Dynamic appliance scheduling and energy management in smart homes using adaptive reinforcement learning techniques
Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Respons...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 24594 - 26 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
09.07.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation. |
|---|---|
| AbstractList | Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation. Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL-POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation.Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL-POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation. Abstract Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional systems to handle, but new developments in reinforcement learning and optimization may be able to help. The paper introduces a novel Demand Response (DR) method that integrates a Self-Adaptive Puma Optimizer Algorithm (SAPOA) with a Multi-Objective Deep Q-Network (MO-DQN), improving smart home energy consumption, cost, and user preferences management. SAPOA adaptively maximizes numerous objectives, while DQN improves decision-making by assimilating interactions. The proposed method adapts to user preferences by learning from previous energy usage patterns and optimizing the scheduling of critical household appliances, enhancing energy efficiency. Static optimization in traditional home energy management systems (HEMS) makes it difficult to handle changing expenses and dynamic user preferences. Reinforcement learning (RL) methods now in use frequently lack sophisticated optimization integration. The experimental results show that the outperforming multiobjective reinforcement learning puma optimizer algorithm (MORL–POA), SAPOA, and POA methods, the suggested solution dramatically lowers the peak-to-average ratio (PAR) value from 3.4286 to 1.9765 without RES and 1.0339 with RES. By combining SAPOA with DQN, the suggested approach maximizes energy management, optimizes appliance scheduling, and efficiently manages uncertainty, improving performance and flexibility. Metrics like peak average ratio (PAR), energy usage, and electricity cost are used to assess performance, while the Matlab platform is used for implementation. |
| ArticleNumber | 24594 |
| Author | Alsafyani, Majed Saroha, Poonam Alsufyani, Hamed Singh, Gopal Lilhore, Umesh Kumar Simaiya, Sarita Khan, Monish Alroobaea, Roobaea |
| Author_xml | – sequence: 1 givenname: Poonam surname: Saroha fullname: Saroha, Poonam organization: Department of Computer Science and Applications, Maharshi Dayanand University – sequence: 2 givenname: Gopal surname: Singh fullname: Singh, Gopal organization: Department of Computer Science and Applications, Maharshi Dayanand University – sequence: 3 givenname: Umesh Kumar surname: Lilhore fullname: Lilhore, Umesh Kumar organization: School of Computing Science and Engineering, Galgotias University – sequence: 4 givenname: Sarita surname: Simaiya fullname: Simaiya, Sarita organization: School of Computing Science and Engineering, Galgotias University – sequence: 5 givenname: Monish surname: Khan fullname: Khan, Monish email: drkumacse@gmail.com organization: Arba Minch University – sequence: 6 givenname: Roobaea surname: Alroobaea fullname: Alroobaea, Roobaea organization: Department of Computer Science, College of Computers and Information Technology, Taif University – sequence: 7 givenname: Majed surname: Alsafyani fullname: Alsafyani, Majed organization: Department of Computer Science, College of Computers and Information Technology, Taif University – sequence: 8 givenname: Hamed surname: Alsufyani fullname: Alsufyani, Hamed organization: Department of Computer Science, College of Computing and Informatics, Saudi Electronic University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40634458$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_ArsbNCqLwqVWIDa-uOfZPxKLEHO6k0_77OpIW2i3oRW_F3js69vq-LEx88FsVbSj5SwtWnJGjdqoqwuiKK5m_7ojhjRNQV44ydPDifFhcp7UheNWsFbV8Vp4I0XIhanRXx68HD6EwJ-_3gwBssk9minQfn-xK8LdFj7A_lCB56HNFPpfNlGiFO5TaMmMo5HVEL-8ndYBnR-S5Es7IDQvTL_YRm693fGdOb4mUHQ8KLu_28-PP92-_Ln9X1rx9Xl1-uK1MLPlWmI1JIWddMIKPGyg4ss7YmhFkOhirVIZeMIpGMd5JtLLYcpGRNI3Otlp8XV6uvDbDT--hy5oMO4PTxR4i9zkU4M6Buug0CbmTXNiCwBaBWsdxWigY6rlT2-rx67efNiNbk0iIMj0wf33i31X240ZQxQXnNs8OHO4cYli5MenTJ4DCAxzAnnR9KKcYbtaDvn6C7MEefe3WkGkpaKTL17mGkf1nu3zYDagVMDClF7LRxE0wuLAndoCnRyyTpdZJ0niR9nCTdZil7Ir13f1bEV1HKsO8x_o_9jOoWX_jc9Q |
| CitedBy_id | crossref_primary_10_1016_j_enbuild_2025_116338 |
| Cites_doi | 10.3390/en16052357 10.1016/j.scs.2021.103530 10.1109/IWCMC61514.2024.10592515 10.1016/j.apenergy.2022.119770 10.1155/2024/2194986 10.1016/j.eti.2021.101443 10.48550/arXiv.2211.11620 10.3390/en15176392 10.1109/ACCESS.2021.3092304 10.1109/ACCESS.2022.3172327 10.1016/J.ENBUILD.2021.111297 10.1007/978-3-031-29724-3_10 10.3390/app13095539 10.1109/TNNLS.2022.3148435 10.4018/ijmcmc.306976 10.1016/j.apenergy.2023.122258 10.1016/j.rser.2024.114648 10.1049/gtd2.13203 10.1016/j.apenergy.2023.122029 10.24018/ejai.2024.3.1.37 10.1007/s12667-019-00364-w 10.1016/j.seta.2024.103709 10.1109/TSG.2023.3240522 10.46793/eee23-1.10n 10.1109/TAES.2024.3404915 10.1109/access.2024.3375771 10.1109/TSG.2024.3386896 10.1109/TSG.2022.3198401 10.3233/AIS-220482 10.1016/j.egyai.2024.100347 10.1016/j.egyr.2023.08.005 10.3390/su17020407 10.1007/s00202-024-02631-1 10.1016/j.aej.2022.02.042 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-08125-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_6fbeaeb7f96a4e9aa1d820811ecaf388 PMC12241353 40634458 10_1038_s41598_025_08125_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c543t-cf074775524e21cd7fad2dd5002d3ac188fe3721e0723f72bde93a772667000d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527980000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:21:54 EDT 2025 Tue Nov 04 02:04:31 EST 2025 Fri Sep 05 15:41:22 EDT 2025 Tue Oct 07 09:12:06 EDT 2025 Tue Jul 15 01:30:40 EDT 2025 Sat Nov 29 07:31:04 EST 2025 Tue Nov 18 22:06:34 EST 2025 Thu Jul 10 08:12:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep Q network Appliance scheduling Energy consumption Demand response Self-adaptive Puma optimizer algorithm |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-cf074775524e21cd7fad2dd5002d3ac188fe3721e0723f72bde93a772667000d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3228610974?pq-origsite=%requestingapplication% |
| PMID | 40634458 |
| PQID | 3228610974 |
| PQPubID | 2041939 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6fbeaeb7f96a4e9aa1d820811ecaf388 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12241353 proquest_miscellaneous_3228823683 proquest_journals_3228610974 pubmed_primary_40634458 crossref_citationtrail_10_1038_s41598_025_08125_9 crossref_primary_10_1038_s41598_025_08125_9 springer_journals_10_1038_s41598_025_08125_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-09 |
| PublicationDateYYYYMMDD | 2025-07-09 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 8125_CR25 8125_CR20 8125_CR22 C Cortez (8125_CR13) 2023; 14 8125_CR23 Z Chen (8125_CR27) 2022; 76 AA Amer (8125_CR28) 2022; 14 8125_CR6 SMA Islam (8125_CR7) 2024; 3 8125_CR8 C Yang (8125_CR9) 2024 8125_CR2 8125_CR3 8125_CR4 8125_CR5 MH Alabdullah (8125_CR26) 2022; 61 F Nastić (8125_CR21) 2023 8125_CR14 8125_CR36 8125_CR1 L Sabbioni (8125_CR29) 2022 8125_CR31 8125_CR10 8125_CR11 J Aldahmashi (8125_CR34) 2024 H Liu (8125_CR35) 2021 8125_CR12 U Mir (8125_CR32) 2021; 9 X Chen (8125_CR15) 2023 B Mahapatra (8125_CR24) 2022; 13 8125_CR19 Q Shuai (8125_CR16) 2025; 17 MN Alatawi (8125_CR33) 2024; 2024 O Al-Ani (8125_CR30) 2022; 15 S Sankarananth (8125_CR18) 2023; 10 X You (8125_CR17) 2023; 14 |
| References_xml | – ident: 8125_CR12 doi: 10.3390/en16052357 – volume: 76 start-page: 103530 year: 2022 ident: 8125_CR27 publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2021.103530 – ident: 8125_CR5 doi: 10.1109/IWCMC61514.2024.10592515 – ident: 8125_CR23 doi: 10.1016/j.apenergy.2022.119770 – volume: 2024 start-page: 2194986 issue: 1 year: 2024 ident: 8125_CR33 publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1155/2024/2194986 – ident: 8125_CR19 – ident: 8125_CR31 doi: 10.1016/j.eti.2021.101443 – year: 2022 ident: 8125_CR29 publication-title: ArXiv doi: 10.48550/arXiv.2211.11620 – volume: 15 start-page: 6392 issue: 17 year: 2022 ident: 8125_CR30 publication-title: Energies doi: 10.3390/en15176392 – volume: 9 start-page: 94132 year: 2021 ident: 8125_CR32 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3092304 – ident: 8125_CR22 doi: 10.1109/ACCESS.2022.3172327 – year: 2021 ident: 8125_CR35 doi: 10.1016/J.ENBUILD.2021.111297 – start-page: 265 volume-title: Women in Power: Research and Development Advances in Electric Power Systems year: 2023 ident: 8125_CR15 doi: 10.1007/978-3-031-29724-3_10 – ident: 8125_CR36 doi: 10.3390/app13095539 – ident: 8125_CR25 doi: 10.1109/TNNLS.2022.3148435 – volume: 14 start-page: 1 year: 2023 ident: 8125_CR17 publication-title: Int. J. Mob. Comput. Multim Commun. doi: 10.4018/ijmcmc.306976 – ident: 8125_CR3 doi: 10.1016/j.apenergy.2023.122258 – ident: 8125_CR1 doi: 10.1016/j.rser.2024.114648 – ident: 8125_CR2 doi: 10.1049/gtd2.13203 – ident: 8125_CR4 doi: 10.1016/j.apenergy.2023.122029 – volume: 3 start-page: 18 issue: 1 year: 2024 ident: 8125_CR7 publication-title: Eur. J. Artif. Intell. Mach. Learn. doi: 10.24018/ejai.2024.3.1.37 – volume: 13 start-page: 643 issue: 3 year: 2022 ident: 8125_CR24 publication-title: Energ. Syst. doi: 10.1007/s12667-019-00364-w – ident: 8125_CR6 doi: 10.1016/j.seta.2024.103709 – volume: 14 start-page: 3584 issue: 5 year: 2023 ident: 8125_CR13 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3240522 – year: 2023 ident: 8125_CR21 publication-title: Energija Ekonomija Ekologija doi: 10.46793/eee23-1.10n – year: 2024 ident: 8125_CR9 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2024.3404915 – year: 2024 ident: 8125_CR34 publication-title: IEEE Access. doi: 10.1109/access.2024.3375771 – ident: 8125_CR10 doi: 10.1109/TSG.2024.3386896 – volume: 14 start-page: 239 issue: 1 year: 2022 ident: 8125_CR28 publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3198401 – ident: 8125_CR8 doi: 10.3233/AIS-220482 – ident: 8125_CR11 – ident: 8125_CR14 doi: 10.1016/j.egyai.2024.100347 – volume: 10 start-page: 1299 year: 2023 ident: 8125_CR18 publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.08.005 – volume: 17 start-page: 407 issue: 2 year: 2025 ident: 8125_CR16 publication-title: Sustainability doi: 10.3390/su17020407 – ident: 8125_CR20 doi: 10.1007/s00202-024-02631-1 – volume: 61 start-page: 9069 issue: 11 year: 2022 ident: 8125_CR26 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2022.02.042 |
| SSID | ssj0000529419 |
| Score | 2.4599001 |
| Snippet | Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for traditional... Abstract Smart home energy management is complicated because of varying user preferences, expenses, and consumption. These dynamics are difficult for... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 24594 |
| SubjectTerms | 639/166 639/4077 639/705 Algorithms Alternative energy sources Appliance scheduling Appliances Cost control Cost reduction Decision making Deep learning Deep Q network Demand response Demand side management Electricity Energy consumption Energy efficiency Energy management Energy prices Energy resources Energy usage Forecasting techniques Humanities and Social Sciences Learning Machine learning Management multidisciplinary Optimization Performance assessment Product reviews Reinforcement Renewable resources Scheduling Science Science (multidisciplinary) Self-adaptive Puma optimizer algorithm Smart houses Trends User satisfaction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuCCiPlBa5EjeIGsf22j4CpeJUcShSb5bjB12JzVabbaX-e8Z2Nu3yvHBZRZtxZM2MPWON5_sA3siEEcJ4VysVRZ0iHj6xWHPtBEaTmbedymQT8vRUnZ_rL3eovtKdsAIPXBR3NItdsKGTUc8sD9pa6jFoKUqDs5Gp3OaLWc-dw1RB9W41p3rskmmYOhowUqVuslbUOBp_9VYkyoD9v8syf70s-VPFNAeik8fwaMwgyfsy8ydwL_RP4UHhlLzZhdVx4ZgnuTSdbErwAIsBJfWdE9t7EnK7H1lMF1_IvCfDAlVBLpaLMJB0Fx5Fvb1MeyFZhYyu6orsSDPxjUzor8Mz-Hry6ezj53okVqid4Gxdu5hg86VAa4SWOi-j9a33AndHz6yjaLfA8GgYGtmyKNvOB80s5uGz1NTTePYcdvplH14C6RrZiSZQjICJSJ13OBQVzV0bI6OxqYBulGzciDqeyC--m1z9ZsoUwxg0jMmGMbqCt9OYy4K58VfpD8l2k2TCy85_oBeZ0YvMv7yogv2N5c24iAeDe51KaPSSV3A4vcbll2oqtg_LqyKTOOMVq-BFcZRpJpgrMc4FflxtudDWVLff9POLDPFd6p0CP_pu42238_qzLvb-hy5ewcM2LxNZN3ofdtarq3AA9931ej6sXud19gPTEiyZ priority: 102 providerName: Directory of Open Access Journals |
| Title | Dynamic appliance scheduling and energy management in smart homes using adaptive reinforcement learning techniques |
| URI | https://link.springer.com/article/10.1038/s41598-025-08125-9 https://www.ncbi.nlm.nih.gov/pubmed/40634458 https://www.proquest.com/docview/3228610974 https://www.proquest.com/docview/3228823683 https://pubmed.ncbi.nlm.nih.gov/PMC12241353 https://doaj.org/article/6fbeaeb7f96a4e9aa1d820811ecaf388 |
| Volume | 15 |
| WOSCitedRecordID | wos001527980000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC1IvvAuBsjISN4iaxM7aOSEKreDQVYRAWk6R40e7Eptsky0S_54Zx5tqefTCxVqtJ5GTbzwz8djfEPJKIEcI43Uspctj9Hjwi7mYFzoHbzI1qpa-2ISYzeR8XpRhwa0P2yo3NtEbatNqXCM_AsWTSA0u-NvVZYxVozC7Gkpo7JA9ZElgfuteOa6xYBaLp0U4K5MwedSDv8IzZVkegy-EttjyR562_2-x5p9bJn_Lm3p3dHrvfx_kPrkbAlH6btCcB-SWbR6SO0Npyp-PSPdhKFVPfYYbVYPCdzD4JTy-TlVjqPWnBuly3D9DFw3tl6CK9KJd2p7ilnoQNWqFJpV21pO06kE2VKs4pyOJbP-YfD09-fL-YxzqM8Q652wda4fs-yIHUG2WaiOcMpkxORhZw5ROAX7L4AvTJiJjTmS1sQVTEM5P8WxQYtgB2W3axj4ltE5EnScWQMywHjuv4VJAiuvMOZa6JCLpBqVKB_JyrKHxvfJJdCarAdkKkK08slURkdfjNauBuuNG6WMEf5RE2m3_R9udV2EWV1NXW2Vr4Yqp4rZQKjUQQck0tVo5JmVEDjeYV8EW9NU14BF5OXbDLMbUjGpsezXIYOl5ySLyZNC0cSQQcjHOc7i53NLBraFu9zSLC88UPqRNc7jpm426Xo_r3-_i2c2P8ZzsZ34GiTgpDsnuuruyL8ht_WO96LsJ2RFz4Vs5IXvHJ7Py88SvdEB7lpUTP0Whp_x0Vn77BTmIQBA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqiJncU5IASUqlXLqIci9WYcL-1ITDIkU9D8KX4jz85SDUtvPXCJRsmL9ZL53uK8DeBF7nqEsKQMObdp6Cwe_mI2TAqVojXJtCy5HzaRTyb86Kg4WIOfQy2MS6scdKJX1LpW7hv5JgKPu9bgefJ2_i10U6NcdHUYodHBYs8sf-CWrX2zu4X_70tKtz8eftgJ-6kCoUoTtgiVdT3j8xRZMTRWOrdSU61TVA2aSRUj04bhvshEOWU2p6U2BZPohGauoiXSDNe9BJfRjaDcpwoejN90XNQsiYu-NidifLNF--hq2Ggaou3FY7Fi__yYgL_5tn-maP4Wp_Xmb_vm__bibsGN3tEm7zrJuA1rproDV7vRm8u70GwtKzmbKuIj-A76BPf5aHddeT6RlSbGV0WS2ZgfRKYVaWcoauSknpmWuJIBJNVy7kwGaYxvQqs62n4axzEZm-S29-DzhTzwfViv6so8BFJGeZlGJkZHwc2bT0q8FZGRKGoti20UQDygQqi-ObubEfJV-CQBxkWHJIFIEh5Jogjg1XjPvGtNci71ewe2kdK1Ffcn6uZY9FpKZLY00pS5LTKZmELKWKOHyOPYKGkZ5wFsDBgTva5rxRnAAng-XkYt5UJPsjL1aUfDKcs4C-BBh-yRE3QpWZKkuDhfwfwKq6tXqumJ74TehYVTXPT1IB5nfP37XTw6_zGewbWdw0_7Yn93svcYrlMvvXkYFRuwvmhOzRO4or4vpm3z1Is_gS8XLTa_ANOWlGY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4ahkVc2JfAAEaCE0RN4iR2DggBpWI0qOoBpLkZx8tMJZqWpAPqX-PX8ewso7LMbQ5cqqpxLDv93uK8974H8Iw5jhCaliHnNgudxcNv1IZpoTK0JrmWJffNJth0yg8Pi9kO_OxrYVxaZa8TvaLWS-XekY8QeNxRg7N0ZLu0iNl48nr1LXQdpFyktW-n0ULkwGx-4PGtebU_xv_6eZJM3n969yHsOgyEKkvpOlTW8cezDJdlklhpZqVOtM5QTWgqVYwbMBTPSCZiCbUsKbUpqESHNHfVLZGmOO8FuMgcablPG5wN73dcBC2Ni65OJ6J81KCtdPVsSRaiHcbPYssW-pYBf_Nz_0zX_C1m603h5Pr__BBvwLXOASdvWom5CTumugWX25acm9tQjzeVXMwV8ZF9JxIEz_9oj13ZPpGVJsZXS5LFkDdE5hVpFiiC5Hi5MA1xpQQ4VMuVMyWkNp6cVrVjuy4dR2Qgz23uwOdz2fBd2K2WlbkPpIxYmUUmRgfC9aFPS7wVUZKqxFoa2yiAuEeIUB1pu-sd8lX45AHKRYsqgagSHlWiCODFcM-qpSw5c_RbB7xhpKMb9z8s6yPRaS-R29JIUzJb5DI1hZSxRs-Rx7FR0lLOA9jr8SY6HdiIU7AF8HS4jNrLhaRkZZYn7Rie0JzTAO61KB9Wgq4mTdMMJ-db-N9a6vaVan7sGdLbcHGGk77sReV0Xf9-Fg_O3sYTuILSIj7uTw8ewtXECzILo2IPdtf1iXkEl9T39bypH3tNQODLeUvNL6fYnSM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+appliance+scheduling+and+energy+management+in+smart+homes+using+adaptive+reinforcement+learning+techniques&rft.jtitle=Scientific+reports&rft.au=Saroha%2C+Poonam&rft.au=Singh%2C+Gopal&rft.au=Lilhore%2C+Umesh+Kumar&rft.au=Simaiya%2C+Sarita&rft.date=2025-07-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-08125-9&rft_id=info%3Apmid%2F40634458&rft.externalDocID=PMC12241353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |