435284 - BMC Genomics. 2014;15 Suppl 8:S2
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
21385050 - J Comput Biol. 2011 Mar;18(3):495-505
11827948 - Genome Res. 2002 Feb;12(2):292-7
20971628 - Curr Opin Biotechnol. 2010 Dec;21(6):834-42
11846609 - Methods. 2001 Dec;25(4):402-8
24133454 - Front Physiol. 2013 Oct 10;4:278
23800136 - BMC Bioinformatics. 2013 Jun 21;14:202
11571152 - Appl Environ Microbiol. 2001 Oct;67(10):4531-7
21447597 - Database (Oxford). 2011 Mar 29;2011:bar009
10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
21690186 - Genome Res. 2011 Sep;21(9):1552-60
19680427 - PLoS Comput Biol. 2009 Aug;5(8):e1000465
17485472 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4
9361448 - Appl Environ Microbiol. 1997 Nov;63(11):4612-6
21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
References_xml – volume: 21
  start-page: 1552
  issue: 9
  year: 2011
  ident: 2823_CR1
  publication-title: Genome Res
  doi: 10.1101/gr.120618.111
– volume: 139
  start-page: 131
  year: 2004
  ident: 2823_CR14
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1487-5
– volume: 35
  start-page: W71
  issue: suppl 2
  year: 2007
  ident: 2823_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm306
– volume: 327
  start-page: 183
  year: 2006
  ident: 2823_CR16
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps327183
– volume: 66
  start-page: 431
  year: 1996
  ident: 2823_CR15
  publication-title: Ecol Monogr
  doi: 10.2307/2963489
– volume: 29
  start-page: 644
  issue: 7
  year: 2011
  ident: 2823_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 12
  start-page: 292
  issue: 2
  year: 2002
  ident: 2823_CR22
  publication-title: Genome Res
  doi: 10.1101/gr.217802
– volume: 4
  start-page: 1
  issue: 278
  year: 2013
  ident: 2823_CR8
  publication-title: Front Physiol
– volume: 75
  start-page: 291
  issue: 2
  year: 1999
  ident: 2823_CR23
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(99)00163-7
– volume: 9
  start-page: e108783
  issue: 10
  year: 2014
  ident: 2823_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0108783
– volume: 5
  start-page: e1000465
  issue: 8
  year: 2009
  ident: 2823_CR4
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000465
– volume: 63
  start-page: 4612
  issue: 11
  year: 1997
  ident: 2823_CR12
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.63.11.4612-4616.1997
– volume: 18
  start-page: 495
  issue: 3
  year: 2011
  ident: 2823_CR5
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2010.0260
– volume: 2011
  start-page: bar009
  year: 2011
  ident: 2823_CR24
  publication-title: Database
  doi: 10.1093/database/bar009
– volume: 15
  start-page: S2
  issue: Suppl 8
  year: 2014
  ident: 2823_CR9
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-S8-S2
– volume: 1
  start-page: 107
  issue: 1
  year: 2007
  ident: 2823_CR7
  publication-title: Ann Appl Stat
  doi: 10.1214/07-AOAS101
– volume: 14
  start-page: 202
  year: 2013
  ident: 2823_CR2
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-14-202
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 2823_CR6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: 2823_CR21
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 2
  start-page: 1
  year: 2011
  ident: 2823_CR10
  publication-title: IJKDB
– volume: 29
  start-page: e45
  issue: 9
  year: 2001
  ident: 2823_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 70
  start-page: 67
  year: 2007
  ident: 2823_CR19
  publication-title: J Nat Prod
  doi: 10.1021/np060361d
– volume: 28
  start-page: 27
  year: 2000
  ident: 2823_CR3
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 21
  start-page: 834
  issue: 6
  year: 2010
  ident: 2823_CR11
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2010.09.018
– volume: 67
  start-page: 4531
  issue: 10
  year: 2001
  ident: 2823_CR13
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.10.4531-4537.2001
– reference: 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5
– reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
– reference: 21385050 - J Comput Biol. 2011 Mar;18(3):495-505
– reference: 25435284 - BMC Genomics. 2014;15 Suppl 8:S2
– reference: 11571152 - Appl Environ Microbiol. 2001 Oct;67(10):4531-7
– reference: 20971628 - Curr Opin Biotechnol. 2010 Dec;21(6):834-42
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 17485472 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4
– reference: 21690186 - Genome Res. 2011 Sep;21(9):1552-60
– reference: 23800136 - BMC Bioinformatics. 2013 Jun 21;14:202
– reference: 9361448 - Appl Environ Microbiol. 1997 Nov;63(11):4612-6
– reference: 21447597 - Database (Oxford). 2011 Mar 29;2011:bar009
– reference: 17253852 - J Nat Prod. 2007 Jan;70(1):67-74
– reference: 11846609 - Methods. 2001 Dec;25(4):402-8
– reference: 25275632 - PLoS One. 2014 Oct 02;9(9):e108783
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 24133454 - Front Physiol. 2013 Oct 10;4:278
– reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
– reference: 11827948 - Genome Res. 2002 Feb;12(2):292-7
– reference: 19680427 - PLoS Comput Biol. 2009 Aug;5(8):e1000465
– reference: 14747940 - Oecologia. 2004 Mar;139(1):131-9
SSID ssj0017825
Score 2.2454512
Snippet Background Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from...
Assessing pathway activity levels is a plausible way to quantify metabolic differences between various conditions. This is usually inferred from microarray...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 542
SubjectTerms Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Bryozoa - genetics
Bryozoa - metabolism
Computational Biology
Gene expression
Life Sciences
Metabolic Networks and Pathways
Microarrays
Microbial Genetics and Genomics
Observations
Plant Genetics and Genomics
Proteomics
RNA sequencing
Sequence Analysis, RNA
Software
Symbiosis
Transcriptome
Title Inferring metabolic pathway activity levels from RNA-Seq data
URI https://link.springer.com/article/10.1186/s12864-016-2823-y
https://www.ncbi.nlm.nih.gov/pubmed/27585456
https://www.proquest.com/docview/1816630800
https://pubmed.ncbi.nlm.nih.gov/PMC5009525
Volume 17
WOSCitedRecordID wos000383625900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSRe-GYERmQQEhIoIk4cx3ns0CYmQRW1gMqT5TjOVqmksLSg_vf4nKRaKkCClzzUl486d75z7ne_A3ihKaOl1YOA8ywOGE0NJgkze-BFZT22UoV70-_T8VjMZlne1XE3Pdq9T0m6ldqZteBvGruSckRM8MBuE-JgswcH1tsJtMbJ9PM2dWBdXtKlL3972sAB7S7DV_zQLkZyJ1Hq_M_p7f968jtwqws3yajVj7twzdT34EbbgHJzH7AaCakZ63Py1aysPizmmmCT4p9qQ7DkATtLkAUCixqClShkMh4FU_OdILL0AXw6Pfn49l3QNVQIdMLiVVCGVAmjjKFZGZZU01SxrDLaWLumrGI8VDoLtVFK8cTYzYourfuOdFwiaxkv4oewXy9r8wiILmwgQwtWKZMwZSKFl-BMqEiUmDPwIOxnWeqObRybXiyk23UILttZkYgww1mRGw9ebU_51lJt_E34Ob46iRQWNWJkztW6aeTZdCJHjCMLvci4By87oWppb65VV3Jg_wKyXg0kjwaS1sb0YPhZryEShxCYVpvlupEU864xht0eHLYas334CPdiNkD1IB3o0lYAqb2HI_X8wlF8Jxj6RokHr3uNkt3a0vx5Th7_k_QTuBmhSrrv40ewv7pcm6dwXf9YzZtLH_bSWeqOwoeD45NxPvHd9wof0bG5_S0_-5B_8Z3t_QLcSiQi
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BNsRe2MbHllGYQUhIQ9HixHGTxwoxdVpXobZMfbMcx-kqdSk06ab-9_PloyIVQ4KXvPicD_vsO-d-9zuAT4oyGhs9sDkPPZvRtsYgYWguPEqMxZYyKma61-73g_E4_F7lcWc12r0OSRY7dbGsA36WmZ2UI2KC2-aY4Nmrp7DNjMFCHN9geL0OHRiT51fhyz92axigzW34Nzu0iZHcCJQW9ud877_efB9eVO4m6ZT6cQBPdPoSnpUFKFevALORkJoxnZBbnRt9mE0VwSLF93JFMOUBK0uQGQKLMoKZKGTQ79hD_YsgsvQ1_Dj_NvratauCCrbymZfbsUNloKXWNIydmCralixMtNJmXVOWMO5IFTpKSym5r81hRcXGfLvKi5G1jEfeG9hK56k-AqIi48jQiCVS-0xqV-ItOAukG8QYM7DAqUdZqIptHItezERx6gi4KEdFIMIMR0WsLDhdd_lZUm38TfgjTp1ACosUMTITucwycTEciA7jyEIfhNyCz5VQMjcPV7JKOTCfgKxXDclWQ9KsMdVo_lBriMAmBKaler7MBMW4q4dutwWHpcasX97Fs5hxUC1oN3RpLYDU3s2WdHpTUHz76Pq6vgVfao0S1d6SPT4mx_8kfQLPu6Ornuhd9C_fwq6L6ln8K2_BVr5Y6newo-7yabZ4X6yvBzE9IAE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xMSZeYAzGwsfwpklIoIg4cdzksQKqoaEK0Q3xZjmOUyqVlJEU1P8eXz4qUjEkxEtefE7iy9l3l7v7HcBPRRmNjRzYnIeezWhLY5AwNBceJUZjSxkVX_q81e0G19fhRdXnNKuz3euQZFnTgChNaX50FyflFg_4UWZOVY7ZE9w2LoNnT-ZhkWHPIHTXe1fTMIJRf34VynxxWkMZzR7Jz3TSbL7kTNC00EWd1Xev4hOsVGYoaZdyswZzOv0MS2Vjysk6YJUSQjamfXKrcyMnw4Ei2Lz4UU4IlkJgxwkyxISjjGCFCrnstu2e_kcw43QD_nZO_xz_sqtGC7bymZfbsUNloKXWNIydmCrakixMtNJmv1OWMO5IFTpKSym5r40To2Kj1l3lxYhmxiPvCyyko1R_BaIiY-DQiCVS-0xqV-ItOAukG8QYS7DAqTkuVIVCjs0whqLwRgIuSq4IzDxDroiJBQfTKXclBMdrxD_wMwqEtkgxd6Yvx1kmznqXos04otMHIbdgvyJKRubhSlalCGYJiIbVoNxpUJq9pxrD32tpETiECWupHo0zQTEe66E5bsFmKT3Tl3fRRzOGqwWthlxNCRDyuzmSDm4K6G8fTWLXt-Cwli5RnTnZ_3my9SbqPfh4cdIR52fd39uw7KJ0Fr_Qd2Ahvx_rXfigHvJBdv-t2GpP_4ko5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+metabolic+pathway+activity+levels+from+RNA-Seq+data&rft.jtitle=BMC+genomics&rft.au=Temate-Tiagueu%2C+Yvette&rft.au=Seesi%2C+Sahar+Al&rft.au=Mathew%2C+Meril&rft.au=Mandric%2C+Igor&rft.date=2016-08-31&rft.eissn=1471-2164&rft.volume=17+Suppl+5&rft.spage=542&rft_id=info:doi/10.1186%2Fs12864-016-2823-y&rft_id=info%3Apmid%2F27585456&rft.externalDocID=27585456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon