An improved multi-objective particle swarm optimization algorithm for the design of foundation pit of rail transit upper cover project

In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovativel...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 10403 - 25
Main Authors: Shao, Jinyan, Lu, Yuan, Sun, Yi, Zhao, Lei
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 26.03.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem .
AbstractList Abstract In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem .
In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem.
In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem .
In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem .In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic convergence mechanism of particle swarm optimization (PSO) as its core, while innovatively combining the fast non-dominated sorting technique to effectively evaluate and approximate the Pareto optimal solution set. To enhance the diversity and generalization of the solution set, the crowding distance mechanism is introduced, ensuring a good balance between multiple optimization objectives and a wider coverage of the solution space. Additionally, an acceleration factor based on trigonometric functions and an adaptive Gaussian mutation strategy are incorporated, improving the exploration ability of the particles in the search space and facilitating their movement towards the global optimal solution more effectively. The performance of the algorithm is verified using the multi-modal multi-objective benchmark function set provided by CEC2020, and comparisons are made with five advanced multi-objective metaheuristics. The MOIPSO algorithm is also applied to solve the design problem of rail transit upper cover foundation pit, further demonstrating the practical effectiveness of the proposed algorithm. The results show that MOIPSO not only performs well in multi-objective function testing but also proves highly competitive in solving real-world engineering problems. Note that the source codes of MOGWO are publicly available at https://au.mathworks.com/matlabcentral/fileexchange/177404-moipso-optimization-engineering-problem .
ArticleNumber 10403
Author Shao, Jinyan
Lu, Yuan
Zhao, Lei
Sun, Yi
Author_xml – sequence: 1
  givenname: Jinyan
  surname: Shao
  fullname: Shao, Jinyan
  organization: TOD Institute, Beijing Jiaotong University, Beijing Urban Construction Design and Development Group Co., Ltd
– sequence: 2
  givenname: Yuan
  surname: Lu
  fullname: Lu, Yuan
  email: luyuan@bjtu.edu.cn
  organization: School of Architecture and Design, Beijing Jiao Tong University
– sequence: 3
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  organization: China Architecture Design and Research Institute Co., Ltd. Shanghai Branch
– sequence: 4
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: Beijing Urban Construction Design and Development Group Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40140400$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQxyNURMvSL8ABWeLSS8CvJPYJVRWPSpW4wNlynMmuV4kdbGcr-AB87no3W2h7qA9-jH_zn7FnXhcnzjsoircEfyCYiY-Rk0qKEtOqFA2rcCleFGcU86qkjNKTB_vT4jzGLc6jopIT-ao45ZhwzDE-K_5eOmTHKfgddGich2RL327BJLsDNOmQrBkAxVsdRuSnZEf7RyfrHdLD2gebNiPqfUBpA6iDaNcO-T5bZtct2GTT3hK0HVAK2sV8nqcJAjI5ZEA58j7am-Jlr4cI58d1Vfz88vnH1bfy5vvX66vLm9JUnKU89xi3usZAcQ2y1i2voMWyo00eVGDBWIc7zkhdg6GEyZZq3ICUTd4ZyVbF9aLbeb1VU7CjDr-V11YdDD6s1fHNCijpOXSmxSB5y4Q0kvBGCynbuqEYstanRWua2zGD4PIDh0eij2-c3ai13ylCJG9ozm5VXBwVgv81Q0xqtNHAMGgHfo6KEUEElhWtM_r-Cbr1c3D5rw5UVVEuRKbePUzpXy739c6AWAATfIwBemVsOlQq7UukCFb77lJLd6ncXerQXWqvTZ-43qs_68QWp5hht4bwP-1nvO4A-QjjTg
CitedBy_id crossref_primary_10_38124_ijisrt_25may1547
crossref_primary_10_1371_journal_pone_0328005
Cites_doi 10.1016/j.cma.2024.116840
10.3390/electronics12194119
10.1007/s10586-024-04301-0
10.3390/math11081898
10.1007/s10489-016-0825-8
10.1061/9780784482292.417
10.1016/j.eswa.2015.10.039
10.1016/j.swevo.2011.08.001
10.1016/j.knosys.2017.07.018
10.1038/s41598-024-54991-0
10.1016/j.eswa.2023.120904
10.1016/j.advengsoft.2017.07.002
10.1140/epjs/s11734-021-00206-w
10.1016/j.cma.2021.114029
10.1109/4235.585893
10.1186/s13640-018-0289-3
10.1109/TEVC.2004.826067
10.7717/peerj-cs.1839
10.1007/s10462-024-10716-3
10.1016/j.engappai.2021.104523
10.1109/access.2020.3047936
10.1007/s13762-018-1970-x
10.1016/j.eswa.2022.118827
10.1016/j.eswa.2023.120411
10.1109/TEVC.2007.892759
10.1145/3512290.3528717
10.1007/s13369-021-06178-2
10.1016/j.tra.2023.103729
10.1016/j.asoc.2024.111435
10.1109/MCI.2006.1597059
10.1016/j.advengsoft.2013.12.007
10.1016/j.egyr.2022.01.175
10.1007/s11831-021-09531-8
10.1109/tetci.2022.3195178
10.1007/s44196-024-00420-z
10.1016/j.asoc.2019.03.012
10.19713/j.cnki.43-1423/u.T20200287
10.1109/IICIP.2016.7975341
10.1016/j.cma.2023.116199
10.1016/j.knosys.2021.107880
10.1016/j.ins.2021.11.052
10.1007/s11227-023-05676-4
10.1016/j.eswa.2022.118734
10.1016/j.swevo.2011.02.002
10.1109/tits.2024.3373510
10.3390/biomimetics8020266
10.1109/4235.996017
10.1007/s00521-022-07405-z
10.1016/j.ins.2018.10.005
10.1016/j.epsr.2024.110374
10.3390/biomimetics9060316
10.1016/j.asoc.2022.108684
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-87350-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 25
ExternalDocumentID oai_doaj_org_article_e21f4edcb0e94b389c9147a899b6720e
PMC11947221
40140400
10_1038_s41598_025_87350_8
Genre Journal Article
GrantInformation_xml – fundername: Exploration of the School-wide Elective Curriculums for Cultivating Global Economic Governance Talents for International Organizations, the fundamental research fund for the central universities
  grantid: A24JBW700030
– fundername: Education and Teaching Reform Fund of Central University of Finance and Economics
  grantid: No. 2022ZXJG21
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-c5f00ba60e206e96ab45eb09d27777280833d0d43166ec2139b2a07e9979b2c93
IEDL.DBID M7P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001454451200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:51 EDT 2025
Tue Nov 04 02:02:50 EST 2025
Fri Sep 05 17:50:40 EDT 2025
Tue Oct 07 08:02:30 EDT 2025
Sun Mar 30 01:30:01 EDT 2025
Tue Nov 18 21:47:48 EST 2025
Sat Nov 29 08:05:04 EST 2025
Thu Mar 27 04:14:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-objective optimization problems
Multi-objective particle swarm optimization (MOIPSO)
Particle swarm optimization
Rail transit upper cover foundation pit
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-c5f00ba60e206e96ab45eb09d27777280833d0d43166ec2139b2a07e9979b2c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3181552488?pq-origsite=%requestingapplication%
PMID 40140400
PQID 3181552488
PQPubID 2041939
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_e21f4edcb0e94b389c9147a899b6720e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11947221
proquest_miscellaneous_3181809526
proquest_journals_3181552488
pubmed_primary_40140400
crossref_citationtrail_10_1038_s41598_025_87350_8
crossref_primary_10_1038_s41598_025_87350_8
springer_journals_10_1038_s41598_025_87350_8
PublicationCentury 2000
PublicationDate 2025-03-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SB Pandya (87350_CR42) 2024
S Alp (87350_CR7) 2024; 80
N Panagant (87350_CR28) 2021; 28
D Elhani (87350_CR20) 2023
JH Jiang (87350_CR40) 2024
P Agarwal (87350_CR5) 2022; 120
K Li (87350_CR3) 2023; 415
J Derrac (87350_CR53) 2011; 1
EH Houssein (87350_CR46) 2023
A Got (87350_CR25) 2022; 237
R Akbari (87350_CR32) 2012; 2
C Coello (87350_CR31) 2004; 8
M Jameel (87350_CR8) 2024; 422
Y-L He (87350_CR14) 2024; 232
Q Zhang (87350_CR30) 2007; 11
N Ganesh (87350_CR38) 2023
N Vo (87350_CR44) 2024
YE Zhou (87350_CR2) 2023
M Khishe (87350_CR11) 2023
J Zhu (87350_CR21) 2023
YW Yue (87350_CR19) 2023
S Fu (87350_CR51) 2024; 57
GS Li (87350_CR45) 2022
JH Yi (87350_CR35) 2020; 509
K Zhong (87350_CR6) 2021; 385
SZ Sun (87350_CR10) 2022; 8
H Huang (87350_CR4) 2024; 14
87350_CR47
K Deb (87350_CR29) 2002; 6
S Mirjalili (87350_CR49) 2017; 134
D Qu (87350_CR48) 2024
S Mirjalili (87350_CR50) 2017; 114
S Fu (87350_CR52) 2023; 233
N Saini (87350_CR12) 2021; 230
CAC Coello (87350_CR9) 2006; 1
RE Mohamed (87350_CR22) 2023; 7
JW Zhang (87350_CR13) 2018
DH Wolpert (87350_CR16) 1997; 1
Y Chen (87350_CR27) 2022; 47
87350_CR1
87350_CR18
K Bu (87350_CR54) 2020
87350_CR15
AH Elsheikh (87350_CR23) 2018; 16
W Deng (87350_CR43) 2024
S Mirjalili (87350_CR33) 2017; 46
W Deng (87350_CR37) 2022; 585
N Khodadadi (87350_CR26) 2022; 34
S Mirjalili (87350_CR17) 2014; 69
S Mirjalili (87350_CR24) 2016; 47
H Yapici (87350_CR34) 2019; 78
M Premkumar (87350_CR36) 2021; 9
YL He (87350_CR39) 2024
SK Sahoo (87350_CR41) 2024
References_xml – volume: 422
  year: 2024
  ident: 87350_CR8
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.116840
– year: 2023
  ident: 87350_CR19
  publication-title: Electronics
  doi: 10.3390/electronics12194119
– year: 2024
  ident: 87350_CR41
  publication-title: Cluster Comput. J. Netw. Softw. Tools Appl.
  doi: 10.1007/s10586-024-04301-0
– year: 2023
  ident: 87350_CR38
  publication-title: Mathematics
  doi: 10.3390/math11081898
– ident: 87350_CR18
– volume: 46
  start-page: 79
  year: 2017
  ident: 87350_CR33
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0825-8
– ident: 87350_CR1
  doi: 10.1061/9780784482292.417
– volume: 47
  start-page: 106
  year: 2016
  ident: 87350_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.039
– volume: 2
  start-page: 39
  year: 2012
  ident: 87350_CR32
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.08.001
– volume: 134
  start-page: 50
  year: 2017
  ident: 87350_CR49
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.018
– volume: 14
  start-page: 4310
  year: 2024
  ident: 87350_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-54991-0
– volume: 233
  year: 2023
  ident: 87350_CR52
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120904
– volume: 114
  start-page: 163
  year: 2017
  ident: 87350_CR50
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 230
  start-page: 2319
  year: 2021
  ident: 87350_CR12
  publication-title: Eur. Phys. J.-Spec. Top.
  doi: 10.1140/epjs/s11734-021-00206-w
– volume: 385
  year: 2021
  ident: 87350_CR6
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114029
– volume: 1
  start-page: 67
  year: 1997
  ident: 87350_CR16
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.585893
– year: 2018
  ident: 87350_CR13
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-018-0289-3
– volume: 8
  start-page: 256
  year: 2004
  ident: 87350_CR31
  publication-title: Evolut. Comput. IEEE Trans.
  doi: 10.1109/TEVC.2004.826067
– year: 2024
  ident: 87350_CR48
  publication-title: Peerj Comput. Sci.
  doi: 10.7717/peerj-cs.1839
– volume: 57
  start-page: 134
  year: 2024
  ident: 87350_CR51
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10716-3
– year: 2022
  ident: 87350_CR45
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104523
– volume: 9
  start-page: 3229
  year: 2021
  ident: 87350_CR36
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3047936
– volume: 16
  start-page: 1159
  year: 2018
  ident: 87350_CR23
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1970-x
– year: 2023
  ident: 87350_CR46
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118827
– year: 2023
  ident: 87350_CR20
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120411
– volume: 11
  start-page: 712
  year: 2007
  ident: 87350_CR30
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 87350_CR47
  doi: 10.1145/3512290.3528717
– volume: 47
  start-page: 9405
  year: 2022
  ident: 87350_CR27
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06178-2
– year: 2023
  ident: 87350_CR2
  publication-title: Transp. Res. Part a-Policy Pract.
  doi: 10.1016/j.tra.2023.103729
– year: 2024
  ident: 87350_CR44
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111435
– volume: 1
  start-page: 28
  year: 2006
  ident: 87350_CR9
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.1597059
– volume: 69
  start-page: 46
  year: 2014
  ident: 87350_CR17
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 8
  start-page: 2859
  year: 2022
  ident: 87350_CR10
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.01.175
– volume: 28
  start-page: 4031
  year: 2021
  ident: 87350_CR28
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09531-8
– volume: 7
  start-page: 661
  year: 2023
  ident: 87350_CR22
  publication-title: IEEE Trans. Emerging Topics Comput. Intell.
  doi: 10.1109/tetci.2022.3195178
– year: 2024
  ident: 87350_CR42
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-024-00420-z
– volume: 78
  start-page: 545
  year: 2019
  ident: 87350_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.012
– year: 2020
  ident: 87350_CR54
  publication-title: J. Railway Sci. Eng.
  doi: 10.19713/j.cnki.43-1423/u.T20200287
– ident: 87350_CR15
  doi: 10.1109/IICIP.2016.7975341
– volume: 415
  year: 2023
  ident: 87350_CR3
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116199
– volume: 237
  year: 2022
  ident: 87350_CR25
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107880
– volume: 585
  start-page: 441
  year: 2022
  ident: 87350_CR37
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.052
– volume: 80
  start-page: 5979
  year: 2024
  ident: 87350_CR7
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05676-4
– year: 2023
  ident: 87350_CR11
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118734
– volume: 1
  start-page: 3
  year: 2011
  ident: 87350_CR53
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– year: 2024
  ident: 87350_CR43
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/tits.2024.3373510
– year: 2023
  ident: 87350_CR21
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020266
– volume: 6
  start-page: 182
  year: 2002
  ident: 87350_CR29
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– volume: 34
  start-page: 18035
  year: 2022
  ident: 87350_CR26
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07405-z
– volume: 509
  start-page: 470
  year: 2020
  ident: 87350_CR35
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.005
– year: 2024
  ident: 87350_CR39
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110374
– year: 2024
  ident: 87350_CR40
  publication-title: Biomimetics
  doi: 10.3390/biomimetics9060316
– volume: 232
  year: 2024
  ident: 87350_CR14
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110374
– volume: 120
  year: 2022
  ident: 87350_CR5
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108684
SSID ssj0000529419
Score 2.467538
Snippet In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world...
Abstract In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10403
SubjectTerms 639/166
639/705
Algorithms
Humanities and Social Sciences
Multi-objective optimization problems
Multi-objective particle swarm optimization (MOIPSO)
multidisciplinary
Objective function
Optimization
Pareto optimum
Particle swarm optimization
Rail transit upper cover foundation pit
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFUhcEG8CCzISN4jWdl72cUGsOK04gLQ3y6-yQW0Speki_sD-7h3badnyvNBD1Dqu5MyMZz7H428AXnlXOOG4zwO7WF4KXefaUVylVJX1iT9Ex2ITzempODuTH6-V-go5YYkeOAnuyHO2KL2zhnpZGgyvVrKy0bhMMHXDqQ_eF1HPtcVUYvXmsmRyPiVDC3G0xkgVTpPxCh1AUdFc7EWiSNj_O5T5a7LkTzumMRCd3IU7M4Ikx2nk9-CG7-7DrVRT8vsDuDzuSBvfFHhHYrpg3puvya2RYX5esv6mxxXp0V-s5oOYRC-_9GM7na8I4liCuJC4mN1B-gW2bIsvkaGdQsuo2yWZQqDD35th8COxIRuUzK92HsLnk_ef3n3I52ILua3KYsLrglKja-o5rb2stSkrb6h0vMEPFwjVCkddODlfe8sROBquaeOlbPCblcUjOOj6zj8BUmiDuLGWzC1sybhDnVWosCB2jli-yYBtBa_szEQeCmIsVdwRL4RKylKoLBWVpUQGr3f_GRIPx197vw363PUMHNqxAS1LzZJW_7KsDA631qDmib1W6AIDaR26vQxe7m7jlAz7LLrz_Sb1EQhdeZ3B42Q8u5GUkc-I0gzEnlntDXX_TteeR9pvxmRg9mQZvNla4I9x_VkWT_-HLJ7BbR6mDi1yXh_CwTRu_HO4aS-mdj2-iHPvCo8sMfg
  priority: 102
  providerName: Directory of Open Access Journals
Title An improved multi-objective particle swarm optimization algorithm for the design of foundation pit of rail transit upper cover project
URI https://link.springer.com/article/10.1038/s41598-025-87350-8
https://www.ncbi.nlm.nih.gov/pubmed/40140400
https://www.proquest.com/docview/3181552488
https://www.proquest.com/docview/3181809526
https://pubmed.ncbi.nlm.nih.gov/PMC11947221
https://doaj.org/article/e21f4edcb0e94b389c9147a899b6720e
Volume 15
WOSCitedRecordID wos001454451200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaS98D0IjMpIvEE0x_myn9CGNsHDqgiBVJ4ix3a3ojbJ0hTEP8DfzdlxO5WPvdAHq7Ud1Yl_Pl_uzr8DeGV0rLlmJrTsYmHCZRZKTfEtJU2VGfhDpEs2kY_HfDIRhTe4LX1Y5VomOkGtG2Vt5EeIPcsWhnh7216FNmuU9a76FBo7sGdZEmIXuldsbCzWi5VEwp-VoTE_WuJ-Zc-UsRTFQJzSkG_tR462_2-65p8hk7_5Td12dHbvf2_kPtz1iig5HpDzAG6Z-iHcGVJT_ngEP49rMnMGB6OJizoMm-rrIB1J6_FGlt9ltyANip2FP89J5PwC_62_XBBUhwmql0S7IBHSTLFmncOJtLPe1nRyNie93S_x96ptTUeUDSol3kL0GD6fnX569z70ORtClSZxj-WU0kpm1DCaGZHJKklNRYVmOX4YR40v1lTbA_iZUQz1z4pJmhshcvymRHwAu3VTm6dAYlmh-pmJSE9VEjHNhUolF3beGL4S5AFE65krlSc0t3k15qVzrMe8HGa7xNku3WyXPIDXm2vagc7jxt4nFhCbnpaK21U03UXpn3RpWDRNEBgVNSKpUP9TIkpyHKiospxRE8DhGgellw_L8hoEAbzcNOPKtu4aWZtmNfThqAGzLIAnA_o2I0kcLRKlAfAtXG4Ndbulnl069vAoEpYgNArgzRrC1-P697N4dvNtPId9ZlcVjUOWHcJu363MC7itvvWzZTeCnXySu5KPYO_kdFx8HDnrB5bnrBi5ZYstxYfz4ssvCTVG5A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qCgg2vAuBAkaCFUR1nJe9QKg8qlYtVRdF6s44tqcdNJOETIaqP8Dn8I1cO8lUw6O7LphFNON4JMc59_rYvj4X4IU1seGG2dCpi4UJV1moDMVZSppq2-mHKJ9sIt_f50dH4mAFfg5nYVxY5eATvaM2lXZr5BuIPacWhnh7W38LXdYot7s6pNDoYLFrz05xyjZ7s_MB3-9LxrY-Hr7fDvusAqFOk7jF64jSQmXUMppZkakiSW1BhWE5fhhHThIbatwR8cxqhgypYIrmVogcv2knvoQu_wrSCMZ9qODBYk3H7ZolkejP5tCYb8xwfHRn2FiKbidOaciXxj-fJuBv3PbPEM3f9mn98Ld163_ruNtwsyfaZLOzjDuwYsu7cK1LvXl2D35slmTsF1SsIT6qMqyKr533J3VvT2R2qpopqdCtTvvzqkRNjvHp2pMpQbpPkD4T44NgSDXCkiFHFanHrStp1HhCWscH8Pe8rm1DtAuaJf0K2H34fCmdsAarZVXah0BiVSC9zkRkRhrBZLjQqeLC4YThlCcPIBqQInUv2O7yhkykDxyIuezQJRFd0qNL8gBeLf5Td3IlF9Z-5wC4qOmkxn1B1RzLvqelZdEoQSAW1IqkQH6rRZTk2FBRZDmjNoD1AXey938zeQ66AJ4vbqPncttRqrTVvKvDkeGzLIAHHdoXLUm87BOlAfAlO1hq6vKdcnzi1dGjSDgB1CiA14PJnLfr333x6OLHeAbXtw8_7cm9nf3dx3CDOYumcciydVhtm7l9Alf193Y8a556l0Dgy2Wb0i9TKppB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuvB-BAkaCE0TrOC_7gFChrKiKVnsAqTfjxE67aDcJ2SxV_wA_il_H2Em2Wh699UAOUeI4kuN8Mx7bM98APDc61Fwz41t2MT_iKvGVpjhLiePcdPwhyiWbSCcTfngoplvwc4iFsW6Vg050ilpXuV0jHyH2LFsY4m1U9G4R073xm_qbbzNI2Z3WIZ1GB5EDc3qC07fl6_09_NcvGBu___Tug99nGPDzOApbPBeUZiqhhtHEiERlUWwyKjRL8WAc7ZNQU23DxROTM7SWMqZoaoRI8Sq3REyo_i-llrTcuQ1O1-s7dgctCkQfp0NDPlriWGnj2ViMKiiMqc83xkKXMuBvdu6f7pq_7dm6oXB843_uxJtwvTfAyW4nMbdgy5S34UqXkvP0DvzYLcnMLbQYTZy3pV9lX7tRgdS9nJHliWoWpEJ1u-jjWImaH-HXtccLgtMAgmY10c45hlQFlgy5q0g9a21Jo2Zz0lo7Ae9XdW0akltnWtKvjN2FzxfSCfdgu6xK8wBIqDI0uxMR6CKPAqa5yGPFhcUMw6lQ6kEwoEbmPZG7zScyl86hIOSyQ5pEpEmHNMk9eLl-p-5oTM6t_daCcV3TUpC7gqo5kn1PS8OCIkJQZtSIKEO7NxdBlGJDRZakjBoPdgYMyl4vLuUZAD14tn6MGs1uU6nSVKuuDkfLnyUe3O-Qv25J5OigKPWAb8jERlM3n5SzY8eaHgTCEqMGHrwaxOesXf_ui4fnf8ZTuIoSJD_uTw4ewTVmhZuGPkt2YLttVuYxXM6_t7Nl88RpBwJfLlqSfgHitaL-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+multi-objective+particle+swarm+optimization+algorithm+for+the+design+of+foundation+pit+of+rail+transit+upper+cover+project&rft.jtitle=Scientific+reports&rft.date=2025-03-26&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=10403&rft_id=info:doi/10.1038%2Fs41598-025-87350-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon