A study of combination of autoencoders and boosted Big-Bang crunch theory architectures for Land-Use classification using remotely sensed imagery
The research introduced a new method for land-use classification by merging deep convolutional neural networks with a modified variant of a metaheuristic optimization technique. The methodology involved utilizing the VGG-19 model for feature extraction, dimensionality reduction, and a stacked autoen...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 15428 - 18 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
02.05.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!