Electrocardiogram analysis for cardiac arrhythmia classification and prediction through self attention based auto encoder
Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardia...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 9230 - 23 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
18.03.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems. |
|---|---|
| AbstractList | Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems. Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems.Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems. Abstract Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various heart diseases. Manual classification can be error-prone, and certainly, there is a need for automation to classify ECG signals to predict cardiac arrhythmia accurately. The proposed self-attention artificial intelligence auto-encoder algorithm proved an effective cardiac arrhythmia classification strategy with a novel modified Kalman filter pre-processing. We achieved 24.00 SNRimp, 0.055 RMSE, 22.1 PRD% for -5db, 20.4 SNRimp, 0.0245 RMSE, 12 PRD% whereas 14.05 SNRimp, 0.010 RMSE, and 7.25 PRD%, which reduces the ECG signal noise during the pre-processing and improves the visibility of the QRS complex and R-R peaks of ECG waveform. The extracted features were used in network of neurons to execute the classification for MIT-BIH arrhythmia databases using the newly developed self-attention autoencoder (AE) algorithm. The results are compared with existing models, revealing that the proposed system outperforms the classification and prediction of cardiac arrhythmia with a precision of 99.91%, recall of 99.86%, and accuracy of 99.71%. It is confirmed that self-attention-AE training results are promising, and it benefits the diagnosis of ECGs for complex cardiac conditions to solve real-world heart problems. |
| ArticleNumber | 9230 |
| Author | Shah, Ameet Hussen, Seada Mohamed, Heba G. Rehman, Ateeq Ur Bharany, Salil Singh, Dhanpratap |
| Author_xml | – sequence: 1 givenname: Ameet surname: Shah fullname: Shah, Ameet organization: School of Computer Science and Engineering, Lovely Professional University – sequence: 2 givenname: Dhanpratap surname: Singh fullname: Singh, Dhanpratap email: dhanpratap.25706@lpu.co.in organization: School of Computer Science and Engineering, Lovely Professional University – sequence: 3 givenname: Heba G. surname: Mohamed fullname: Mohamed, Heba G. email: hegmohamed@pnu.edu.sa organization: Department of Electrical Engineering, College of Engineering , Princess Nourah bint Abdulrahman University – sequence: 4 givenname: Salil surname: Bharany fullname: Bharany, Salil organization: Chitkara University Institute of Engineering and Technology , Chitkara University – sequence: 5 givenname: Ateeq Ur surname: Rehman fullname: Rehman, Ateeq Ur organization: Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Applied Science Research Center, Applied Science Private University, University Center for Research and Development, Chandigarh University – sequence: 6 givenname: Seada surname: Hussen fullname: Hussen, Seada email: seada.hussen@aastu.edu.et organization: Department of Electrical Power, Adama Science and Technology University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40097668$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9v3CAQxa0qVfOn-QI9VJZ66cUtYMDmVFVR2kSK1Et7RmMYe1l5zRZwpf32Ze2kTXIIF2B476eHZs6Lk8lPWBTvKPlESd1-jpwK1VaEiUrVishKvCrOGOGiYjVjJ4_Op8VljFuSl2CKU_WmOOWEqEbK9qw4XI9oUvAGgnV-CLArYYLxEF0sex_KpQ6mhBA2h7TZOSjNCDG63hlIzk9Zbst9QOvMck2b4OdhU0Yc-xJSwmkpdxDRljAnX-JkvMXwtnjdwxjx8n6_KH59u_55dVPd_fh-e_X1rjKC16nqFGGyEShV3zPCuK0FUaRumKGyEx3rlTWiZxwIN00ngfbAO4GUIxKKktUXxe3KtR62eh_cDsJBe3B6KfgwaAjJmRF1ZwmjGYOCdFxYCtgZig00KCVKTjPry8raz90OrcmfCzA-gT59mdxGD_6PplRRTto6Ez7eE4L_PWNMeueiwXGECf0cdU2blilKxTH4h2fSrZ9Dbs6qIpQ3VGTV-8eR_mV5aHEWtKvABB9jwF4bl5bW5YRu1JTo40DpdaB0Hii9DJQ-stkz6wP9RVO9mmIWTwOG_7FfcP0F7oPftQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_14869_1 crossref_primary_10_1016_j_suscom_2025_101174 crossref_primary_10_3390_s25185621 crossref_primary_10_3390_bioengineering12091007 crossref_primary_10_4236_jilsa_2025_172007 |
| Cites_doi | 10.1016/j.jjcc.2019.02.014 10.3390/s23115237 10.1016/j.bspc.2021.102820 10.1186/s12938-023-01075-1 10.1038/s41598-024-63378-0 10.1016/j.artmed.2023.102570 10.1016/j.hlpt.2019.03.004 10.3390/bioengineering11040337 10.3390/mi14061155 10.3390/bioengineering10050542 10.1109/ACCESS.2022.3206431 10.1109/TIM.2024.3376017 10.3758/s13414-024-02849-y 10.24976/Discov.Med.202436182.56 10.1002/ima.23009 10.1109/WSAI51899.2021.9486321 10.1016/j.yebeh.2019.05.038 10.1016/j.bspc.2021.103431 10.1016/j.biopha.2019.109500 10.1016/j.bspc.2020.102326 10.1016/j.jii.2022.100402 10.1109/JIOT.2021.3053420 10.1016/j.psychres.2019.112598 10.1016/j.bspc.2024.106211 10.1016/j.ijfatigue.2022.106851 10.1007/s41870-023-01611-1 10.1109/TIM.2022.3197757 10.3389/fcvm.2024.1277123 10.1016/j.automatica.2021.109865 10.1016/j.cmpb.2023.107437 10.1016/j.phrs.2018.12.015 10.1016/j.measen.2023.100671 10.1109/TIM.2024.3400302 10.29026/oea.2024.230212 10.1016/j.bspc.2024.106703 10.1093/eurheartj/ehaa964 10.1109/JBHI.2020.2982935 10.1016/j.eswa.2020.113697 10.1007/s12652-020-01722-8 10.1007/s11042-024-18722-x 10.3389/fmed.2020.00027 10.1007/s13239-022-00643-1 10.1186/s12911-023-02326-w 10.1016/j.eswax.2020.100033 10.11591/eei.v13i2.6102 10.1109/ACCESS.2024.3358202 10.1016/j.ijin.2022.05.002 10.1007/s00138-021-01228-z 10.1007/s40120-021-00279-8 10.2147/DDDT.S282206 10.1007/s00354-024-00265-2 10.1007/s11042-023-17829-x 10.1109/TBME.2024.3368105 10.1109/IJCNN.2019.8852037 10.1016/B978-0-443-15688-5.00021-8 10.1016/j.bpj.2020.01.012 10.1007/s12471-019-1286-6 10.3390/app14209307 10.1016/j.bspc.2022.104206 10.1016/j.bspc.2021.103228 10.1007/s41870-023-01704-x 10.1109/ACCESS.2019.2917470 10.1007/s42452-024-05655-1 10.1016/j.eswa.2023.121196 10.1016/j.inffus.2024.102422 10.1016/j.bspc.2023.104702 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-93906-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central - New (Subscription) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Sciences ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_bd0214c7e50b45d1aebc1e7a7e66e641 PMC11914083 40097668 10_1038_s41598_025_93906_5 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c543t-b902675e69ff2024d35090372c16b5b2f9dc5f24a04c7b6a1fa4b5e14ee01e623 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446950100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:43:28 EDT 2025 Tue Nov 04 02:02:32 EST 2025 Sun Nov 09 10:49:04 EST 2025 Tue Oct 07 09:05:50 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Sat Nov 29 08:08:20 EST 2025 Tue Nov 18 22:06:34 EST 2025 Tue Mar 18 01:11:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cardiac arrhythmia Self-attention mechanism Dense neural network Atrial fibrillation Kalman filter Prediction Deep learning classification Artificial intelligence |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-b902675e69ff2024d35090372c16b5b2f9dc5f24a04c7b6a1fa4b5e14ee01e623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/bd0214c7e50b45d1aebc1e7a7e66e641 |
| PMID | 40097668 |
| PQID | 3178014715 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bd0214c7e50b45d1aebc1e7a7e66e641 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914083 proquest_miscellaneous_3178291152 proquest_journals_3178014715 pubmed_primary_40097668 crossref_citationtrail_10_1038_s41598_025_93906_5 crossref_primary_10_1038_s41598_025_93906_5 springer_journals_10_1038_s41598_025_93906_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-18 |
| PublicationDateYYYYMMDD | 2025-03-18 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 93906_CR23 93906_CR67 93906_CR24 93906_CR68 93906_CR21 93906_CR65 93906_CR22 93906_CR66 93906_CR28 JW Benjamins (93906_CR12) 2019; 27 93906_CR25 93906_CR69 93906_CR26 93906_CR63 93906_CR20 93906_CR64 93906_CR61 T Machino-Ohtsuka (93906_CR3) 2019; 74 93906_CR62 YD Daydulo (93906_CR27) 2023; 23 93906_CR29 ID Paolo (93906_CR52) 2024; 14 AM Crinnion (93906_CR10) 2024; 86 93906_CR34 93906_CR35 93906_CR32 93906_CR33 93906_CR38 93906_CR36 93906_CR37 H Kheddar (93906_CR8) 2024; 109 93906_CR30 PN Singh (93906_CR48) 2024; 16 93906_CR31 HD Hesar (93906_CR49) 2021; 25 93906_CR45 A Becker (93906_CR13) 2019; 8 93906_CR46 93906_CR43 93906_CR44 J Yang (93906_CR6) 2022; 162 93906_CR47 A Kumar (93906_CR7) 2024; 16 93906_CR41 93906_CR42 93906_CR40 F Crea (93906_CR15) 2020; 41 G Zaccara (93906_CR5) 2019; 97 P Bing (93906_CR60) 2024; 11 93906_CR2 93906_CR56 93906_CR1 93906_CR57 93906_CR54 93906_CR11 93906_CR55 93906_CR16 A Nishad (93906_CR39) 2024; 15 93906_CR17 93906_CR14 93906_CR58 93906_CR59 93906_CR53 93906_CR50 93906_CR51 J Zhu (93906_CR4) 2019; 281 93906_CR9 93906_CR18 93906_CR19 |
| References_xml | – volume: 74 start-page: 235 issue: 3 year: 2019 ident: 93906_CR3 publication-title: Journal of Cardiology doi: 10.1016/j.jjcc.2019.02.014 – ident: 93906_CR54 doi: 10.3390/s23115237 – ident: 93906_CR29 doi: 10.1016/j.bspc.2021.102820 – ident: 93906_CR22 doi: 10.1186/s12938-023-01075-1 – ident: 93906_CR63 doi: 10.1038/s41598-024-63378-0 – ident: 93906_CR66 doi: 10.1016/j.artmed.2023.102570 – volume: 8 start-page: 198 issue: 2 year: 2019 ident: 93906_CR13 publication-title: Elsevier Health Policy and Technology doi: 10.1016/j.hlpt.2019.03.004 – ident: 93906_CR56 doi: 10.3390/bioengineering11040337 – ident: 93906_CR59 doi: 10.3390/mi14061155 – ident: 93906_CR21 doi: 10.3390/bioengineering10050542 – ident: 93906_CR40 doi: 10.1109/ACCESS.2022.3206431 – ident: 93906_CR33 doi: 10.1109/TIM.2024.3376017 – volume: 86 start-page: 942 year: 2024 ident: 93906_CR10 publication-title: Attention, Perception, and Psychophysics doi: 10.3758/s13414-024-02849-y – ident: 93906_CR58 doi: 10.24976/Discov.Med.202436182.56 – ident: 93906_CR32 doi: 10.1002/ima.23009 – ident: 93906_CR41 doi: 10.1109/WSAI51899.2021.9486321 – volume: 97 start-page: 304 year: 2019 ident: 93906_CR5 publication-title: Epilepsy and Behavior doi: 10.1016/j.yebeh.2019.05.038 – ident: 93906_CR46 doi: 10.1016/j.bspc.2021.103431 – ident: 93906_CR2 doi: 10.1016/j.biopha.2019.109500 – ident: 93906_CR25 doi: 10.1016/j.bspc.2020.102326 – ident: 93906_CR43 doi: 10.1016/j.jii.2022.100402 – ident: 93906_CR24 doi: 10.1109/JIOT.2021.3053420 – volume: 281 year: 2019 ident: 93906_CR4 publication-title: Psychiatry Research doi: 10.1016/j.psychres.2019.112598 – ident: 93906_CR67 doi: 10.1016/j.bspc.2024.106211 – volume: 162 year: 2022 ident: 93906_CR6 publication-title: International Journal of Fatigue, Elsevier doi: 10.1016/j.ijfatigue.2022.106851 – volume: 16 start-page: 577 issue: 1 year: 2024 ident: 93906_CR48 publication-title: International Journal of Information Technology doi: 10.1007/s41870-023-01611-1 – ident: 93906_CR45 doi: 10.1109/TIM.2022.3197757 – volume: 11 start-page: 598 issue: 1277123 year: 2024 ident: 93906_CR60 publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2024.1277123 – ident: 93906_CR37 doi: 10.1016/j.automatica.2021.109865 – ident: 93906_CR44 doi: 10.1016/j.cmpb.2023.107437 – ident: 93906_CR1 doi: 10.1016/j.phrs.2018.12.015 – ident: 93906_CR35 doi: 10.1016/j.measen.2023.100671 – ident: 93906_CR53 doi: 10.1109/TIM.2024.3400302 – ident: 93906_CR65 doi: 10.29026/oea.2024.230212 – ident: 93906_CR47 doi: 10.1016/j.bspc.2024.106703 – volume: 41 start-page: 4367 issue: 46 year: 2020 ident: 93906_CR15 publication-title: European Heart Journal doi: 10.1093/eurheartj/ehaa964 – volume: 25 start-page: 13 issue: 1 year: 2021 ident: 93906_CR49 publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.2982935 – ident: 93906_CR69 – ident: 93906_CR18 doi: 10.1016/j.eswa.2020.113697 – volume: 15 start-page: 877 issue: 1 year: 2024 ident: 93906_CR39 publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01722-8 – ident: 93906_CR19 doi: 10.1007/s11042-024-18722-x – ident: 93906_CR14 doi: 10.3389/fmed.2020.00027 – ident: 93906_CR20 doi: 10.1007/s13239-022-00643-1 – volume: 23 start-page: 232 issue: 1 year: 2023 ident: 93906_CR27 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-023-02326-w – ident: 93906_CR57 doi: 10.1016/j.eswax.2020.100033 – ident: 93906_CR68 doi: 10.11591/eei.v13i2.6102 – ident: 93906_CR36 doi: 10.1186/s12938-023-01075-1 – ident: 93906_CR55 doi: 10.1109/ACCESS.2024.3358202 – ident: 93906_CR26 doi: 10.1016/j.ijin.2022.05.002 – ident: 93906_CR42 doi: 10.1007/s00138-021-01228-z – ident: 93906_CR61 doi: 10.1007/s40120-021-00279-8 – ident: 93906_CR62 doi: 10.2147/DDDT.S282206 – ident: 93906_CR38 doi: 10.1007/s00354-024-00265-2 – ident: 93906_CR9 doi: 10.1007/s11042-023-17829-x – ident: 93906_CR31 doi: 10.1109/TBME.2024.3368105 – ident: 93906_CR50 doi: 10.1109/IJCNN.2019.8852037 – ident: 93906_CR51 – ident: 93906_CR23 doi: 10.1016/B978-0-443-15688-5.00021-8 – ident: 93906_CR16 doi: 10.1016/j.bpj.2020.01.012 – volume: 27 start-page: 392 issue: 9 year: 2019 ident: 93906_CR12 publication-title: Netherlands Heart Journal doi: 10.1007/s12471-019-1286-6 – volume: 14 start-page: 9307 issue: 20 year: 2024 ident: 93906_CR52 publication-title: Applied Science doi: 10.3390/app14209307 – ident: 93906_CR64 doi: 10.1016/j.bspc.2022.104206 – ident: 93906_CR28 doi: 10.1016/j.bspc.2021.103228 – volume: 16 start-page: 1365 issue: 3 year: 2024 ident: 93906_CR7 publication-title: International Journal of Information Technology doi: 10.1007/s41870-023-01704-x – ident: 93906_CR11 doi: 10.1109/ACCESS.2019.2917470 – ident: 93906_CR17 doi: 10.1007/s42452-024-05655-1 – ident: 93906_CR30 doi: 10.1016/j.eswa.2023.121196 – volume: 109 year: 2024 ident: 93906_CR8 publication-title: Information Fusion, Elsevier doi: 10.1016/j.inffus.2024.102422 – ident: 93906_CR34 doi: 10.1016/j.bspc.2023.104702 |
| SSID | ssj0000529419 |
| Score | 2.4774568 |
| Snippet | Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to various... Abstract Sudden cardiac arrest among young people is a recent worldwide risk, and it is noticed that people with cardiac arrhythmia are more susceptible to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9230 |
| SubjectTerms | 639/166/985 692/4019/592 Algorithms Arrhythmia Arrhythmias, Cardiac - classification Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - physiopathology Artificial Intelligence Atrial fibrillation Automation Cardiac arrhythmia Cardiovascular diseases Classification Deep learning classification EKG Electrocardiography Electrocardiography - methods Heart diseases Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Prediction Science Science (multidisciplinary) Self-attention mechanism Signal Processing, Computer-Assisted |
| SummonAdditionalLinks | – databaseName: Biological Sciences dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDLZgAYkL70dhQUHiBtU2aZI2JwRoVxzQag8g7S1K04QZaekMbQdp_j1xmulqeOyFY_OQktqOndj-DPC6LbxXBfN5UPYu5xYxIJXzOeW-EcGEENLEROHP1elpfX6uztKD25DCKndnYjyo25XFN_KjoOcQ6KSi4t36R45Vo9C7mkpoXIcbiJJQxtC9s_mNBb1YnKqUK1OU9dEQ9BXmlDGRq3Dbl7nY00cRtv9vtuafIZO_-U2jOjq5-78buQd3kiFK3k-ccx-uue4B3JpKU24fwvZ4qo9jY7wqhnARk_BLSLBzSWw3lpi-X2zHxfelIRYNcYw8isQOw1uy7tEPFD9TQSAyuAtPENQzhlkS1KItMZtxRRBSs3X9I_h6cvzl46c8lWnIreDlmDcKq1gJJ5X3LKj8thT4-FMxS2UjGuZVa4Vn3BTcVo001BveCEe5cwV1wfx6DAfdqnNPgbCysrIJNoo3Ja9LqcK8cCFyKpxLJly-MqA7YmmbMMyxlMaFjr70stYTgXUgsI4E1iKDN_Oc9YTgceXoD8gD80hE344Nq_6bTsKsmxaR5mzlRNFw0VLjGktdZSonpZOcZnC4I71OR8KgL-mewau5OwgzemhM51abaQwL6kewDJ5MDDevhGPKjZR1BvUeK-4tdb-nWy4iYHgE8Qu2dgZvd1x7ua5__4tnV2_jOdxmKEgY3FgfwsHYb9wLuGl_jsuhfxkl8RfkxDwp priority: 102 providerName: ProQuest |
| Title | Electrocardiogram analysis for cardiac arrhythmia classification and prediction through self attention based auto encoder |
| URI | https://link.springer.com/article/10.1038/s41598-025-93906-5 https://www.ncbi.nlm.nih.gov/pubmed/40097668 https://www.proquest.com/docview/3178014715 https://www.proquest.com/docview/3178291152 https://pubmed.ncbi.nlm.nih.gov/PMC11914083 https://doaj.org/article/bd0214c7e50b45d1aebc1e7a7e66e641 |
| Volume | 15 |
| WOSCitedRecordID | wos001446950100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbu8Fexr7nrgsa7G0ztWVLsh7XkbLBGsLYIHsSkiyRQOsUxxnkv--d7GTNPl_2IrAlY3F38v1k3f2OkNd1FoLKWEjB2fu0dMgBqXxI8zJYDhCCCxMThT_JyaSazdT0RqkvjAnr6YF7wZ3YGlm9nPQ8syWvc-Oty7000gvhRUxZZ4B6bmymelZvpspcDVkyWVGdrMBTYTYZ46mCfb5I-Z4nioT9v0OZvwZL_nRiGh3R2QNyf0CQ9F0_84fklm8ekbt9TcnNY7IZ94VtXAw0xdgragbiEQoAlcb7xlHTtvNNN79cGOoQQWPIUNQSDK_pVYsHOPFyqORDV_4iUGTjjPGRFN1fTc26W1Lkwqx9-4R8PRt_ef8hHeorpI6XRZdaheWnuBcqBAa-ui44_rWRzOXCcsuCqh0PrDQZyN8KkwdTWu7z0vss94CbnpKDZtn454SyQjphAVwEU5RVIRQ8BzsZr-CDYmDXlJB8K2vtBvJxrIFxoeMheFHpXj8a9KOjfjRPyJvdM1c99cZfR5-iCncjkTY73gBj0oMx6X8ZU0KOtwagh7W80oCwkGJH5vCOV7tuWIV4tGIav1z3Yxj4Dc4S8qy3l91MSsyVEaJKSLVnSXtT3e9pFvPI9B3Z9wAkJ-Tt1uh-zOvPsjj6H7J4Qe4xXC0Yu1gdk4OuXfuX5I773i1W7YjcljMZ22pEDk_Hk-nnUVyC0J6zKbYS2sPpx_Ppt2udNTXX |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3o9AASPBCaLGju3EB4R4tGrVpeqhSL0Zx7HZlcrukt0F7Z_iN-Jxkq2WR289cEziSI7zeR6emW8AnteZ9ypjPg3K3qXcIgekcj6l3FcimBBCmlgoPCgOD8uTE3W0AT_7WhhMq-xlYhTU9cTiGfl20HNIdFJQ8Wb6LcWuURhd7VtotLA4cMsfwWWbvd7_EP7vC8Z2d47f76VdV4HUCp7P00ph0yXhpPI-eP68zgWeVRTMUlmJinlVW-EZNxm3RSUN9YZXwlHuXEadRKKDIPIvBTOClTFV8Gh1poNRM05VV5uT5eX2LOhHrGFjIlW5Cs67WNN_sU3A32zbP1M0f4vTRvW3e-N_W7ibcL0ztMnbdmfcgg03vg1X2tabyzuw3Gn7_9iYj4spasR0_Cwk2PEk3jeWmKYZLufDryNDLDoamFkVwRyG12TaYJwrXnYNj8jMnXqCpKUxjZSglVATs5hPCFKG1q65C58u5LvvweZ4MnYPgLC8sLIKNpg3OS9zqcJ7weFzKshdE5zLBGgPDm07jnZsFXKqY65AXuoWUDoASkdAaZHAy9U705ah5NzR7xBzq5HILh5vTJovuhNWuqqRSc8WTmQVFzU1rrLUFaZwUjrJaQJbPdR0J_Jm-gxnCTxbPQ7CCiNQZuwmi3YMC-pVsATutwBfzYRjSZGUZQLlGvTXprr-ZDwaRkL0SFIYfIkEXvW75Gxe_16Lh-d_xlO4unf8caAH-4cHj-Aaw02MiZzlFmzOm4V7DJft9_lo1jyJUoDA54vePb8AyXWX_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tloe48H4EFjASnCBq4thOfEAI2K1Y7arqAaS9GcexaaWlKWkL6l_j1-Fxkq7KY2974NjEkZx0np5vvgF4XiXOyYS62Dt7GzODHJDSujhlruQ-hOBCh0bh43w0Kk5O5HgHfva9MAir7G1iMNRVbfCMfOD9HBKd5CkfuA4WMd4fvpl_i3GCFFZa-3EarYgc2fUPn74tXh_u-__6BaXDg4_vP8TdhIHYcJYt41LiACZuhXSOem9VZRzPLXJqUlHykjpZGe4o0wkzeSl06jQruU2ZtUlqBZIeePN_KUfS8gAbHG_Od7CCxlLZ9ekkWTFYeF-J_WyUxzKTPpHnW74wjAz4W5z7J1zzt5ptcIXDG__zR7wJ17sAnLxtNeYW7NjZbbjSjuRc34H1QTsXyAScLkLXiO54W4iP70m4rg3RTTNZLydfp5oYTEAQcRWE3C-vyLzB-lf42Q1CIgt76giSmQZ4KcHooSJ6tawJUolWtrkLny7kve_B7qye2QdAaJYbUfrYzOmMFZmQ_jmfCFrp7bH2SWcEaS8oynTc7ThC5FQFDEFWqFa4lBcuFYRL8Qhebp6Zt8wl565-h_K3WYms4-FC3XxRnRFTZYUMeya3PCkZr1JtS5PaXOdWCCtYGsFeL3aqM4ULdSZzETzb3PZGDCtTembrVbuGerfLaQT3W2Hf7IRhq5EQRQTFlhpsbXX7zmw6CUTpgbzQ5xgRvOo15mxf__4WD89_jadw1SuNOj4cHT2CaxT1GfGdxR7sLpuVfQyXzffldNE8CQaBwOeLVp5f8QWgug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram+analysis+for+cardiac+arrhythmia+classification+and+prediction+through+self+attention+based+auto+encoder&rft.jtitle=Scientific+reports&rft.au=Shah%2C+Ameet&rft.au=Singh%2C+Dhanpratap&rft.au=Mohamed%2C+Heba+G.&rft.au=Bharany%2C+Salil&rft.date=2025-03-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-93906-5&rft.externalDocID=PMC11914083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |