Dynamic appliance scheduling and energy management in smart homes using adaptive reinforcement learning techniques

Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Respons...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 24594 - 26
Main Authors: Saroha, Poonam, Singh, Gopal, Lilhore, Umesh Kumar, Simaiya, Sarita, Khan, Monish, Alroobaea, Roobaea, Alsafyani, Majed, Alsufyani, Hamed
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09.07.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.
AbstractList Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.
Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL-POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL-POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.
Abstract Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.
ArticleNumber 24594
Author Alsafyani, Majed
Saroha, Poonam
Alsufyani, Hamed
Singh, Gopal
Lilhore, Umesh Kumar
Simaiya, Sarita
Khan, Monish
Alroobaea, Roobaea
Author_xml – sequence: 1
  givenname: Poonam
  surname: Saroha
  fullname: Saroha, Poonam
  organization: Department of Computer Science and Applications, Maharshi Dayanand University
– sequence: 2
  givenname: Gopal
  surname: Singh
  fullname: Singh, Gopal
  organization: Department of Computer Science and Applications, Maharshi Dayanand University
– sequence: 3
  givenname: Umesh Kumar
  surname: Lilhore
  fullname: Lilhore, Umesh Kumar
  organization: School of Computing Science and Engineering, Galgotias University
– sequence: 4
  givenname: Sarita
  surname: Simaiya
  fullname: Simaiya, Sarita
  organization: School of Computing Science and Engineering, Galgotias University
– sequence: 5
  givenname: Monish
  surname: Khan
  fullname: Khan, Monish
  email: drkumacse@gmail.com
  organization: Arba Minch University
– sequence: 6
  givenname: Roobaea
  surname: Alroobaea
  fullname: Alroobaea, Roobaea
  organization: Department of Computer Science, College of Computers and Information Technology, Taif University
– sequence: 7
  givenname: Majed
  surname: Alsafyani
  fullname: Alsafyani, Majed
  organization: Department of Computer Science, College of Computers and Information Technology, Taif University
– sequence: 8
  givenname: Hamed
  surname: Alsufyani
  fullname: Alsufyani, Hamed
  organization: Department of Computer Science, College of Computing and Informatics, Saudi Electronic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40634458$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE_ArsbNCqLwqVWIDa-uOfZPxKLEHO6k0_77OpIW2i3oRW_F3js69vq-LEx88FsVbSj5SwtWnJGjdqoqwuiKK5m_7ojhjRNQV44ydPDifFhcp7UheNWsFbV8Vp4I0XIhanRXx68HD6EwJ-_3gwBssk9minQfn-xK8LdFj7A_lCB56HNFPpfNlGiFO5TaMmMo5HVEL-8ndYBnR-S5Es7IDQvTL_YRm693fGdOb4mUHQ8KLu_28-PP92-_Ln9X1rx9Xl1-uK1MLPlWmI1JIWddMIKPGyg4ss7YmhFkOhirVIZeMIpGMd5JtLLYcpGRNI3Otlp8XV6uvDbDT--hy5oMO4PTxR4i9zkU4M6Buug0CbmTXNiCwBaBWsdxWigY6rlT2-rx67efNiNbk0iIMj0wf33i31X240ZQxQXnNs8OHO4cYli5MenTJ4DCAxzAnnR9KKcYbtaDvn6C7MEefe3WkGkpaKTL17mGkf1nu3zYDagVMDClF7LRxE0wuLAndoCnRyyTpdZJ0niR9nCTdZil7Ir13f1bEV1HKsO8x_o_9jOoWX_jc9Q
CitedBy_id crossref_primary_10_1016_j_enbuild_2025_116338
Cites_doi 10.3390/en16052357
10.1016/j.scs.2021.103530
10.1109/IWCMC61514.2024.10592515
10.1016/j.apenergy.2022.119770
10.1155/2024/2194986
10.1016/j.eti.2021.101443
10.48550/arXiv.2211.11620
10.3390/en15176392
10.1109/ACCESS.2021.3092304
10.1109/ACCESS.2022.3172327
10.1016/J.ENBUILD.2021.111297
10.1007/978-3-031-29724-3_10
10.3390/app13095539
10.1109/TNNLS.2022.3148435
10.4018/ijmcmc.306976
10.1016/j.apenergy.2023.122258
10.1016/j.rser.2024.114648
10.1049/gtd2.13203
10.1016/j.apenergy.2023.122029
10.24018/ejai.2024.3.1.37
10.1007/s12667-019-00364-w
10.1016/j.seta.2024.103709
10.1109/TSG.2023.3240522
10.46793/eee23-1.10n
10.1109/TAES.2024.3404915
10.1109/access.2024.3375771
10.1109/TSG.2024.3386896
10.1109/TSG.2022.3198401
10.3233/AIS-220482
10.1016/j.egyai.2024.100347
10.1016/j.egyr.2023.08.005
10.3390/su17020407
10.1007/s00202-024-02631-1
10.1016/j.aej.2022.02.042
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-08125-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 26
ExternalDocumentID oai_doaj_org_article_6fbeaeb7f96a4e9aa1d820811ecaf388
PMC12241353
40634458
10_1038_s41598_025_08125_9
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-cf074775524e21cd7fad2dd5002d3ac188fe3721e0723f72bde93a772667000d3
IEDL.DBID M7P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527980000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:21:54 EDT 2025
Tue Nov 04 02:04:31 EST 2025
Fri Sep 05 15:41:22 EDT 2025
Tue Oct 07 09:12:06 EDT 2025
Tue Jul 15 01:30:40 EDT 2025
Sat Nov 29 07:31:04 EST 2025
Tue Nov 18 22:06:34 EST 2025
Thu Jul 10 08:12:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep Q network
Appliance scheduling
Energy consumption
Demand response
Self-adaptive Puma optimizer algorithm
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-cf074775524e21cd7fad2dd5002d3ac188fe3721e0723f72bde93a772667000d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3228610974?pq-origsite=%requestingapplication%
PMID 40634458
PQID 3228610974
PQPubID 2041939
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_6fbeaeb7f96a4e9aa1d820811ecaf388
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12241353
proquest_miscellaneous_3228823683
proquest_journals_3228610974
pubmed_primary_40634458
crossref_citationtrail_10_1038_s41598_025_08125_9
crossref_primary_10_1038_s41598_025_08125_9
springer_journals_10_1038_s41598_025_08125_9
PublicationCentury 2000
PublicationDate 2025-07-09
PublicationDateYYYYMMDD 2025-07-09
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 8125_CR25
8125_CR20
8125_CR22
C Cortez (8125_CR13) 2023; 14
8125_CR23
Z Chen (8125_CR27) 2022; 76
AA Amer (8125_CR28) 2022; 14
8125_CR6
SMA Islam (8125_CR7) 2024; 3
8125_CR8
C Yang (8125_CR9) 2024
8125_CR2
8125_CR3
8125_CR4
8125_CR5
MH Alabdullah (8125_CR26) 2022; 61
F Nastić (8125_CR21) 2023
8125_CR14
8125_CR36
8125_CR1
L Sabbioni (8125_CR29) 2022
8125_CR31
8125_CR10
8125_CR11
J Aldahmashi (8125_CR34) 2024
H Liu (8125_CR35) 2021
8125_CR12
U Mir (8125_CR32) 2021; 9
X Chen (8125_CR15) 2023
B Mahapatra (8125_CR24) 2022; 13
8125_CR19
Q Shuai (8125_CR16) 2025; 17
MN Alatawi (8125_CR33) 2024; 2024
O Al-Ani (8125_CR30) 2022; 15
S Sankarananth (8125_CR18) 2023; 10
X You (8125_CR17) 2023; 14
References_xml – ident: 8125_CR12
  doi: 10.3390/en16052357
– volume: 76
  start-page: 103530
  year: 2022
  ident: 8125_CR27
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2021.103530
– ident: 8125_CR5
  doi: 10.1109/IWCMC61514.2024.10592515
– ident: 8125_CR23
  doi: 10.1016/j.apenergy.2022.119770
– volume: 2024
  start-page: 2194986
  issue: 1
  year: 2024
  ident: 8125_CR33
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2024/2194986
– ident: 8125_CR19
– ident: 8125_CR31
  doi: 10.1016/j.eti.2021.101443
– year: 2022
  ident: 8125_CR29
  publication-title: ArXiv
  doi: 10.48550/arXiv.2211.11620
– volume: 15
  start-page: 6392
  issue: 17
  year: 2022
  ident: 8125_CR30
  publication-title: Energies
  doi: 10.3390/en15176392
– volume: 9
  start-page: 94132
  year: 2021
  ident: 8125_CR32
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3092304
– ident: 8125_CR22
  doi: 10.1109/ACCESS.2022.3172327
– year: 2021
  ident: 8125_CR35
  doi: 10.1016/J.ENBUILD.2021.111297
– start-page: 265
  volume-title: Women in Power: Research and Development Advances in Electric Power Systems
  year: 2023
  ident: 8125_CR15
  doi: 10.1007/978-3-031-29724-3_10
– ident: 8125_CR36
  doi: 10.3390/app13095539
– ident: 8125_CR25
  doi: 10.1109/TNNLS.2022.3148435
– volume: 14
  start-page: 1
  year: 2023
  ident: 8125_CR17
  publication-title: Int. J. Mob. Comput. Multim Commun.
  doi: 10.4018/ijmcmc.306976
– ident: 8125_CR3
  doi: 10.1016/j.apenergy.2023.122258
– ident: 8125_CR1
  doi: 10.1016/j.rser.2024.114648
– ident: 8125_CR2
  doi: 10.1049/gtd2.13203
– ident: 8125_CR4
  doi: 10.1016/j.apenergy.2023.122029
– volume: 3
  start-page: 18
  issue: 1
  year: 2024
  ident: 8125_CR7
  publication-title: Eur. J. Artif. Intell. Mach. Learn.
  doi: 10.24018/ejai.2024.3.1.37
– volume: 13
  start-page: 643
  issue: 3
  year: 2022
  ident: 8125_CR24
  publication-title: Energ. Syst.
  doi: 10.1007/s12667-019-00364-w
– ident: 8125_CR6
  doi: 10.1016/j.seta.2024.103709
– volume: 14
  start-page: 3584
  issue: 5
  year: 2023
  ident: 8125_CR13
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3240522
– year: 2023
  ident: 8125_CR21
  publication-title: Energija Ekonomija Ekologija
  doi: 10.46793/eee23-1.10n
– year: 2024
  ident: 8125_CR9
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2024.3404915
– year: 2024
  ident: 8125_CR34
  publication-title: IEEE Access.
  doi: 10.1109/access.2024.3375771
– ident: 8125_CR10
  doi: 10.1109/TSG.2024.3386896
– volume: 14
  start-page: 239
  issue: 1
  year: 2022
  ident: 8125_CR28
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3198401
– ident: 8125_CR8
  doi: 10.3233/AIS-220482
– ident: 8125_CR11
– ident: 8125_CR14
  doi: 10.1016/j.egyai.2024.100347
– volume: 10
  start-page: 1299
  year: 2023
  ident: 8125_CR18
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.08.005
– volume: 17
  start-page: 407
  issue: 2
  year: 2025
  ident: 8125_CR16
  publication-title: Sustainability
  doi: 10.3390/su17020407
– ident: 8125_CR20
  doi: 10.1007/s00202-024-02631-1
– volume: 61
  start-page: 9069
  issue: 11
  year: 2022
  ident: 8125_CR26
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2022.02.042
SSID ssj0000529419
Score 2.4599001
Snippet Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional...
Abstract Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24594
SubjectTerms 639/166
639/4077
639/705
Algorithms
Alternative energy sources
Appliance scheduling
Appliances
Cost control
Cost reduction
Decision making
Deep learning
Deep Q network
Demand response
Demand side management
Electricity
Energy consumption
Energy efficiency
Energy management
Energy prices
Energy resources
Energy usage
Forecasting techniques
Humanities and Social Sciences
Learning
Machine learning
Management
multidisciplinary
Optimization
Performance assessment
Product reviews
Reinforcement
Renewable resources
Scheduling
Science
Science (multidisciplinary)
Self-adaptive Puma optimizer algorithm
Smart houses
Trends
User satisfaction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuCCiPlBa5EjeIGsf22j4CpeJUcShSb5bjB12JzVabbaX-e8Z2Nu3yvHBZRZtxZM2MPWON5_sA3siEEcJ4VysVRZ0iHj6xWHPtBEaTmbedymQT8vRUnZ_rL3eovtKdsAIPXBR3NItdsKGTUc8sD9pa6jFoKUqDs5Gp3OaLWc-dw1RB9W41p3rskmmYOhowUqVuslbUOBp_9VYkyoD9v8syf70s-VPFNAeik8fwaMwgyfsy8ydwL_RP4UHhlLzZhdVx4ZgnuTSdbErwAIsBJfWdE9t7EnK7H1lMF1_IvCfDAlVBLpaLMJB0Fx5Fvb1MeyFZhYyu6orsSDPxjUzor8Mz-Hry6ezj53okVqid4Gxdu5hg86VAa4SWOi-j9a33AndHz6yjaLfA8GgYGtmyKNvOB80s5uGz1NTTePYcdvplH14C6RrZiSZQjICJSJ13OBQVzV0bI6OxqYBulGzciDqeyC--m1z9ZsoUwxg0jMmGMbqCt9OYy4K58VfpD8l2k2TCy85_oBeZ0YvMv7yogv2N5c24iAeDe51KaPSSV3A4vcbll2oqtg_LqyKTOOMVq-BFcZRpJpgrMc4FflxtudDWVLff9POLDPFd6p0CP_pu42238_qzLvb-hy5ewcM2LxNZN3ofdtarq3AA9931ej6sXud19gPTEiyZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic appliance scheduling and energy management in smart homes using adaptive reinforcement learning techniques
URI https://link.springer.com/article/10.1038/s41598-025-08125-9
https://www.ncbi.nlm.nih.gov/pubmed/40634458
https://www.proquest.com/docview/3228610974
https://www.proquest.com/docview/3228823683
https://pubmed.ncbi.nlm.nih.gov/PMC12241353
https://doaj.org/article/6fbeaeb7f96a4e9aa1d820811ecaf388
Volume 15
WOSCitedRecordID wos001527980000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC1IvvAuBsjISN4iaxM7aOSEKreDQVYRAWk6R40e7Eptsky0S_54Zx5tqefTCxVqtJ5GTbzwz8djfEPJKIEcI43Uspctj9Hjwi7mYFzoHbzI1qpa-2ISYzeR8XpRhwa0P2yo3NtEbatNqXCM_AsWTSA0u-NvVZYxVozC7Gkpo7JA9ZElgfuteOa6xYBaLp0U4K5MwedSDv8IzZVkegy-EttjyR562_2-x5p9bJn_Lm3p3dHrvfx_kPrkbAlH6btCcB-SWbR6SO0Npyp-PSPdhKFVPfYYbVYPCdzD4JTy-TlVjqPWnBuly3D9DFw3tl6CK9KJd2p7ilnoQNWqFJpV21pO06kE2VKs4pyOJbP-YfD09-fL-YxzqM8Q652wda4fs-yIHUG2WaiOcMpkxORhZw5ROAX7L4AvTJiJjTmS1sQVTEM5P8WxQYtgB2W3axj4ltE5EnScWQMywHjuv4VJAiuvMOZa6JCLpBqVKB_JyrKHxvfJJdCarAdkKkK08slURkdfjNauBuuNG6WMEf5RE2m3_R9udV2EWV1NXW2Vr4Yqp4rZQKjUQQck0tVo5JmVEDjeYV8EW9NU14BF5OXbDLMbUjGpsezXIYOl5ySLyZNC0cSQQcjHOc7i53NLBraFu9zSLC88UPqRNc7jpm426Xo_r3-_i2c2P8ZzsZ34GiTgpDsnuuruyL8ht_WO96LsJ2RFz4Vs5IXvHJ7Py88SvdEB7lpUTP0Whp_x0Vn77BTmIQBA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqiJncU5IASUqlXLqIci9WYcL-1ITDIkU9D8KX4jz85SDUtvPXCJRsmL9ZL53uK8DeBF7nqEsKQMObdp6Cwe_mI2TAqVojXJtCy5HzaRTyb86Kg4WIOfQy2MS6scdKJX1LpW7hv5JgKPu9bgefJ2_i10U6NcdHUYodHBYs8sf-CWrX2zu4X_70tKtz8eftgJ-6kCoUoTtgiVdT3j8xRZMTRWOrdSU61TVA2aSRUj04bhvshEOWU2p6U2BZPohGauoiXSDNe9BJfRjaDcpwoejN90XNQsiYu-NidifLNF--hq2Ggaou3FY7Fi__yYgL_5tn-maP4Wp_Xmb_vm__bibsGN3tEm7zrJuA1rproDV7vRm8u70GwtKzmbKuIj-A76BPf5aHddeT6RlSbGV0WS2ZgfRKYVaWcoauSknpmWuJIBJNVy7kwGaYxvQqs62n4axzEZm-S29-DzhTzwfViv6so8BFJGeZlGJkZHwc2bT0q8FZGRKGoti20UQDygQqi-ObubEfJV-CQBxkWHJIFIEh5Jogjg1XjPvGtNci71ewe2kdK1Ffcn6uZY9FpKZLY00pS5LTKZmELKWKOHyOPYKGkZ5wFsDBgTva5rxRnAAng-XkYt5UJPsjL1aUfDKcs4C-BBh-yRE3QpWZKkuDhfwfwKq6tXqumJ74TehYVTXPT1IB5nfP37XTw6_zGewbWdw0_7Yn93svcYrlMvvXkYFRuwvmhOzRO4or4vpm3z1Is_gS8XLTa_ANOWlGY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4ahkVc2JfAAEaCE0RN4iR2DggBpWI0qOoBpLkZx8tMJZqWpAPqX-PX8ewso7LMbQ5cqqpxLDv93uK8974H8Iw5jhCaliHnNgudxcNv1IZpoTK0JrmWJffNJth0yg8Pi9kO_OxrYVxaZa8TvaLWS-XekY8QeNxRg7N0ZLu0iNl48nr1LXQdpFyktW-n0ULkwGx-4PGtebU_xv_6eZJM3n969yHsOgyEKkvpOlTW8cezDJdlklhpZqVOtM5QTWgqVYwbMBTPSCZiCbUsKbUpqESHNHfVLZGmOO8FuMgcablPG5wN73dcBC2Ni65OJ6J81KCtdPVsSRaiHcbPYssW-pYBf_Nz_0zX_C1m603h5Pr__BBvwLXOASdvWom5CTumugWX25acm9tQjzeVXMwV8ZF9JxIEz_9oj13ZPpGVJsZXS5LFkDdE5hVpFiiC5Hi5MA1xpQQ4VMuVMyWkNp6cVrVjuy4dR2Qgz23uwOdz2fBd2K2WlbkPpIxYmUUmRgfC9aFPS7wVUZKqxFoa2yiAuEeIUB1pu-sd8lX45AHKRYsqgagSHlWiCODFcM-qpSw5c_RbB7xhpKMb9z8s6yPRaS-R29JIUzJb5DI1hZSxRs-Rx7FR0lLOA9jr8SY6HdiIU7AF8HS4jNrLhaRkZZYn7Rie0JzTAO61KB9Wgq4mTdMMJ-db-N9a6vaVan7sGdLbcHGGk77sReV0Xf9-Fg_O3sYTuILSIj7uTw8ewtXECzILo2IPdtf1iXkEl9T39bypH3tNQODLeUvNL6fYnSM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+appliance+scheduling+and+energy+management+in+smart+homes+using+adaptive+reinforcement+learning+techniques&rft.jtitle=Scientific+reports&rft.au=Saroha%2C+Poonam&rft.au=Singh%2C+Gopal&rft.au=Lilhore%2C+Umesh+Kumar&rft.au=Simaiya%2C+Sarita&rft.date=2025-07-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-08125-9&rft_id=info%3Apmid%2F40634458&rft.externalDocID=PMC12241353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon