Sentiment analysis using long short term memory and amended dwarf mongoose optimization algorithm
The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbre...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 17206 - 19 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
17.05.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques. |
|---|---|
| AbstractList | Abstract The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques. The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM-ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques.The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM-ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques. The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome increasingly important and challenging. Due to the specific attributes of this type of data, including length of text, spelling errors, and abbreviations, unconventional methods and multiple steps are required for effectively analyzing sentiment in such a complex environment. In this research, two distinct word embedding models, GloVe and Word2Vec, were utilized for vectorization. To enhance the performance long short-term memory (LSTM), the model was optimized using the amended dwarf mongoose optimization (ADMO) algorithm, leading to improvements in the hyperparameters. The LSTM–ADMO achieved the accuracy values of 97.74 and 97.47 using Word2Vec and GloVe, respectively on IMDB, and it could gain the accuracy values of 97.84 and 97.51 using Word2Vec and GloVe, respectively on SST-2. In general, it was determined that the proposed model significantly outperformed other models, and there was very little difference between the two different word embedding techniques. |
| ArticleNumber | 17206 |
| Author | Alkhayyat, Ahmed Deng, Haisheng |
| Author_xml | – sequence: 1 givenname: Haisheng surname: Deng fullname: Deng, Haisheng organization: Xijing University – sequence: 2 givenname: Ahmed surname: Alkhayyat fullname: Alkhayyat, Ahmed email: alkhayyatahmed45@gmail.com organization: College of Technical Engineering, The Islamic University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40382436$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAURi1UREvpH2CBLLHpJuD3Y4VQxaNSJRbA2rJjJ-NREg92BjT8-nomU2i7aBZOZJ978sn3vgQnU5oCAK8xeocRVe8Lw1yrBhHeIKwoa_AzcEYQ4w2hhJzc-z4FF6WsUX040QzrF-CUVQNhVJwB-z1McxzrAu1kh12JBW5LnHo4pLqUVcoznEMe4RjGlHeV8tBW3gcP_R-bOzhWMKUSYNpUU_xr55gmaIc-5TivxlfgeWeHEi6O73Pw8_OnH1dfm5tvX66vPt40LWd0brTtOA-uk1QJ4ZHTXkqBqKdMIistU1hapbX0zgvRatd5zZCTTGqqnRKcnoPrxeuTXZtNjqPNO5NsNIeNlHtj8xzbIRjR1X-1RAdOBXP763MdxSigEIRDClfXh8W12box-LZeT7bDA-nDkymuTJ9-G0yQ4oLtDZdHQ06_tqHMZoylDcNgp5C2xVCCuBCUI1nRt4_Qddrm2owjxTVTulJv7kf6l-WulRVQC9DmVEoOnWnjfOhFTRgHg5HZD45ZBsfUwTGHwTH7sORR6Z39ySK6FJUKT33I_2M_UXULR9LVmw |
| CitedBy_id | crossref_primary_10_3390_math13162581 |
| Cites_doi | 10.1016/j.bspc.2023.105546 10.1088/1742-6596/1471/1/012018 10.1016/j.engappai.2019.103300 10.1109/ACCESS.2017.2776930 10.1016/j.procs.2017.06.037 10.1016/j.knosys.2019.105190 10.1016/j.bspc.2024.106246 10.3390/make1030048 10.3390/electronics9030483 10.1080/0952813X.2022.2093405 10.1155/2022/3424819 10.3115/v1/P14-5010 10.1108/eb046814 10.1109/CONFLUENCE.2018.8442924 10.1016/j.eswa.2016.03.031 10.1109/ACCESS.2019.2918753 10.1007/s40313-016-0242-6 10.1145/2766462.2767830 10.1016/j.procs.2020.03.325 10.14569/IJACSA.2022.0130669 10.3390/e23050596 10.1109/CIT/IUCC/DASC/PICOM.2015.349 10.1109/BCD.2019.8885108 10.1007/s10796-021-10135-7 10.1016/j.knosys.2016.05.040 10.1007/978-981-16-3246-4_44 10.18653/v1/D13-1170 10.1016/j.eswa.2017.03.071 10.1109/IC4ME247184.2019.9036670 10.1038/s41598-024-71410-6 10.1186/s40537-022-00680-6 10.1109/IACC48062.2019.8971592 10.1016/j.bspc.2024.106324 10.3390/app13031445 10.18653/v1/W17-5221 10.1007/s00521-024-09623-z 10.1109/ICATCCT.2016.7912076 10.1146/annurev.soc.27.1.307 10.3390/s21134567 10.1007/978-3-319-25343-5_3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-01834-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_6ff55c29e5364b0183bf310e0ee6b081 PMC12085641 40382436 10_1038_s41598_025_01834_1 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c543t-9af55ebf73866d0b9d77603d3470a7a4817a8997dbd66c9bfd940b747939b8653 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489971100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Nov 04 02:04:58 EST 2025 Fri Sep 05 16:17:05 EDT 2025 Tue Oct 07 07:56:37 EDT 2025 Wed May 21 12:14:56 EDT 2025 Sat Nov 29 07:52:00 EST 2025 Tue Nov 18 19:56:07 EST 2025 Sun May 18 01:10:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Sentiment analysis GloVe Amended dwarf mongoose optimization (ADMO) algorithm Long short-term memory (LSTM) Word2Vec |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-9af55ebf73866d0b9d77603d3470a7a4817a8997dbd66c9bfd940b747939b8653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3205659489?pq-origsite=%requestingapplication% |
| PMID | 40382436 |
| PQID | 3205659489 |
| PQPubID | 2041939 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6ff55c29e5364b0183bf310e0ee6b081 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12085641 proquest_miscellaneous_3205663507 proquest_journals_3205659489 pubmed_primary_40382436 crossref_citationtrail_10_1038_s41598_025_01834_1 crossref_primary_10_1038_s41598_025_01834_1 springer_journals_10_1038_s41598_025_01834_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-17 |
| PublicationDateYYYYMMDD | 2025-05-17 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | C Wang (1834_CR2) 2012; 31 M Rhanoui (1834_CR26) 2019; 1 L Kurniasari (1834_CR39) 2020; 1471 1834_CR44 1834_CR42 1834_CR41 1834_CR40 N Razmjooy (1834_CR46) 2016; 27 K Dashtipour (1834_CR33) 2021; 23 M Dehghani (1834_CR48) 2021; 21 1834_CR19 1834_CR17 ES Tellez (1834_CR6) 2017; 81 P DiMaggio (1834_CR1) 2001; 27 1834_CR13 M Fernández-Gavilanes (1834_CR16) 2016; 58 1834_CR4 1834_CR12 A Yadav (1834_CR18) 2020; 167 E Hassan (1834_CR31) 2024; 94 Z Jianqiang (1834_CR5) 2018; 6 W Zhao (1834_CR45) 2019; 7 G Kaur (1834_CR34) 2023; 10 1834_CR8 Q Huang (1834_CR37) 2024; 87 NC Dang (1834_CR7) 2020; 9 J Mutinda (1834_CR35) 2023; 13 M Han (1834_CR3) 2024; 94 MF Porter (1834_CR43) 1980; 14 1834_CR28 A Hasan (1834_CR10) 2018; 23 1834_CR27 D Paulraj (1834_CR36) 2024; 36 H Kaur (1834_CR32) 2021; 23 1834_CR24 1834_CR23 O Appel (1834_CR14) 2016; 108 1834_CR22 1834_CR21 E Hassan (1834_CR30) 2024; 36 1834_CR20 G Bo (1834_CR11) 2022; 44 S Elbedwehy (1834_CR29) 2024; 14 O Appel (1834_CR15) 2018; 48 1834_CR38 W Zehao (1834_CR9) 2025; 74 W Zhao (1834_CR49) 2020; 87 S Liao (1834_CR25) 2017; 111 A Faramarzi (1834_CR47) 2020; 191 |
| References_xml | – ident: 1834_CR22 – volume: 87 start-page: 105546 year: 2024 ident: 1834_CR37 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105546 – volume: 1471 start-page: 012018 issue: 1 year: 2020 ident: 1834_CR39 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1471/1/012018 – volume: 87 start-page: 103300 year: 2020 ident: 1834_CR49 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 6 start-page: 23253 year: 2018 ident: 1834_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2776930 – volume: 111 start-page: 376 year: 2017 ident: 1834_CR25 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.06.037 – volume: 191 start-page: 105190 year: 2020 ident: 1834_CR47 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 94 start-page: 106246 year: 2024 ident: 1834_CR31 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106246 – volume: 1 start-page: 832 issue: 3 year: 2019 ident: 1834_CR26 publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make1030048 – volume: 9 start-page: 483 issue: 3 year: 2020 ident: 1834_CR7 publication-title: Electronics doi: 10.3390/electronics9030483 – ident: 1834_CR27 – volume: 36 start-page: 415 issue: 3 year: 2024 ident: 1834_CR36 publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2022.2093405 – ident: 1834_CR40 doi: 10.1155/2022/3424819 – ident: 1834_CR44 doi: 10.3115/v1/P14-5010 – volume: 14 start-page: 130 issue: 3 year: 1980 ident: 1834_CR43 publication-title: Program doi: 10.1108/eb046814 – ident: 1834_CR20 doi: 10.1109/CONFLUENCE.2018.8442924 – volume: 31 start-page: 5 issue: 1 year: 2012 ident: 1834_CR2 publication-title: Commun. Assoc. Inf. Syst. – volume: 48 start-page: 1176 year: 2018 ident: 1834_CR15 publication-title: Appl. Intell. – volume: 58 start-page: 57 year: 2016 ident: 1834_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.031 – volume: 7 start-page: 73182 year: 2019 ident: 1834_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918753 – volume: 27 start-page: 419 issue: 4 year: 2016 ident: 1834_CR46 publication-title: J. Control Autom. Electr. Syst. doi: 10.1007/s40313-016-0242-6 – ident: 1834_CR4 doi: 10.1145/2766462.2767830 – volume: 167 start-page: 589 year: 2020 ident: 1834_CR18 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.325 – ident: 1834_CR17 doi: 10.14569/IJACSA.2022.0130669 – volume: 23 start-page: 596 issue: 5 year: 2021 ident: 1834_CR33 publication-title: Entropy doi: 10.3390/e23050596 – volume: 23 start-page: 11 issue: 1 year: 2018 ident: 1834_CR10 publication-title: Math. Comput. Appl. – ident: 1834_CR28 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.349 – ident: 1834_CR21 doi: 10.1109/BCD.2019.8885108 – volume: 23 start-page: 1417 issue: 6 year: 2021 ident: 1834_CR32 publication-title: Inf. Syst. Front. doi: 10.1007/s10796-021-10135-7 – volume: 44 start-page: 7109 issue: 3 year: 2022 ident: 1834_CR11 publication-title: Energy Sources Part A Recov. Util Environ. Effects – volume: 108 start-page: 110 year: 2016 ident: 1834_CR14 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.05.040 – ident: 1834_CR23 doi: 10.1007/978-981-16-3246-4_44 – ident: 1834_CR41 doi: 10.18653/v1/D13-1170 – volume: 81 start-page: 457 year: 2017 ident: 1834_CR6 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.071 – ident: 1834_CR8 doi: 10.1109/IC4ME247184.2019.9036670 – ident: 1834_CR19 – volume: 14 start-page: 21740 issue: 1 year: 2024 ident: 1834_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-024-71410-6 – volume: 10 start-page: 5 issue: 1 year: 2023 ident: 1834_CR34 publication-title: J. Big Data doi: 10.1186/s40537-022-00680-6 – ident: 1834_CR24 doi: 10.1109/IACC48062.2019.8971592 – volume: 94 start-page: 106324 year: 2024 ident: 1834_CR3 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106324 – volume: 13 start-page: 1445 issue: 3 year: 2023 ident: 1834_CR35 publication-title: Appl. Sci. doi: 10.3390/app13031445 – ident: 1834_CR38 doi: 10.18653/v1/W17-5221 – volume: 36 start-page: 9023 issue: 16 year: 2024 ident: 1834_CR30 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-09623-z – ident: 1834_CR42 – ident: 1834_CR12 doi: 10.1109/ICATCCT.2016.7912076 – volume: 74 start-page: 104186 year: 2025 ident: 1834_CR9 publication-title: Sustain. Energy Technol. Assess. – volume: 27 start-page: 307 issue: 1 year: 2001 ident: 1834_CR1 publication-title: Ann. Rev. Sociol. doi: 10.1146/annurev.soc.27.1.307 – volume: 21 start-page: 4567 issue: 13 year: 2021 ident: 1834_CR48 publication-title: Sensors doi: 10.3390/s21134567 – ident: 1834_CR13 doi: 10.1007/978-3-319-25343-5_3 |
| SSID | ssj0000529419 |
| Score | 2.4553204 |
| Snippet | The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has becfigome... Abstract The use of machine learning to analyze sentiments has attained considerable interest in the past few years. The task of analyzing sentiments has... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17206 |
| SubjectTerms | 639/166 639/4077 Algorithms Amended dwarf mongoose optimization (ADMO) algorithm Datasets Embedding GloVe Helogale parvula Humanities and Social Sciences Long short-term memory Long short-term memory (LSTM) Machine learning multidisciplinary Neural networks Science Science (multidisciplinary) Sentiment analysis Social networks Support vector machines Word2Vec |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37a7SgRv2my6k87jqOLiQRZBhb2FPHcGZrplZlbYf79V6Z5xx-fFSx-6K1Bdj6RSqXxFyEuRlDZS5ToqxmrhnKody74WSgbhVOQ6FHT9j-r0VJ-dmU_XWn1hTdgIDzwK7ljm3HWhNanjUngGFugzhCSJpSQ9K5euW4h6rm2mRlTv1ojGTLdkGNfHa1ip8DZZi7Vqmou62VuJCmD_76LMX4slfzoxLQvRyV1yZ4og6ZuR83vkRurvk1tjT8nLB8R9xvofzPlRNwGOUCxuP6eLAR7rGcTbFOdjusQi20ugitQtSyacYgfnTLH_0DCsEx1gPllOFzWpW5wPq_lmtnxIvp68__LuQz31UahDJ_imNg5EmHzG_p4yMm-iUpLxyIViTjmhG-Vg26Wij1IG43M0gnmFOTfjtez4I3LQD316QmhQQgaVues0eHuCEZlh5ihqoV0KqiLNVqY2TCDj2OtiYcthN9d21IMFPdiiB9tU5NVuzLcRYuOv1G9RVTtKhMcuL8Bo7GQ09l9GU5GjraLt5LNry1sIBhG9xlTkxe4zeBseobg-DRcTDcRoDP708WgXO04EMNwKLiui9yxmj9X9L_18VhC9G-yUKgXw9XprXD_4-rMsnv4PWRyS223xiq5u1BE52Kwu0jNyM3zfzNer58WtrgAwRiTM priority: 102 providerName: Directory of Open Access Journals |
| Title | Sentiment analysis using long short term memory and amended dwarf mongoose optimization algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-01834-1 https://www.ncbi.nlm.nih.gov/pubmed/40382436 https://www.proquest.com/docview/3205659489 https://www.proquest.com/docview/3205663507 https://pubmed.ncbi.nlm.nih.gov/PMC12085641 https://doaj.org/article/6ff55c29e5364b0183bf310e0ee6b081 |
| Volume | 15 |
| WOSCitedRecordID | wos001489971100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIv45sVRmUk3iCaEzu284QY2gQSqyI-pPIUObbTTmqT0XRI---5c91O5WMvvPihPkvnnO98vTvfj5BXwitdSNUkTjGWCGNUYlhTJ0JJK4xyXNvQXf-TGo30eFyUMeDWx7LKtU0Mhtp1FmPkRzyDqxp7ixRvL34kiBqF2dUIobFD9rBLAg-le-UmxoJZLJEW8a0M4_qoh_sK35RlWLGmuUjSrfsotO3_m6_5Z8nkb3nTcB2d3vvfjdwn-9ERpe9WJ-cBueXbh-TOCpry6hExX7CMCEOH1MS-JRRr5Cd01sHQT8Ftp2jW6Rxrda-AylEzDwF1ikDQDUUYo67rPe3ALM3je09qZhPgZjmdPybfTk--vv-QRDiGxOaCL5PCNHnu6wZhQqVjdeGUkow7LhQzygidKgP_3pSrnZS2qBtXCFYrDN0VtZY5f0J22671B4RaJaRVDTe5BqPhYUXDMADltNDGWzUg6VoolY29yhEyY1aFnDnX1UqQFQiyCoKs0gF5vVlzserUcSP1Mcp6Q4ldtsMP3WJSRaWtZAM7tlnhcy5FjSvrBtxhz7yXNfhSA3K4FnEVVb-vruU7IC8306C0mIkxre8uIw24egx2-nR1sDacCGA4E1wOiN46clusbs-059PQGDxFwFUpgK8369N5zde_v8Wzm7fxnNzNgsLkSaoOye5ycelfkNv25_K8XwzJjhqrMOoh2Ts-GZWfhyGwAeNZVg6DRsJM-fGs_P4L7TA6Vg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqAoIL-zJQwEhwgqhO7NjOASG2qlWHUSWK1JtxYmem0kxSJlPQ_Cl-I-85yVTD0lsPXOYwsaXn5G1-20fIc-GVzqQqI6cYi4S1KrKszCOhZCGsclwXYbr-UI1G-ugoO9ggP_teGCyr7HViUNSuLjBGvs0TMNU4WyR7c_ItQtQozK72EBotW-z75Q-4sjWv9z7A932RJDsfD9_vRh2qQFSkgi-izJZp6vMS0S6lY3nmlJKMOy4Us8oKHSsLlxDlcidlkeWlywTLFUagslxLRIkAlX8J3IhEh1LBg1VMB7NmIs663hzG9XYD9hF72BKskNNcRPGa_QswAX_zbf8s0fwtTxvM386N_-3F3STXO0ebvm0l4xbZ8NVtcqWF3lzeIfYzlklhaJTabi4LxR6AMZ3W8NNM4FpC0WzRGdYiL2GVo3YWEgYUga5LijBNdd14WoPanXX9rNROx3D6xWR2l3y5kPPdI5tVXfkHhBZKyEKV3KYalKKHHSXDAJvTQltfqAGJeyYwRTeLHSFBpibUBHBtWsYxwDgmMI6JB-Tlas9JO4nk3NXvkLdWK3GKePijno9Np5SMLOHERZL5lEuR4868BHffM-9lDr7igGz1LGU61daYM34akGerx6CUMNNkK1-fdmvAlWVw0vstI68oEUBwIrgcEL3G4mukrj-pjidh8HmMgLJSAF2vemk4o-vf7-Lh-cd4Sq7uHn4amuHeaP8RuZYEYU2jWG2RzcX81D8ml4vvi-Nm_iRIOyVfL1pKfgEbYY7i |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamcREv4w6FAUaCJ4iaxI7tPCAEjIppU1UJkPZmHMduJ7XN1nSg_jV-Hec4Sady2dseeOlDY0t28p1z7HP7CHnBnVS5kD4qZRxH3BgZmdgXEZfCciNLpmzorn8oh0N1dJSPtsjPrhYG0yo7nRgUdVlZ9JH3WQqmGnuL5H3fpkWM9gZvT04jZJDCSGtHp9FA5MCtfsD1rX6zvwff-mWaDj5--fApahkGIptxtoxy47PMFR6ZL0UZF3kppYhZybiMjTRcJdLAhUSWRSmEzQtf5jwuJHqj8kIJZIwA9X9FYtPykDY4Wvt3MILGk7yt04mZ6tdgK7GeLcVsOcV4lGzYwkAZ8Ldz7p_pmr_FbIMpHNz8n1_iLbLTHsDpu0ZibpMtN79DrjWUnKu7xHzG9Cl0mVLT9muhWBswptMKfuoJXFcomjM6wxzlFYwqqZmFQAJFAmxPkb6pqmpHK1DHs7bOlZrpGHa_nMzuka-Xsr_7ZHtezd1DQi0gxUrPTKZAWTqY4WN0vJWKK-Os7JGkA4S2bY92pAqZ6pArwJRuQKQBRDqASCc98mo956TpUHLh6PeIs_VI7C4e_qgWY90qKy087NimucuY4AXOLDxcA1zsnCjgDNkjux28dKvyan2OrR55vn4MygojUGbuqrN2DBxxY9jpgwbU65VwWHDKmegRtQH3jaVuPpkfT0JD9ASJZgWHdb3uJON8Xf9-F48u3sYzch2EQx_uDw8ekxtpkNssSuQu2V4uztwTctV-Xx7Xi6dB8Cn5dtlC8gtxapef |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+analysis+using+long+short+term+memory+and+amended+dwarf+mongoose+optimization+algorithm&rft.jtitle=Scientific+reports&rft.au=Deng%2C+Haisheng&rft.au=Alkhayyat%2C+Ahmed&rft.date=2025-05-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-01834-1&rft.externalDocID=PMC12085641 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |