Interpolation based consensus clustering for gene expression time series
Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizi...
Gespeichert in:
| Veröffentlicht in: | BMC bioinformatics Jg. 16; H. 1; S. 117 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
16.04.2015
BioMed Central Ltd |
| Schlagworte: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!