Sentiment analysis using long short term memory and amended dwarf mongoose optimization algorithm

The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 17206 - 19
Hlavní autori: Deng, Haisheng, Alkhayyat, Ahmed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 17.05.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.
AbstractList Abstract The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.
The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM-ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM-ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.
The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.
ArticleNumber 17206
Author Alkhayyat, Ahmed
Deng, Haisheng
Author_xml – sequence: 1
  givenname: Haisheng
  surname: Deng
  fullname: Deng, Haisheng
  organization: Xijing University
– sequence: 2
  givenname: Ahmed
  surname: Alkhayyat
  fullname: Alkhayyat, Ahmed
  email: alkhayyatahmed45@gmail.com
  organization: College of Technical Engineering, The Islamic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40382436$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAURi1UREvpH2CBLLHpJuD3Y4VQxaNSJRbA2rJjJ-NREg92BjT8-nomU2i7aBZOZJ978sn3vgQnU5oCAK8xeocRVe8Lw1yrBhHeIKwoa_AzcEYQ4w2hhJzc-z4FF6WsUX040QzrF-CUVQNhVJwB-z1McxzrAu1kh12JBW5LnHo4pLqUVcoznEMe4RjGlHeV8tBW3gcP_R-bOzhWMKUSYNpUU_xr55gmaIc-5TivxlfgeWeHEi6O73Pw8_OnH1dfm5tvX66vPt40LWd0brTtOA-uk1QJ4ZHTXkqBqKdMIistU1hapbX0zgvRatd5zZCTTGqqnRKcnoPrxeuTXZtNjqPNO5NsNIeNlHtj8xzbIRjR1X-1RAdOBXP763MdxSigEIRDClfXh8W12box-LZeT7bDA-nDkymuTJ9-G0yQ4oLtDZdHQ06_tqHMZoylDcNgp5C2xVCCuBCUI1nRt4_Qddrm2owjxTVTulJv7kf6l-WulRVQC9DmVEoOnWnjfOhFTRgHg5HZD45ZBsfUwTGHwTH7sORR6Z39ySK6FJUKT33I_2M_UXULR9LVmw
CitedBy_id crossref_primary_10_3390_math13162581
Cites_doi 10.1016/j.bspc.2023.105546
10.1088/1742-6596/1471/1/012018
10.1016/j.engappai.2019.103300
10.1109/ACCESS.2017.2776930
10.1016/j.procs.2017.06.037
10.1016/j.knosys.2019.105190
10.1016/j.bspc.2024.106246
10.3390/make1030048
10.3390/electronics9030483
10.1080/0952813X.2022.2093405
10.1155/2022/3424819
10.3115/v1/P14-5010
10.1108/eb046814
10.1109/CONFLUENCE.2018.8442924
10.1016/j.eswa.2016.03.031
10.1109/ACCESS.2019.2918753
10.1007/s40313-016-0242-6
10.1145/2766462.2767830
10.1016/j.procs.2020.03.325
10.14569/IJACSA.2022.0130669
10.3390/e23050596
10.1109/CIT/IUCC/DASC/PICOM.2015.349
10.1109/BCD.2019.8885108
10.1007/s10796-021-10135-7
10.1016/j.knosys.2016.05.040
10.1007/978-981-16-3246-4_44
10.18653/v1/D13-1170
10.1016/j.eswa.2017.03.071
10.1109/IC4ME247184.2019.9036670
10.1038/s41598-024-71410-6
10.1186/s40537-022-00680-6
10.1109/IACC48062.2019.8971592
10.1016/j.bspc.2024.106324
10.3390/app13031445
10.18653/v1/W17-5221
10.1007/s00521-024-09623-z
10.1109/ICATCCT.2016.7912076
10.1146/annurev.soc.27.1.307
10.3390/s21134567
10.1007/978-3-319-25343-5_3
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-01834-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_6ff55c29e5364b0183bf310e0ee6b081
PMC12085641
40382436
10_1038_s41598_025_01834_1
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-9af55ebf73866d0b9d77603d3470a7a4817a8997dbd66c9bfd940b747939b8653
IEDL.DBID M7P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489971100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Nov 04 02:04:58 EST 2025
Fri Sep 05 16:17:05 EDT 2025
Tue Oct 07 07:56:37 EDT 2025
Wed May 21 12:14:56 EDT 2025
Sat Nov 29 07:52:00 EST 2025
Tue Nov 18 19:56:07 EST 2025
Sun May 18 01:10:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sentiment analysis
GloVe
Amended dwarf mongoose optimization (ADMO) algorithm
Long short-term memory (LSTM)
Word2Vec
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-9af55ebf73866d0b9d77603d3470a7a4817a8997dbd66c9bfd940b747939b8653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3205659489?pq-origsite=%requestingapplication%
PMID 40382436
PQID 3205659489
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_6ff55c29e5364b0183bf310e0ee6b081
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12085641
proquest_miscellaneous_3205663507
proquest_journals_3205659489
pubmed_primary_40382436
crossref_citationtrail_10_1038_s41598_025_01834_1
crossref_primary_10_1038_s41598_025_01834_1
springer_journals_10_1038_s41598_025_01834_1
PublicationCentury 2000
PublicationDate 2025-05-17
PublicationDateYYYYMMDD 2025-05-17
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Wang (1834_CR2) 2012; 31
M Rhanoui (1834_CR26) 2019; 1
L Kurniasari (1834_CR39) 2020; 1471
1834_CR44
1834_CR42
1834_CR41
1834_CR40
N Razmjooy (1834_CR46) 2016; 27
K Dashtipour (1834_CR33) 2021; 23
M Dehghani (1834_CR48) 2021; 21
1834_CR19
1834_CR17
ES Tellez (1834_CR6) 2017; 81
P DiMaggio (1834_CR1) 2001; 27
1834_CR13
M Fernández-Gavilanes (1834_CR16) 2016; 58
1834_CR4
1834_CR12
A Yadav (1834_CR18) 2020; 167
E Hassan (1834_CR31) 2024; 94
Z Jianqiang (1834_CR5) 2018; 6
W Zhao (1834_CR45) 2019; 7
G Kaur (1834_CR34) 2023; 10
1834_CR8
Q Huang (1834_CR37) 2024; 87
NC Dang (1834_CR7) 2020; 9
J Mutinda (1834_CR35) 2023; 13
M Han (1834_CR3) 2024; 94
MF Porter (1834_CR43) 1980; 14
1834_CR28
A Hasan (1834_CR10) 2018; 23
1834_CR27
D Paulraj (1834_CR36) 2024; 36
H Kaur (1834_CR32) 2021; 23
1834_CR24
1834_CR23
O Appel (1834_CR14) 2016; 108
1834_CR22
1834_CR21
E Hassan (1834_CR30) 2024; 36
1834_CR20
G Bo (1834_CR11) 2022; 44
S Elbedwehy (1834_CR29) 2024; 14
O Appel (1834_CR15) 2018; 48
1834_CR38
W Zehao (1834_CR9) 2025; 74
W Zhao (1834_CR49) 2020; 87
S Liao (1834_CR25) 2017; 111
A Faramarzi (1834_CR47) 2020; 191
References_xml – ident: 1834_CR22
– volume: 87
  start-page: 105546
  year: 2024
  ident: 1834_CR37
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105546
– volume: 1471
  start-page: 012018
  issue: 1
  year: 2020
  ident: 1834_CR39
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1471/1/012018
– volume: 87
  start-page: 103300
  year: 2020
  ident: 1834_CR49
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 6
  start-page: 23253
  year: 2018
  ident: 1834_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2776930
– volume: 111
  start-page: 376
  year: 2017
  ident: 1834_CR25
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.06.037
– volume: 191
  start-page: 105190
  year: 2020
  ident: 1834_CR47
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 94
  start-page: 106246
  year: 2024
  ident: 1834_CR31
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106246
– volume: 1
  start-page: 832
  issue: 3
  year: 2019
  ident: 1834_CR26
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make1030048
– volume: 9
  start-page: 483
  issue: 3
  year: 2020
  ident: 1834_CR7
  publication-title: Electronics
  doi: 10.3390/electronics9030483
– ident: 1834_CR27
– volume: 36
  start-page: 415
  issue: 3
  year: 2024
  ident: 1834_CR36
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2022.2093405
– ident: 1834_CR40
  doi: 10.1155/2022/3424819
– ident: 1834_CR44
  doi: 10.3115/v1/P14-5010
– volume: 14
  start-page: 130
  issue: 3
  year: 1980
  ident: 1834_CR43
  publication-title: Program
  doi: 10.1108/eb046814
– ident: 1834_CR20
  doi: 10.1109/CONFLUENCE.2018.8442924
– volume: 31
  start-page: 5
  issue: 1
  year: 2012
  ident: 1834_CR2
  publication-title: Commun. Assoc. Inf. Syst.
– volume: 48
  start-page: 1176
  year: 2018
  ident: 1834_CR15
  publication-title: Appl. Intell.
– volume: 58
  start-page: 57
  year: 2016
  ident: 1834_CR16
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.031
– volume: 7
  start-page: 73182
  year: 2019
  ident: 1834_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918753
– volume: 27
  start-page: 419
  issue: 4
  year: 2016
  ident: 1834_CR46
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-016-0242-6
– ident: 1834_CR4
  doi: 10.1145/2766462.2767830
– volume: 167
  start-page: 589
  year: 2020
  ident: 1834_CR18
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.325
– ident: 1834_CR17
  doi: 10.14569/IJACSA.2022.0130669
– volume: 23
  start-page: 596
  issue: 5
  year: 2021
  ident: 1834_CR33
  publication-title: Entropy
  doi: 10.3390/e23050596
– volume: 23
  start-page: 11
  issue: 1
  year: 2018
  ident: 1834_CR10
  publication-title: Math. Comput. Appl.
– ident: 1834_CR28
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.349
– ident: 1834_CR21
  doi: 10.1109/BCD.2019.8885108
– volume: 23
  start-page: 1417
  issue: 6
  year: 2021
  ident: 1834_CR32
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-021-10135-7
– volume: 44
  start-page: 7109
  issue: 3
  year: 2022
  ident: 1834_CR11
  publication-title: Energy Sources Part A Recov. Util Environ. Effects
– volume: 108
  start-page: 110
  year: 2016
  ident: 1834_CR14
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.05.040
– ident: 1834_CR23
  doi: 10.1007/978-981-16-3246-4_44
– ident: 1834_CR41
  doi: 10.18653/v1/D13-1170
– volume: 81
  start-page: 457
  year: 2017
  ident: 1834_CR6
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.071
– ident: 1834_CR8
  doi: 10.1109/IC4ME247184.2019.9036670
– ident: 1834_CR19
– volume: 14
  start-page: 21740
  issue: 1
  year: 2024
  ident: 1834_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-71410-6
– volume: 10
  start-page: 5
  issue: 1
  year: 2023
  ident: 1834_CR34
  publication-title: J. Big Data
  doi: 10.1186/s40537-022-00680-6
– ident: 1834_CR24
  doi: 10.1109/IACC48062.2019.8971592
– volume: 94
  start-page: 106324
  year: 2024
  ident: 1834_CR3
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106324
– volume: 13
  start-page: 1445
  issue: 3
  year: 2023
  ident: 1834_CR35
  publication-title: Appl. Sci.
  doi: 10.3390/app13031445
– ident: 1834_CR38
  doi: 10.18653/v1/W17-5221
– volume: 36
  start-page: 9023
  issue: 16
  year: 2024
  ident: 1834_CR30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-09623-z
– ident: 1834_CR42
– ident: 1834_CR12
  doi: 10.1109/ICATCCT.2016.7912076
– volume: 74
  start-page: 104186
  year: 2025
  ident: 1834_CR9
  publication-title: Sustain. Energy Technol. Assess.
– volume: 27
  start-page: 307
  issue: 1
  year: 2001
  ident: 1834_CR1
  publication-title: Ann. Rev. Sociol.
  doi: 10.1146/annurev.soc.27.1.307
– volume: 21
  start-page: 4567
  issue: 13
  year: 2021
  ident: 1834_CR48
  publication-title: Sensors
  doi: 10.3390/s21134567
– ident: 1834_CR13
  doi: 10.1007/978-3-319-25343-5_3
SSID ssj0000529419
Score 2.4553204
Snippet The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome...
Abstract The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17206
SubjectTerms 639/166
639/4077
Algorithms
Amended dwarf mongoose optimization (ADMO) algorithm
Datasets
Embedding
GloVe
Helogale parvula
Humanities and Social Sciences
Long short-term memory
Long short-term memory (LSTM)
Machine learning
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Sentiment analysis
Social networks
Support vector machines
Word2Vec
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37a7SgRv2my6k87jqOLiQRZBhb2FPHcGZrplZlbYf79V6Z5xx-fFSx-6K1Bdj6RSqXxFyEuRlDZS5ToqxmrhnKody74WSgbhVOQ6FHT9j-r0VJ-dmU_XWn1hTdgIDzwK7ljm3HWhNanjUngGFugzhCSJpSQ9K5euW4h6rm2mRlTv1ojGTLdkGNfHa1ip8DZZi7Vqmou62VuJCmD_76LMX4slfzoxLQvRyV1yZ4og6ZuR83vkRurvk1tjT8nLB8R9xvofzPlRNwGOUCxuP6eLAR7rGcTbFOdjusQi20ugitQtSyacYgfnTLH_0DCsEx1gPllOFzWpW5wPq_lmtnxIvp68__LuQz31UahDJ_imNg5EmHzG_p4yMm-iUpLxyIViTjmhG-Vg26Wij1IG43M0gnmFOTfjtez4I3LQD316QmhQQgaVues0eHuCEZlh5ihqoV0KqiLNVqY2TCDj2OtiYcthN9d21IMFPdiiB9tU5NVuzLcRYuOv1G9RVTtKhMcuL8Bo7GQ09l9GU5GjraLt5LNry1sIBhG9xlTkxe4zeBseobg-DRcTDcRoDP708WgXO04EMNwKLiui9yxmj9X9L_18VhC9G-yUKgXw9XprXD_4-rMsnv4PWRyS223xiq5u1BE52Kwu0jNyM3zfzNer58WtrgAwRiTM
  priority: 102
  providerName: Directory of Open Access Journals
Title Sentiment analysis using long short term memory and amended dwarf mongoose optimization algorithm
URI https://link.springer.com/article/10.1038/s41598-025-01834-1
https://www.ncbi.nlm.nih.gov/pubmed/40382436
https://www.proquest.com/docview/3205659489
https://www.proquest.com/docview/3205663507
https://pubmed.ncbi.nlm.nih.gov/PMC12085641
https://doaj.org/article/6ff55c29e5364b0183bf310e0ee6b081
Volume 15
WOSCitedRecordID wos001489971100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIv45sVRmUk3iCaEzu284QY2gQSqyI-pPIUObbTTmqT0XRI---5c91O5WMvvPihPkvnnO98vTvfj5BXwitdSNUkTjGWCGNUYlhTJ0JJK4xyXNvQXf-TGo30eFyUMeDWx7LKtU0Mhtp1FmPkRzyDqxp7ixRvL34kiBqF2dUIobFD9rBLAg-le-UmxoJZLJEW8a0M4_qoh_sK35RlWLGmuUjSrfsotO3_m6_5Z8nkb3nTcB2d3vvfjdwn-9ERpe9WJ-cBueXbh-TOCpry6hExX7CMCEOH1MS-JRRr5Cd01sHQT8Ftp2jW6Rxrda-AylEzDwF1ikDQDUUYo67rPe3ALM3je09qZhPgZjmdPybfTk--vv-QRDiGxOaCL5PCNHnu6wZhQqVjdeGUkow7LhQzygidKgP_3pSrnZS2qBtXCFYrDN0VtZY5f0J22671B4RaJaRVDTe5BqPhYUXDMADltNDGWzUg6VoolY29yhEyY1aFnDnX1UqQFQiyCoKs0gF5vVlzserUcSP1Mcp6Q4ldtsMP3WJSRaWtZAM7tlnhcy5FjSvrBtxhz7yXNfhSA3K4FnEVVb-vruU7IC8306C0mIkxre8uIw24egx2-nR1sDacCGA4E1wOiN46clusbs-059PQGDxFwFUpgK8369N5zde_v8Wzm7fxnNzNgsLkSaoOye5ycelfkNv25_K8XwzJjhqrMOoh2Ts-GZWfhyGwAeNZVg6DRsJM-fGs_P4L7TA6Vg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqAoIL-zJQwEhwgqhO7NjOASG2qlWHUSWK1JtxYmem0kxSJlPQ_Cl-I-85yVTD0lsPXOYwsaXn5G1-20fIc-GVzqQqI6cYi4S1KrKszCOhZCGsclwXYbr-UI1G-ugoO9ggP_teGCyr7HViUNSuLjBGvs0TMNU4WyR7c_ItQtQozK72EBotW-z75Q-4sjWv9z7A932RJDsfD9_vRh2qQFSkgi-izJZp6vMS0S6lY3nmlJKMOy4Us8oKHSsLlxDlcidlkeWlywTLFUagslxLRIkAlX8J3IhEh1LBg1VMB7NmIs663hzG9XYD9hF72BKskNNcRPGa_QswAX_zbf8s0fwtTxvM386N_-3F3STXO0ebvm0l4xbZ8NVtcqWF3lzeIfYzlklhaJTabi4LxR6AMZ3W8NNM4FpC0WzRGdYiL2GVo3YWEgYUga5LijBNdd14WoPanXX9rNROx3D6xWR2l3y5kPPdI5tVXfkHhBZKyEKV3KYalKKHHSXDAJvTQltfqAGJeyYwRTeLHSFBpibUBHBtWsYxwDgmMI6JB-Tlas9JO4nk3NXvkLdWK3GKePijno9Np5SMLOHERZL5lEuR4868BHffM-9lDr7igGz1LGU61daYM34akGerx6CUMNNkK1-fdmvAlWVw0vstI68oEUBwIrgcEL3G4mukrj-pjidh8HmMgLJSAF2vemk4o-vf7-Lh-cd4Sq7uHn4amuHeaP8RuZYEYU2jWG2RzcX81D8ml4vvi-Nm_iRIOyVfL1pKfgEbYY7i
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamcREv4w6FAUaCJ4iaxI7tPCAEjIppU1UJkPZmHMduJ7XN1nSg_jV-Hec4Sady2dseeOlDY0t28p1z7HP7CHnBnVS5kD4qZRxH3BgZmdgXEZfCciNLpmzorn8oh0N1dJSPtsjPrhYG0yo7nRgUdVlZ9JH3WQqmGnuL5H3fpkWM9gZvT04jZJDCSGtHp9FA5MCtfsD1rX6zvwff-mWaDj5--fApahkGIptxtoxy47PMFR6ZL0UZF3kppYhZybiMjTRcJdLAhUSWRSmEzQtf5jwuJHqj8kIJZIwA9X9FYtPykDY4Wvt3MILGk7yt04mZ6tdgK7GeLcVsOcV4lGzYwkAZ8Ldz7p_pmr_FbIMpHNz8n1_iLbLTHsDpu0ZibpMtN79DrjWUnKu7xHzG9Cl0mVLT9muhWBswptMKfuoJXFcomjM6wxzlFYwqqZmFQAJFAmxPkb6pqmpHK1DHs7bOlZrpGHa_nMzuka-Xsr_7ZHtezd1DQi0gxUrPTKZAWTqY4WN0vJWKK-Os7JGkA4S2bY92pAqZ6pArwJRuQKQBRDqASCc98mo956TpUHLh6PeIs_VI7C4e_qgWY90qKy087NimucuY4AXOLDxcA1zsnCjgDNkjux28dKvyan2OrR55vn4MygojUGbuqrN2DBxxY9jpgwbU65VwWHDKmegRtQH3jaVuPpkfT0JD9ASJZgWHdb3uJON8Xf9-F48u3sYzch2EQx_uDw8ekxtpkNssSuQu2V4uztwTctV-Xx7Xi6dB8Cn5dtlC8gtxapef
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+analysis+using+long+short+term+memory+and+amended+dwarf+mongoose+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Deng%2C+Haisheng&rft.au=Alkhayyat%2C+Ahmed&rft.date=2025-05-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-01834-1&rft.externalDocID=PMC12085641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon