Electrocardiogram analysis for cardiac arrhythmia classification and prediction through self attention based auto encoder

Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardia...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 9230 - 23
Hlavní autori: Shah, Ameet, Singh, Dhanpratap, Mohamed, Heba G., Bharany, Salil, Rehman, Ateeq Ur, Hussen, Seada
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 18.03.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.
AbstractList Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.
Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.
Abstract Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.
ArticleNumber 9230
Author Shah, Ameet
Hussen, Seada
Mohamed, Heba G.
Rehman, Ateeq Ur
Bharany, Salil
Singh, Dhanpratap
Author_xml – sequence: 1
  givenname: Ameet
  surname: Shah
  fullname: Shah, Ameet
  organization: School of Computer Science and Engineering, Lovely Professional University
– sequence: 2
  givenname: Dhanpratap
  surname: Singh
  fullname: Singh, Dhanpratap
  email: dhanpratap.25706@lpu.co.in
  organization: School of Computer Science and Engineering, Lovely Professional University
– sequence: 3
  givenname: Heba G.
  surname: Mohamed
  fullname: Mohamed, Heba G.
  email: hegmohamed@pnu.edu.sa
  organization: Department of Electrical Engineering, College of Engineering , Princess Nourah bint Abdulrahman University
– sequence: 4
  givenname: Salil
  surname: Bharany
  fullname: Bharany, Salil
  organization: Chitkara University Institute of Engineering and Technology , Chitkara University
– sequence: 5
  givenname: Ateeq Ur
  surname: Rehman
  fullname: Rehman, Ateeq Ur
  organization: Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Applied Science Research Center, Applied Science Private University, University Center for Research and Development, Chandigarh University
– sequence: 6
  givenname: Seada
  surname: Hussen
  fullname: Hussen, Seada
  email: seada.hussen@aastu.edu.et
  organization: Department of Electrical Power, Adama Science and Technology University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40097668$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v3CAQxa0qVfOn-QI9VJZ66cUtYMDmVFVR2kSK1Et7RmMYe1l5zRZwpf32Ze2kTXIIF2B476eHZs6Lk8lPWBTvKPlESd1-jpwK1VaEiUrVishKvCrOGOGiYjVjJ4_Op8VljFuSl2CKU_WmOOWEqEbK9qw4XI9oUvAGgnV-CLArYYLxEF0sex_KpQ6mhBA2h7TZOSjNCDG63hlIzk9Zbst9QOvMck2b4OdhU0Yc-xJSwmkpdxDRljAnX-JkvMXwtnjdwxjx8n6_KH59u_55dVPd_fh-e_X1rjKC16nqFGGyEShV3zPCuK0FUaRumKGyEx3rlTWiZxwIN00ngfbAO4GUIxKKktUXxe3KtR62eh_cDsJBe3B6KfgwaAjJmRF1ZwmjGYOCdFxYCtgZig00KCVKTjPry8raz90OrcmfCzA-gT59mdxGD_6PplRRTto6Ez7eE4L_PWNMeueiwXGECf0cdU2blilKxTH4h2fSrZ9Dbs6qIpQ3VGTV-8eR_mV5aHEWtKvABB9jwF4bl5bW5YRu1JTo40DpdaB0Hii9DJQ-stkz6wP9RVO9mmIWTwOG_7FfcP0F7oPftQ
CitedBy_id crossref_primary_10_1038_s41598_025_14869_1
crossref_primary_10_1016_j_suscom_2025_101174
crossref_primary_10_3390_s25185621
crossref_primary_10_3390_bioengineering12091007
crossref_primary_10_4236_jilsa_2025_172007
Cites_doi 10.1016/j.jjcc.2019.02.014
10.3390/s23115237
10.1016/j.bspc.2021.102820
10.1186/s12938-023-01075-1
10.1038/s41598-024-63378-0
10.1016/j.artmed.2023.102570
10.1016/j.hlpt.2019.03.004
10.3390/bioengineering11040337
10.3390/mi14061155
10.3390/bioengineering10050542
10.1109/ACCESS.2022.3206431
10.1109/TIM.2024.3376017
10.3758/s13414-024-02849-y
10.24976/Discov.Med.202436182.56
10.1002/ima.23009
10.1109/WSAI51899.2021.9486321
10.1016/j.yebeh.2019.05.038
10.1016/j.bspc.2021.103431
10.1016/j.biopha.2019.109500
10.1016/j.bspc.2020.102326
10.1016/j.jii.2022.100402
10.1109/JIOT.2021.3053420
10.1016/j.psychres.2019.112598
10.1016/j.bspc.2024.106211
10.1016/j.ijfatigue.2022.106851
10.1007/s41870-023-01611-1
10.1109/TIM.2022.3197757
10.3389/fcvm.2024.1277123
10.1016/j.automatica.2021.109865
10.1016/j.cmpb.2023.107437
10.1016/j.phrs.2018.12.015
10.1016/j.measen.2023.100671
10.1109/TIM.2024.3400302
10.29026/oea.2024.230212
10.1016/j.bspc.2024.106703
10.1093/eurheartj/ehaa964
10.1109/JBHI.2020.2982935
10.1016/j.eswa.2020.113697
10.1007/s12652-020-01722-8
10.1007/s11042-024-18722-x
10.3389/fmed.2020.00027
10.1007/s13239-022-00643-1
10.1186/s12911-023-02326-w
10.1016/j.eswax.2020.100033
10.11591/eei.v13i2.6102
10.1109/ACCESS.2024.3358202
10.1016/j.ijin.2022.05.002
10.1007/s00138-021-01228-z
10.1007/s40120-021-00279-8
10.2147/DDDT.S282206
10.1007/s00354-024-00265-2
10.1007/s11042-023-17829-x
10.1109/TBME.2024.3368105
10.1109/IJCNN.2019.8852037
10.1016/B978-0-443-15688-5.00021-8
10.1016/j.bpj.2020.01.012
10.1007/s12471-019-1286-6
10.3390/app14209307
10.1016/j.bspc.2022.104206
10.1016/j.bspc.2021.103228
10.1007/s41870-023-01704-x
10.1109/ACCESS.2019.2917470
10.1007/s42452-024-05655-1
10.1016/j.eswa.2023.121196
10.1016/j.inffus.2024.102422
10.1016/j.bspc.2023.104702
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-93906-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Sciences
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_bd0214c7e50b45d1aebc1e7a7e66e641
PMC11914083
40097668
10_1038_s41598_025_93906_5
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c543t-b902675e69ff2024d35090372c16b5b2f9dc5f24a04c7b6a1fa4b5e14ee01e623
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446950100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:28 EDT 2025
Tue Nov 04 02:02:32 EST 2025
Sun Nov 09 10:49:04 EST 2025
Tue Oct 07 09:05:50 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Sat Nov 29 08:08:20 EST 2025
Tue Nov 18 22:06:34 EST 2025
Tue Mar 18 01:11:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cardiac arrhythmia
Self-attention mechanism
Dense neural network
Atrial fibrillation
Kalman filter
Prediction
Deep learning classification
Artificial intelligence
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-b902675e69ff2024d35090372c16b5b2f9dc5f24a04c7b6a1fa4b5e14ee01e623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bd0214c7e50b45d1aebc1e7a7e66e641
PMID 40097668
PQID 3178014715
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_bd0214c7e50b45d1aebc1e7a7e66e641
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914083
proquest_miscellaneous_3178291152
proquest_journals_3178014715
pubmed_primary_40097668
crossref_citationtrail_10_1038_s41598_025_93906_5
crossref_primary_10_1038_s41598_025_93906_5
springer_journals_10_1038_s41598_025_93906_5
PublicationCentury 2000
PublicationDate 2025-03-18
PublicationDateYYYYMMDD 2025-03-18
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 93906_CR23
93906_CR67
93906_CR24
93906_CR68
93906_CR21
93906_CR65
93906_CR22
93906_CR66
93906_CR28
JW Benjamins (93906_CR12) 2019; 27
93906_CR25
93906_CR69
93906_CR26
93906_CR63
93906_CR20
93906_CR64
93906_CR61
T Machino-Ohtsuka (93906_CR3) 2019; 74
93906_CR62
YD Daydulo (93906_CR27) 2023; 23
93906_CR29
ID Paolo (93906_CR52) 2024; 14
AM Crinnion (93906_CR10) 2024; 86
93906_CR34
93906_CR35
93906_CR32
93906_CR33
93906_CR38
93906_CR36
93906_CR37
H Kheddar (93906_CR8) 2024; 109
93906_CR30
PN Singh (93906_CR48) 2024; 16
93906_CR31
HD Hesar (93906_CR49) 2021; 25
93906_CR45
A Becker (93906_CR13) 2019; 8
93906_CR46
93906_CR43
93906_CR44
J Yang (93906_CR6) 2022; 162
93906_CR47
A Kumar (93906_CR7) 2024; 16
93906_CR41
93906_CR42
93906_CR40
F Crea (93906_CR15) 2020; 41
G Zaccara (93906_CR5) 2019; 97
P Bing (93906_CR60) 2024; 11
93906_CR2
93906_CR56
93906_CR1
93906_CR57
93906_CR54
93906_CR11
93906_CR55
93906_CR16
A Nishad (93906_CR39) 2024; 15
93906_CR17
93906_CR14
93906_CR58
93906_CR59
93906_CR53
93906_CR50
93906_CR51
J Zhu (93906_CR4) 2019; 281
93906_CR9
93906_CR18
93906_CR19
References_xml – volume: 74
  start-page: 235
  issue: 3
  year: 2019
  ident: 93906_CR3
  publication-title: Journal of Cardiology
  doi: 10.1016/j.jjcc.2019.02.014
– ident: 93906_CR54
  doi: 10.3390/s23115237
– ident: 93906_CR29
  doi: 10.1016/j.bspc.2021.102820
– ident: 93906_CR22
  doi: 10.1186/s12938-023-01075-1
– ident: 93906_CR63
  doi: 10.1038/s41598-024-63378-0
– ident: 93906_CR66
  doi: 10.1016/j.artmed.2023.102570
– volume: 8
  start-page: 198
  issue: 2
  year: 2019
  ident: 93906_CR13
  publication-title: Elsevier Health Policy and Technology
  doi: 10.1016/j.hlpt.2019.03.004
– ident: 93906_CR56
  doi: 10.3390/bioengineering11040337
– ident: 93906_CR59
  doi: 10.3390/mi14061155
– ident: 93906_CR21
  doi: 10.3390/bioengineering10050542
– ident: 93906_CR40
  doi: 10.1109/ACCESS.2022.3206431
– ident: 93906_CR33
  doi: 10.1109/TIM.2024.3376017
– volume: 86
  start-page: 942
  year: 2024
  ident: 93906_CR10
  publication-title: Attention, Perception, and Psychophysics
  doi: 10.3758/s13414-024-02849-y
– ident: 93906_CR58
  doi: 10.24976/Discov.Med.202436182.56
– ident: 93906_CR32
  doi: 10.1002/ima.23009
– ident: 93906_CR41
  doi: 10.1109/WSAI51899.2021.9486321
– volume: 97
  start-page: 304
  year: 2019
  ident: 93906_CR5
  publication-title: Epilepsy and Behavior
  doi: 10.1016/j.yebeh.2019.05.038
– ident: 93906_CR46
  doi: 10.1016/j.bspc.2021.103431
– ident: 93906_CR2
  doi: 10.1016/j.biopha.2019.109500
– ident: 93906_CR25
  doi: 10.1016/j.bspc.2020.102326
– ident: 93906_CR43
  doi: 10.1016/j.jii.2022.100402
– ident: 93906_CR24
  doi: 10.1109/JIOT.2021.3053420
– volume: 281
  year: 2019
  ident: 93906_CR4
  publication-title: Psychiatry Research
  doi: 10.1016/j.psychres.2019.112598
– ident: 93906_CR67
  doi: 10.1016/j.bspc.2024.106211
– volume: 162
  year: 2022
  ident: 93906_CR6
  publication-title: International Journal of Fatigue, Elsevier
  doi: 10.1016/j.ijfatigue.2022.106851
– volume: 16
  start-page: 577
  issue: 1
  year: 2024
  ident: 93906_CR48
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-023-01611-1
– ident: 93906_CR45
  doi: 10.1109/TIM.2022.3197757
– volume: 11
  start-page: 598
  issue: 1277123
  year: 2024
  ident: 93906_CR60
  publication-title: Frontiers in Cardiovascular Medicine
  doi: 10.3389/fcvm.2024.1277123
– ident: 93906_CR37
  doi: 10.1016/j.automatica.2021.109865
– ident: 93906_CR44
  doi: 10.1016/j.cmpb.2023.107437
– ident: 93906_CR1
  doi: 10.1016/j.phrs.2018.12.015
– ident: 93906_CR35
  doi: 10.1016/j.measen.2023.100671
– ident: 93906_CR53
  doi: 10.1109/TIM.2024.3400302
– ident: 93906_CR65
  doi: 10.29026/oea.2024.230212
– ident: 93906_CR47
  doi: 10.1016/j.bspc.2024.106703
– volume: 41
  start-page: 4367
  issue: 46
  year: 2020
  ident: 93906_CR15
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehaa964
– volume: 25
  start-page: 13
  issue: 1
  year: 2021
  ident: 93906_CR49
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.2982935
– ident: 93906_CR69
– ident: 93906_CR18
  doi: 10.1016/j.eswa.2020.113697
– volume: 15
  start-page: 877
  issue: 1
  year: 2024
  ident: 93906_CR39
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01722-8
– ident: 93906_CR19
  doi: 10.1007/s11042-024-18722-x
– ident: 93906_CR14
  doi: 10.3389/fmed.2020.00027
– ident: 93906_CR20
  doi: 10.1007/s13239-022-00643-1
– volume: 23
  start-page: 232
  issue: 1
  year: 2023
  ident: 93906_CR27
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-023-02326-w
– ident: 93906_CR57
  doi: 10.1016/j.eswax.2020.100033
– ident: 93906_CR68
  doi: 10.11591/eei.v13i2.6102
– ident: 93906_CR36
  doi: 10.1186/s12938-023-01075-1
– ident: 93906_CR55
  doi: 10.1109/ACCESS.2024.3358202
– ident: 93906_CR26
  doi: 10.1016/j.ijin.2022.05.002
– ident: 93906_CR42
  doi: 10.1007/s00138-021-01228-z
– ident: 93906_CR61
  doi: 10.1007/s40120-021-00279-8
– ident: 93906_CR62
  doi: 10.2147/DDDT.S282206
– ident: 93906_CR38
  doi: 10.1007/s00354-024-00265-2
– ident: 93906_CR9
  doi: 10.1007/s11042-023-17829-x
– ident: 93906_CR31
  doi: 10.1109/TBME.2024.3368105
– ident: 93906_CR50
  doi: 10.1109/IJCNN.2019.8852037
– ident: 93906_CR51
– ident: 93906_CR23
  doi: 10.1016/B978-0-443-15688-5.00021-8
– ident: 93906_CR16
  doi: 10.1016/j.bpj.2020.01.012
– volume: 27
  start-page: 392
  issue: 9
  year: 2019
  ident: 93906_CR12
  publication-title: Netherlands Heart Journal
  doi: 10.1007/s12471-019-1286-6
– volume: 14
  start-page: 9307
  issue: 20
  year: 2024
  ident: 93906_CR52
  publication-title: Applied Science
  doi: 10.3390/app14209307
– ident: 93906_CR64
  doi: 10.1016/j.bspc.2022.104206
– ident: 93906_CR28
  doi: 10.1016/j.bspc.2021.103228
– volume: 16
  start-page: 1365
  issue: 3
  year: 2024
  ident: 93906_CR7
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-023-01704-x
– ident: 93906_CR11
  doi: 10.1109/ACCESS.2019.2917470
– ident: 93906_CR17
  doi: 10.1007/s42452-024-05655-1
– ident: 93906_CR30
  doi: 10.1016/j.eswa.2023.121196
– volume: 109
  year: 2024
  ident: 93906_CR8
  publication-title: Information Fusion, Elsevier
  doi: 10.1016/j.inffus.2024.102422
– ident: 93906_CR34
  doi: 10.1016/j.bspc.2023.104702
SSID ssj0000529419
Score 2.4774568
Snippet Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various...
Abstract Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9230
SubjectTerms 639/166/985
692/4019/592
Algorithms
Arrhythmia
Arrhythmias, Cardiac - classification
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Artificial Intelligence
Atrial fibrillation
Automation
Cardiac arrhythmia
Cardiovascular diseases
Classification
Deep learning classification
EKG
Electrocardiography
Electrocardiography - methods
Heart diseases
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Prediction
Science
Science (multidisciplinary)
Self-attention mechanism
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: Biological Sciences
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDLZgAYkL70dhQUHiBtU2aZI2JwRoVxzQag8g7S1K04QZaekMbQdp_j1xmulqeOyFY_OQktqOndj-DPC6LbxXBfN5UPYu5xYxIJXzOeW-EcGEENLEROHP1elpfX6uztKD25DCKndnYjyo25XFN_KjoOcQ6KSi4t36R45Vo9C7mkpoXIcbiJJQxtC9s_mNBb1YnKqUK1OU9dEQ9BXmlDGRq3Dbl7nY00cRtv9vtuafIZO_-U2jOjq5-78buQd3kiFK3k-ccx-uue4B3JpKU24fwvZ4qo9jY7wqhnARk_BLSLBzSWw3lpi-X2zHxfelIRYNcYw8isQOw1uy7tEPFD9TQSAyuAtPENQzhlkS1KItMZtxRRBSs3X9I_h6cvzl46c8lWnIreDlmDcKq1gJJ5X3LKj8thT4-FMxS2UjGuZVa4Vn3BTcVo001BveCEe5cwV1wfx6DAfdqnNPgbCysrIJNoo3Ja9LqcK8cCFyKpxLJly-MqA7YmmbMMyxlMaFjr70stYTgXUgsI4E1iKDN_Oc9YTgceXoD8gD80hE344Nq_6bTsKsmxaR5mzlRNFw0VLjGktdZSonpZOcZnC4I71OR8KgL-mewau5OwgzemhM51abaQwL6kewDJ5MDDevhGPKjZR1BvUeK-4tdb-nWy4iYHgE8Qu2dgZvd1x7ua5__4tnV2_jOdxmKEgY3FgfwsHYb9wLuGl_jsuhfxkl8RfkxDwp
  priority: 102
  providerName: ProQuest
Title Electrocardiogram analysis for cardiac arrhythmia classification and prediction through self attention based auto encoder
URI https://link.springer.com/article/10.1038/s41598-025-93906-5
https://www.ncbi.nlm.nih.gov/pubmed/40097668
https://www.proquest.com/docview/3178014715
https://www.proquest.com/docview/3178291152
https://pubmed.ncbi.nlm.nih.gov/PMC11914083
https://doaj.org/article/bd0214c7e50b45d1aebc1e7a7e66e641
Volume 15
WOSCitedRecordID wos001446950100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbu8Fexr7nrgsa7G0ztWVLsh7XkbLBGsLYIHsSkiyRQOsUxxnkv--d7GTNPl_2IrAlY3F38v1k3f2OkNd1FoLKWEjB2fu0dMgBqXxI8zJYDhCCCxMThT_JyaSazdT0RqkvjAnr6YF7wZ3YGlm9nPQ8syWvc-Oty7000gvhRUxZZ4B6bmymelZvpspcDVkyWVGdrMBTYTYZ46mCfb5I-Z4nioT9v0OZvwZL_nRiGh3R2QNyf0CQ9F0_84fklm8ekbt9TcnNY7IZ94VtXAw0xdgragbiEQoAlcb7xlHTtvNNN79cGOoQQWPIUNQSDK_pVYsHOPFyqORDV_4iUGTjjPGRFN1fTc26W1Lkwqx9-4R8PRt_ef8hHeorpI6XRZdaheWnuBcqBAa-ui44_rWRzOXCcsuCqh0PrDQZyN8KkwdTWu7z0vss94CbnpKDZtn454SyQjphAVwEU5RVIRQ8BzsZr-CDYmDXlJB8K2vtBvJxrIFxoeMheFHpXj8a9KOjfjRPyJvdM1c99cZfR5-iCncjkTY73gBj0oMx6X8ZU0KOtwagh7W80oCwkGJH5vCOV7tuWIV4tGIav1z3Yxj4Dc4S8qy3l91MSsyVEaJKSLVnSXtT3e9pFvPI9B3Z9wAkJ-Tt1uh-zOvPsjj6H7J4Qe4xXC0Yu1gdk4OuXfuX5I773i1W7YjcljMZ22pEDk_Hk-nnUVyC0J6zKbYS2sPpx_Ppt2udNTXX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3o9AASPBCaLGju3EB4R4tGrVpeqhSL0Zx7HZlcrukt0F7Z_iN-Jxkq2WR289cEziSI7zeR6emW8AnteZ9ypjPg3K3qXcIgekcj6l3FcimBBCmlgoPCgOD8uTE3W0AT_7WhhMq-xlYhTU9cTiGfl20HNIdFJQ8Wb6LcWuURhd7VtotLA4cMsfwWWbvd7_EP7vC8Z2d47f76VdV4HUCp7P00ph0yXhpPI-eP68zgWeVRTMUlmJinlVW-EZNxm3RSUN9YZXwlHuXEadRKKDIPIvBTOClTFV8Gh1poNRM05VV5uT5eX2LOhHrGFjIlW5Cs67WNN_sU3A32zbP1M0f4vTRvW3e-N_W7ibcL0ztMnbdmfcgg03vg1X2tabyzuw3Gn7_9iYj4spasR0_Cwk2PEk3jeWmKYZLufDryNDLDoamFkVwRyG12TaYJwrXnYNj8jMnXqCpKUxjZSglVATs5hPCFKG1q65C58u5LvvweZ4MnYPgLC8sLIKNpg3OS9zqcJ7weFzKshdE5zLBGgPDm07jnZsFXKqY65AXuoWUDoASkdAaZHAy9U705ah5NzR7xBzq5HILh5vTJovuhNWuqqRSc8WTmQVFzU1rrLUFaZwUjrJaQJbPdR0J_Jm-gxnCTxbPQ7CCiNQZuwmi3YMC-pVsATutwBfzYRjSZGUZQLlGvTXprr-ZDwaRkL0SFIYfIkEXvW75Gxe_16Lh-d_xlO4unf8caAH-4cHj-Aaw02MiZzlFmzOm4V7DJft9_lo1jyJUoDA54vePb8AyXWX_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tloe48H4EFjASnCBq4thOfEAI2K1Y7arqAaS9GcexaaWlKWkL6l_j1-Fxkq7KY2974NjEkZx0np5vvgF4XiXOyYS62Dt7GzODHJDSujhlruQ-hOBCh0bh43w0Kk5O5HgHfva9MAir7G1iMNRVbfCMfOD9HBKd5CkfuA4WMd4fvpl_i3GCFFZa-3EarYgc2fUPn74tXh_u-__6BaXDg4_vP8TdhIHYcJYt41LiACZuhXSOem9VZRzPLXJqUlHykjpZGe4o0wkzeSl06jQruU2ZtUlqBZIeePN_KUfS8gAbHG_Od7CCxlLZ9ekkWTFYeF-J_WyUxzKTPpHnW74wjAz4W5z7J1zzt5ptcIXDG__zR7wJ17sAnLxtNeYW7NjZbbjSjuRc34H1QTsXyAScLkLXiO54W4iP70m4rg3RTTNZLydfp5oYTEAQcRWE3C-vyLzB-lf42Q1CIgt76giSmQZ4KcHooSJ6tawJUolWtrkLny7kve_B7qye2QdAaJYbUfrYzOmMFZmQ_jmfCFrp7bH2SWcEaS8oynTc7ThC5FQFDEFWqFa4lBcuFYRL8Qhebp6Zt8wl565-h_K3WYms4-FC3XxRnRFTZYUMeya3PCkZr1JtS5PaXOdWCCtYGsFeL3aqM4ULdSZzETzb3PZGDCtTembrVbuGerfLaQT3W2Hf7IRhq5EQRQTFlhpsbXX7zmw6CUTpgbzQ5xgRvOo15mxf__4WD89_jadw1SuNOj4cHT2CaxT1GfGdxR7sLpuVfQyXzffldNE8CQaBwOeLVp5f8QWgug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram+analysis+for+cardiac+arrhythmia+classification+and+prediction+through+self+attention+based+auto+encoder&rft.jtitle=Scientific+reports&rft.au=Shah%2C+Ameet&rft.au=Singh%2C+Dhanpratap&rft.au=Mohamed%2C+Heba+G.&rft.au=Bharany%2C+Salil&rft.date=2025-03-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-93906-5&rft.externalDocID=PMC11914083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon