Motor imagery EEG signal classification using novel deep learning algorithm

Electroencephalography (EEG) signal classification plays a critical role in various biomedical and cognitive research applications, including neurological disorder detection and cognitive state monitoring. However, these technologies face challenges and exhibit reduced performances due to signal noi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 24539 - 24
Main Authors: Mathiyazhagan, Sathish, Devasena, M. S. Geetha
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 08.07.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electroencephalography (EEG) signal classification plays a critical role in various biomedical and cognitive research applications, including neurological disorder detection and cognitive state monitoring. However, these technologies face challenges and exhibit reduced performances due to signal noise, inter-subject variability, and real-time processing demands. Thus, to overcome these limitations a novel model is presented in this research work for motor imagery (MI) EEG signal classification. To begin, the preprocessing stage of the proposed approach includes an innovative hybrid approach that combines empirical mode decomposition (EMD) for extracting intrinsic signal modes. In addition to that, continuous wavelet transform (CWT) is used for multi-resolution analysis. For spatial feature enhancement the proposed approach utilizes source power coherence (SPoC) integrated with common spatial patterns (CSP) for robust feature extraction. For final feature classification, an adaptive deep belief network (ADBN) is proposed. To attain enhanced performance the parameters of the classifier network are optimized using the Far and near optimization (FNO) algorithm. This combined approach provides superior classification accuracy and adaptability to diverse conditions in EEG signal analysis. The evaluations of the proposed approach were conducted using benchmark BCI competition IV Dataset 2a and Physionet dataset. On the BCI dataset, the proposed approach achieves 95.7% accuracy, 96.2% recall, 95.9% precision, and 97.5% specificity. In addition, it delivers 94.1% accuracy, 94.0% recall, 93.6% precision, and 95.0% specificity on the PhysioNet dataset. With better results, the proposed model attained superior performance compared to existing methods such as CNN, LSTM, and BiLSTM algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-00824-7