Interpolation based consensus clustering for gene expression time series

Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 16; H. 1; S. 117
Hauptverfasser: Chiu, Tai-Yu, Hsu, Ting-Chieh, Yen, Chia-Cheng, Wang, Jia-Shung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 16.04.2015
BioMed Central Ltd
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. Results An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. Conclusion The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.
AbstractList Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.
Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue.BACKGROUNDUnsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue.An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm.RESULTSAn affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm.The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.CONCLUSIONThe proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.
Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.
Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. Results An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. Conclusion The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.
Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. Results An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. Conclusion The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved. Keywords: Microarray data analyses, Gene expression, Consensus clustering, Affinity propagation, Interpolation
ArticleNumber 117
Audience Academic
Author Yen, Chia-Cheng
Chiu, Tai-Yu
Wang, Jia-Shung
Hsu, Ting-Chieh
Author_xml – sequence: 1
  givenname: Tai-Yu
  surname: Chiu
  fullname: Chiu, Tai-Yu
  organization: Department of Computer Science, National Tsing Hua University
– sequence: 2
  givenname: Ting-Chieh
  surname: Hsu
  fullname: Hsu, Ting-Chieh
  organization: Department of Computer Science, National Tsing Hua University
– sequence: 3
  givenname: Chia-Cheng
  surname: Yen
  fullname: Yen, Chia-Cheng
  organization: Department of Computer Science, National Tsing Hua University
– sequence: 4
  givenname: Jia-Shung
  surname: Wang
  fullname: Wang, Jia-Shung
  email: jswang@cs.nthu.edu.tw
  organization: Department of Computer Science, National Tsing Hua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25888019$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1r1zAUxoNM3It-AG-k4I1edCZt0qQ3whi6_WEg-HId0vS0ZrRJzWnH_Pam6xz7iyy5SDjn9zzk5TkmBz54IOQ1o6eMqeoDskKJOqdM5FRwltNn5IhxyfKCUXHwaH9IjhGvKWVSUfGCHBZCKUVZfUQud36GOIXBzC74rDEIbWaDR_C4YGaHBVPf-T7rQsx68JDB7RQBccVnN0KGqQ_4kjzvzIDw6n49IT8-f_p-fplffbnYnZ9d5Vbwcs5tY9uOV7arG9GAKkrVKKFEoWhhqhpMSU3V8lSSwshS2kpSwylIJbmpTeqfkI-b77Q0I7QW_BzNoKfoRhN_62Cc3u9491P34UZzTmXJeDJ4d28Qw68FcNajQwvDYDyEBTWrpFBVnUZC325obwbQznchOdoV12fpvUsha7Uanv6HSrOF0aWnhM6l-p7g_Z4gMTPczr1ZEPXu29d99s3j6z7c8-8PJoBtgI0BMUL3gDCq15ToLSU6pUSvKdE0aeQ_GuvmuwCkk7vhSWWxKXFaQwFRX4cl-vThT4j-AGsUz98
CitedBy_id crossref_primary_10_1016_j_physa_2020_125567
crossref_primary_10_1051_itmconf_20171205007
crossref_primary_10_1186_s12859_017_1860_0
crossref_primary_10_1016_j_mbs_2016_08_012
crossref_primary_10_1051_itmconf_20171203008
crossref_primary_10_1007_s00500_018_3280_0
crossref_primary_10_1038_s41467_025_61921_9
Cites_doi 10.1109/ICDM.2010.107
10.1109/ICPR.2010.615
10.1186/1471-2105-9-S2-S4
10.1093/bioinformatics/bth283
10.1093/bib/bbt020
10.1016/j.artmed.2008.07.014
10.1126/science.1136800
10.1093/bioinformatics/btl600
10.1093/bioinformatics/btl165
10.1109/TIT.2005.850085
10.1186/1471-2105-7-17
10.1109/TCBB.2005.31
10.1145/565196.565202
10.1093/bioinformatics/bti1022
10.1093/bioinformatics/bth068
10.1093/bioinformatics/btn375
10.1093/bioinformatics/btm463
10.1093/bioinformatics/17.9.763
10.1093/bioinformatics/btl284
10.1186/gb-2003-4-5-r34
10.1109/TKDE.2004.68
10.1186/1471-2105-4-36
10.1109/TGRS.2003.810924
10.1016/S0165-1684(02)00475-9
10.1126/science.282.5389.699
10.1146/annurev.bioeng.9.060906.151904
10.1073/pnas.96.6.2907
10.1016/0377-0427(87)90125-7
10.1093/bioinformatics/btg014
10.1093/bioinformatics/btm414
10.1186/gb-2004-5-11-r94
10.1007/BF01908075
10.1093/bioinformatics/btm418
10.1016/S1097-2765(00)80114-8
10.1038/75556
10.1023/A:1023949509487
ContentType Journal Article
Copyright Chiu et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
COPYRIGHT 2015 BioMed Central Ltd.
Chiu et al.; licensee BioMed Central. 2015
Copyright_xml – notice: Chiu et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Chiu et al.; licensee BioMed Central. 2015
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12859-015-0541-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC4407314
A541357984
25888019
10_1186_s12859_015_0541_0
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c543t-cbcdf46cf9b5be8238b85852802a69ea30a6d485875a737c670a40e7874a9aea3
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353322600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 02:02:24 EST 2025
Sun Nov 09 12:47:37 EST 2025
Tue Nov 11 10:16:53 EST 2025
Tue Nov 04 17:56:24 EST 2025
Thu Nov 13 14:17:47 EST 2025
Mon Jul 21 06:05:31 EDT 2025
Tue Nov 18 22:22:07 EST 2025
Sat Nov 29 05:39:58 EST 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interpolation
Microarray data analyses
Gene expression
Consensus clustering
Affinity propagation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-cbcdf46cf9b5be8238b85852802a69ea30a6d485875a737c670a40e7874a9aea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-015-0541-0
PMID 25888019
PQID 1675869999
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4407314
proquest_miscellaneous_1675869999
gale_infotracmisc_A541357984
gale_infotracacademiconefile_A541357984
gale_incontextgauss_ISR_A541357984
pubmed_primary_25888019
crossref_primary_10_1186_s12859_015_0541_0
crossref_citationtrail_10_1186_s12859_015_0541_0
springer_journals_10_1186_s12859_015_0541_0
PublicationCentury 2000
PublicationDate 20150416
2015-04-16
2015-Apr-16
PublicationDateYYYYMMDD 2015-04-16
PublicationDate_xml – month: 4
  year: 2015
  text: 20150416
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References CT Li (541_CR9) 2008; 24
M Ashburner (541_CR29) 2000; 25
A Bertoni (541_CR25) 2008; 9
L Hubert (541_CR20) 1985; 2
T Ideker (541_CR28) 2001; 292
U Maulik (541_CR36) 2003; 41
N Bolshakova (541_CR24) 2003; 83
M Leone (541_CR13) 2007; 23
KY Yeung (541_CR21) 2001; 17
P Rousseeuw (541_CR23) 1987; 20
R Avogadri (541_CR17) 2009; 45
S Bandyopadhyay (541_CR32) 2007; 23
A Schliep (541_CR7) 2005; 2
P Tamayo (541_CR4) 1999; 96
B Tjaden (541_CR33) 2006; 7
IP Androulakis (541_CR3) 2007; 9
ZS Qin (541_CR37) 2006; 22
541_CR19
D Jiang (541_CR22) 2004; 16
Y Luan (541_CR11) 2003; 19
S Monti (541_CR14) 2003; 52
541_CR10
Z Bar-Joseph (541_CR1) 2004; 20
S Chu (541_CR31) 1998; 282
KY Yeung (541_CR5) 2003; 4
SK Ng (541_CR8) 2006; 22
541_CR34
S Swift (541_CR15) 2004; 5
BJ Frey (541_CR12) 2007; 315
D de Ridder (541_CR2) 2013; 14
M Smolkin (541_CR27) 2003; 4
G Valentini (541_CR26) 2007; 23
RJ Cho (541_CR30) 1998; 2
JS Yedidia (541_CR18) 2005; 51
Z Yu (541_CR16) 2007; 23
KY Yeung (541_CR6) 2004; 20
J Ernst (541_CR35) 2005; 21
18387206 - BMC Bioinformatics. 2008;9 Suppl 2:S4
16409635 - BMC Bioinformatics. 2006;7:17
15130923 - Bioinformatics. 2004 Nov 1;20(16):2493-503
16766561 - Bioinformatics. 2006 Aug 15;22(16):1988-97
9702192 - Mol Cell. 1998 Jul;2(1):65-73
17720981 - Bioinformatics. 2007 Nov 1;23(21):2859-65
18718949 - Bioinformatics. 2008 Nov 1;24(21):2467-73
17127677 - Bioinformatics. 2007 Feb 1;23(3):387-9
12959646 - BMC Bioinformatics. 2003 Sep 6;4:36
17218491 - Science. 2007 Feb 16;315(5814):972-6
10077610 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907-12
17872912 - Bioinformatics. 2007 Nov 1;23(21):2888-96
15535870 - Genome Biol. 2004;5(11):R94
16675467 - Bioinformatics. 2006 Jul 15;22(14):1745-52
23559637 - Brief Bioinform. 2013 Sep;14(5):633-47
15961453 - Bioinformatics. 2005 Jun;21 Suppl 1:i159-68
17895277 - Bioinformatics. 2007 Oct 15;23(20):2708-15
11590094 - Bioinformatics. 2001 Sep;17(9):763-74
17044182 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):179-93
9784122 - Science. 1998 Oct 23;282(5389):699-705
10802651 - Nat Genet. 2000 May;25(1):25-9
11340206 - Science. 2001 May 4;292(5518):929-34
18801650 - Artif Intell Med. 2009 Feb-Mar;45(2-3):173-83
12611802 - Bioinformatics. 2003 Mar 1;19(4):474-82
17341157 - Annu Rev Biomed Eng. 2007;9:205-28
12734014 - Genome Biol. 2003;4(5):R34
14871871 - Bioinformatics. 2004 May 22;20(8):1222-32
References_xml – ident: 541_CR19
  doi: 10.1109/ICDM.2010.107
– ident: 541_CR34
  doi: 10.1109/ICPR.2010.615
– volume: 9
  start-page: (Suppl 2):S4
  year: 2008
  ident: 541_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S2-S4
– volume: 20
  start-page: 2493
  issue: 16
  year: 2004
  ident: 541_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth283
– volume: 14
  start-page: 633
  issue: 5
  year: 2013
  ident: 541_CR2
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbt020
– volume: 45
  start-page: 173
  issue: 2
  year: 2009
  ident: 541_CR17
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2008.07.014
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 541_CR12
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 23
  start-page: 387
  issue: 3
  year: 2007
  ident: 541_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl600
– volume: 22
  start-page: 1745
  issue: 14
  year: 2006
  ident: 541_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl165
– volume: 51
  start-page: 2282
  issue: 7
  year: 2005
  ident: 541_CR18
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2005.850085
– volume: 7
  start-page: 17
  year: 2006
  ident: 541_CR33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-17
– volume: 2
  start-page: 179
  issue: 3
  year: 2005
  ident: 541_CR7
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2005.31
– ident: 541_CR10
  doi: 10.1145/565196.565202
– volume: 21
  start-page: i159
  issue: Supp11
  year: 2005
  ident: 541_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1022
– volume: 20
  start-page: 1222
  issue: 8
  year: 2004
  ident: 541_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth068
– volume: 24
  start-page: 2467
  issue: 21
  year: 2008
  ident: 541_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn375
– volume: 23
  start-page: 2888
  issue: 21
  year: 2007
  ident: 541_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm463
– volume: 17
  start-page: 763
  issue: 9
  year: 2001
  ident: 541_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.9.763
– volume: 22
  start-page: 1988
  issue: 16
  year: 2006
  ident: 541_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl284
– volume: 4
  start-page: R34
  year: 2003
  ident: 541_CR5
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-5-r34
– volume: 16
  start-page: 1370
  issue: 11
  year: 2004
  ident: 541_CR22
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.68
– volume: 4
  start-page: 36
  year: 2003
  ident: 541_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-4-36
– volume: 41
  start-page: 1075
  issue: 5
  year: 2003
  ident: 541_CR36
  publication-title: IEEE Trans Geosci Remote Sensing
  doi: 10.1109/TGRS.2003.810924
– volume: 83
  start-page: 825
  issue: 4
  year: 2003
  ident: 541_CR24
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(02)00475-9
– volume: 282
  start-page: 699
  issue: 5389
  year: 1998
  ident: 541_CR31
  publication-title: Science
  doi: 10.1126/science.282.5389.699
– volume: 9
  start-page: 205
  year: 2007
  ident: 541_CR3
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.060906.151904
– volume: 96
  start-page: 2907
  issue: 6
  year: 1999
  ident: 541_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.6.2907
– volume: 20
  start-page: 53
  issue: 1
  year: 1987
  ident: 541_CR23
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 19
  start-page: 474
  issue: 4
  year: 2003
  ident: 541_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg014
– volume: 23
  start-page: 2708
  issue: 20
  year: 2007
  ident: 541_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm414
– volume: 292
  start-page: 929
  issue: 5518
  year: 2001
  ident: 541_CR28
  publication-title: Bioinformatics
– volume: 5
  start-page: R94
  year: 2004
  ident: 541_CR15
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-11-r94
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 541_CR20
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 23
  start-page: 2859
  year: 2007
  ident: 541_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm418
– volume: 2
  start-page: 65
  issue: 1
  year: 1998
  ident: 541_CR30
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80114-8
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 541_CR29
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 52
  start-page: 91
  issue: 1-2
  year: 2003
  ident: 541_CR14
  publication-title: Mach Learn
  doi: 10.1023/A:1023949509487
– reference: 15961453 - Bioinformatics. 2005 Jun;21 Suppl 1:i159-68
– reference: 17218491 - Science. 2007 Feb 16;315(5814):972-6
– reference: 9702192 - Mol Cell. 1998 Jul;2(1):65-73
– reference: 17044182 - IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):179-93
– reference: 12959646 - BMC Bioinformatics. 2003 Sep 6;4:36
– reference: 10077610 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907-12
– reference: 14871871 - Bioinformatics. 2004 May 22;20(8):1222-32
– reference: 12611802 - Bioinformatics. 2003 Mar 1;19(4):474-82
– reference: 16675467 - Bioinformatics. 2006 Jul 15;22(14):1745-52
– reference: 15535870 - Genome Biol. 2004;5(11):R94
– reference: 16766561 - Bioinformatics. 2006 Aug 15;22(16):1988-97
– reference: 18801650 - Artif Intell Med. 2009 Feb-Mar;45(2-3):173-83
– reference: 17720981 - Bioinformatics. 2007 Nov 1;23(21):2859-65
– reference: 23559637 - Brief Bioinform. 2013 Sep;14(5):633-47
– reference: 15130923 - Bioinformatics. 2004 Nov 1;20(16):2493-503
– reference: 18718949 - Bioinformatics. 2008 Nov 1;24(21):2467-73
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 18387206 - BMC Bioinformatics. 2008;9 Suppl 2:S4
– reference: 11590094 - Bioinformatics. 2001 Sep;17(9):763-74
– reference: 12734014 - Genome Biol. 2003;4(5):R34
– reference: 17127677 - Bioinformatics. 2007 Feb 1;23(3):387-9
– reference: 11340206 - Science. 2001 May 4;292(5518):929-34
– reference: 17341157 - Annu Rev Biomed Eng. 2007;9:205-28
– reference: 9784122 - Science. 1998 Oct 23;282(5389):699-705
– reference: 16409635 - BMC Bioinformatics. 2006;7:17
– reference: 17872912 - Bioinformatics. 2007 Nov 1;23(21):2888-96
– reference: 17895277 - Bioinformatics. 2007 Oct 15;23(20):2708-15
SSID ssj0017805
Score 2.2280333
Snippet Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several...
Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering...
Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Cell Cycle - physiology
Cluster Analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Graphics
Consensus Sequence
Galactose - metabolism
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Fungal
Information management
Life Sciences
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Research Article
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Spores, Fungal - physiology
Time Factors
Transcriptome analysis
Title Interpolation based consensus clustering for gene expression time series
URI https://link.springer.com/article/10.1186/s12859-015-0541-0
https://www.ncbi.nlm.nih.gov/pubmed/25888019
https://www.proquest.com/docview/1675869999
https://pubmed.ncbi.nlm.nih.gov/PMC4407314
Volume 16
WOSCitedRecordID wos000353322600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9sq9AXvz-iNawiCEowH_uVxyotLeoRrlpOX5bNZmMLJSfNRfS_d2aTHOZQQV_24WZCcnMzOzs3v_yGkGeZYw7qDhcliZUR5Ns0MgiwyUpWW5vWNvPg8dN3cjZTi0VeDO9xtyPafWxJ-p3ah7USr9oEudag9OURHDOgBt4iO5DtFM5rmJ-crlsHSNI_tC9_e9kkAW1uw7_koU2M5Eaj1Oefwxv_9eQ3yfXhuEn3e_-4Ra645ja51g-g_HGHHPWYw2UPiKOY0ipqEWDdtF1L7UWHPApwLwpnWwq-5qj7PkBnG4pz6Sm6sGvvko-HBx_eHEXDbIXIcpatIlvaqmbC1nnJS6cgcZfYIUxVnBqRO5PFRlQMPpLcyExaIWPDYgfhzZDP22T3yHazbNwDQlXFRZkYzlguWGITI00JdW9a1Tx2VZ0GJB4Nru1API7zLy60L0CU0L2BNBhIo4F0HJAX60u-9qwbf1N-ir-iRjaLBuEyX0zXtvr4ZK73QSHjMlcsIM8HpXoJN7dmePsAvgISYE009yaaEG52In4yOotGEWLUGrfsWp1g7SXgwJ0H5H7vPOuHT7mCjTIBiZy41VoBWb6nkub8zLN9Myi5IWAC8nJ0Lj1sM-2fbfLwn7Qfkd3UeyeLErFHtleXnXtMrtpvq_P2MiRbciH9qkKy8_pgVsxD_9cFrG9lFCJctoC14J9BXhy_Lz6FPiR_Ame6KW0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0KvXF72q06iqCoASzyX4kj0UsVzwPaWvp27LZbLRQctK9iP73zuTjMIcK-pqZZZPJzM4O89vfArzIvPBYd_iYc6djzLdpbAlgk5Widi6tXdaBx0_merHIT0-Lj8M57jCi3ceWZLdSd2GdqzeBE9calr4yxm0G1sCX4YrAhEWE-YdHJ-vWAZH0D-3L3w6bJKDNZfiXPLSJkdxolHb5Z__mf735LbgxbDfZXu8ft-GSb-7Atf4Cyh93YdZjDpc9II5RSquYI4B1E9rA3HlLPAo4F8O9LUNf88x_H6CzDaN76Rm5sA_34NP-u-O3s3i4WyF2UmSr2JWuqoVydVHK0ueYuEvqEKZ5klpVeJslVlUCH2lpdaad0okVicfwFsTnbbMd2GqWjX8ALK-kKrmVQhRKcMettiXWvWlVy8RXdRpBMhrcuIF4nO6_ODddAZIr0xvIoIEMGcgkEbxaD_nas278Tfk5_UVDbBYNwWU-2zYEc3B0aPZQIZO6yEUELweleomTOzucPsBPIAKsiebuRBPDzU3Ez0ZnMSQijFrjl20wnGovhRvuIoL7vfOsXz6VOS6UHCV64lZrBWL5nkqasy8d27fAkhsDJoLXo3OZYZkJf7bJw3_Sfgrbs-MPczM_WLx_BNfTzlNFzNUubK0uWv8Yrrpvq7Nw8aQLtZ9_HCN8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60avHFezVadRVBqITmspfksaiHFsuhWC19WzabjRbKntI9Ef33zuRyMAcVxNfsLJtMZnZ2mG-_AXiVO-4w73BxmloVY7zNYkMAm7zijbVZY_MOPH5yqObz4vS0PBr6nIYR7T6WJPs7DcTS5Je7F3XTu3ghd0NKvGuYBosYjxyYD1-Fa5xw9JSuH5-syghE2D-UMn87bRKM1rfkX2LSOl5yrWjaxaLZ7f_-ijtwaziGsr3ebu7CFefvwY2-MeWP-7DfYxEXPVCOUairmSXgtQ9tYPa8JX4FXJfhmZehDTrmvg-QWs-oXz0j03bhAXyevf_0dj8eei7EVvB8GdvK1g2XtikrUbkCA3pFlcOsSDIjS2fyxMia4yMljMqVlSoxPHHo9px4vk2-BRt-4d0jYEUtZJUawXkpeWpTo0yF-XBWNyJxdZNFkIzK13YgJKe-GOe6S0wKqXsFaVSQJgXpJIKd1ZSLno3jb8Iv6Y9qYrnwBKP5YtoQ9MHxR72HArlQZcEjeD0INQtc3JrhVgJ-AhFjTSS3J5LohnYy_GI0HE1DhF3zbtEGnVJOJvEgXkbwsDek1ctnosANNMURNTGxlQCxf09H_NnXjgWcYyqOjhTBm9HQ9LD9hD_r5PE_ST-HzaN3M314MP_wBG5mnaHyOJXbsLG8bN1TuG6_Lc_C5bPO634CsyYsYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+based+consensus+clustering+for+gene+expression+time+series&rft.jtitle=BMC+bioinformatics&rft.au=Chiu%2C+Tai-Yu&rft.au=Hsu%2C+Ting-Chieh&rft.au=Yen%2C+Chia-Cheng&rft.au=Wang%2C+Jia-Shung&rft.date=2015-04-16&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.spage=117&rft_id=info:doi/10.1186%2Fs12859-015-0541-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon