Large language models open new way of AI-assisted molecule design for chemists

Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cheminformatics Ročník 17; číslo 1; s. 36 - 11
Hlavní autori: Ishida, Shoichi, Sato, Tomohiro, Honma, Teruki, Terayama, Kei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 24.03.2025
Springer Nature B.V
BMC
Predmet:
ISSN:1758-2946, 1758-2946
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
AbstractList Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS. Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS.Scientific contributionChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Abstract Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
ArticleNumber 36
Author Terayama, Kei
Ishida, Shoichi
Honma, Teruki
Sato, Tomohiro
Author_xml – sequence: 1
  givenname: Shoichi
  surname: Ishida
  fullname: Ishida, Shoichi
  email: ishida.sho.nm@yokohama-cu.ac.jp
  organization: Graduate School of Medical Life Science, Yokohama City University, MolNavi LLC
– sequence: 2
  givenname: Tomohiro
  surname: Sato
  fullname: Sato, Tomohiro
  organization: RIKEN Center for Integrative Medical Sciences
– sequence: 3
  givenname: Teruki
  surname: Honma
  fullname: Honma, Teruki
  organization: RIKEN Center for Integrative Medical Sciences
– sequence: 4
  givenname: Kei
  surname: Terayama
  fullname: Terayama, Kei
  email: terayama@yokohama-cu.ac.jp
  organization: Graduate School of Medical Life Science, Yokohama City University, MolNavi LLC, RIKEN Center for Advanced Intelligence Project, MDX Research Center for Element Strategy, Institute of Science Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40128788$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_wB1igSGzYpPgZ2ytUVTxGGsEG1pZj36QZZezBTlr13-OZtPSx6MpXvt85Orr3nqKjEAMg9J7gc0JU8zkTxiipMRU1xlrxWr1CJ0QKVVPNm6NH9TE6zXmDcSMklm_QMceEKqnUCfq5tqmHarShn20pttHDmKu4g1AFuKlu7G0Vu-piVduchzyBL8gIbh6h8pCHPlRdTJW7gm3p5rfodWfHDO_u3jP059vX35c_6vWv76vLi3XtBGdTraRgXnPpGVABstNWEd46gT21Wkvty4dqW89b7bSyrmk59856xzXlzit2hlaLr492Y3Zp2Np0a6IdzOEjpt7YNA1uBNN6QaQVrPFtx4VjGgulhfOYa0-ZZ8Xry-K1m9steAdhSnZ8Yvq0E4Yr08drQ4hmvFG4OHy6c0jx7wx5MmUYDsYyVYhzNoyosp9Gyj368Rm6iXMKZVYHSkomqSzUh8eR_me531sB1AK4FHNO0Bk3THYa4j7hMBqCzf5EzHIippyIOZyI2UvpM-m9-4sitohygUMP6SH2C6p_VgXNtw
CitedBy_id crossref_primary_10_1177_03331024251372117
crossref_primary_10_1021_acscatal_5c04238
Cites_doi 10.1145/3394486.3403104
10.1016/S0169-409X(96)00423-1
10.1038/s41586-023-06792-0
10.1038/s42003-023-05334-8
10.1038/s41573-021-00252-y
10.1021/acsmedchemlett.3c00041
10.48550/arXiv.2001.09382
10.1186/1758-2946-1-8
10.1021/acscentsci.7b00572
10.1002/wcms.1680
10.1039/D2DD00003B
10.1186/s13321-017-0235-x
10.1039/D0SC00982B
10.1021/jacs.2c13467
10.25080/Majora-92bf1922-00a
10.48550/arXiv.2303.03543
10.1021/acs.jcim.1c00203
10.1039/D1SC01050F
10.1080/14686996.2017.1401424
10.1186/s13321-024-00812-5
10.1126/sciadv.abj3906
10.1021/acscentsci.8b00213
10.1021/acscentsci.7b00512
10.48550/arXiv.2209.15408
10.1021/acs.jcim.1c00600
10.18653/v1/2023.acl-long.201
10.1021/acs.jchemed.3c01170
10.1039/D3DD00090G
10.3390/ijms24032651
10.1038/s42005-020-0338-y
10.48550/arXiv.2303.18223
10.1080/14686996.2022.2075240
10.48550/arXiv.2305.06488
10.1093/nar/gkv352
10.1021/acs.jcim.2c00787
10.1039/C8SC05372C
10.1038/s41587-024-02143-0
10.1021/acs.jcim.3c01702
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13321-025-00984-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 11
ExternalDocumentID oai_doaj_org_article_bd517a536dbf45c3905895cd049d23d3
PMC11934680
40128788
10_1186_s13321_025_00984_8
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  grantid: no.JP23nk0101111; no.JP22ama121023
  funderid: http://dx.doi.org/10.13039/100009619
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: JPMXP1122683430; JPMXP1122683430
  funderid: http://dx.doi.org/10.13039/501100001700
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: JPMXP1122683430
– fundername: Japan Agency for Medical Research and Development
  grantid: no.JP22ama121023
– fundername: Japan Agency for Medical Research and Development
  grantid: no.JP23nk0101111
GroupedDBID 0R~
29K
2WC
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
AASML
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RBZ
RNS
RPM
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-8753d947d3e25e7f9a814bc50d2a9979d9a88bbd4b9c98ac6b44dcadc4924cd83
IEDL.DBID C24
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450827300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-2946
IngestDate Fri Oct 03 12:44:53 EDT 2025
Tue Nov 04 02:03:16 EST 2025
Fri Sep 05 12:37:01 EDT 2025
Sat Oct 18 23:47:05 EDT 2025
Mon Jul 21 05:33:11 EDT 2025
Tue Nov 18 22:49:35 EST 2025
Sat Nov 29 08:06:36 EST 2025
Mon Jul 21 06:11:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-8753d947d3e25e7f9a814bc50d2a9979d9a88bbd4b9c98ac6b44dcadc4924cd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13321-025-00984-8
PMID 40128788
PQID 3180773727
PQPubID 54992
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bd517a536dbf45c3905895cd049d23d3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11934680
proquest_miscellaneous_3180986770
proquest_journals_3180773727
pubmed_primary_40128788
crossref_citationtrail_10_1186_s13321_025_00984_8
crossref_primary_10_1186_s13321_025_00984_8
springer_journals_10_1186_s13321_025_00984_8
PublicationCentury 2000
PublicationDate 2025-03-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-24
  day: 24
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: BMC
References 984_CR30
984_CR31
J Deb (984_CR32) 2024; 64
R Gómez-Bombarelli (984_CR15) 2018; 4
984_CR7
C Shi (984_CR17) 2020
984_CR38
984_CR39
984_CR37
984_CR34
X Yang (984_CR10) 2017; 18
V Bagal (984_CR13) 2021; 62
Lobentanzer S, Feng S, Consortium T B, Maier A, Wang C, Baumbach J, Krehl N, Ma Q, Saez-Rodriguez J (984_CR49) 2024
D Merkel (984_CR42) 2014; 2014
S Ishida (984_CR11) 2023; 13
984_CR29
O Dollar (984_CR12) 2021; 12
T Zubair (984_CR43) 2023; 24
P Ertl (984_CR35) 2009; 1
JH Jensen (984_CR22) 2019; 10
984_CR41
MJ Frisch (984_CR46) 2016
984_CR40
J Eberhardt (984_CR47) 2021; 61
M Sumita (984_CR1) 2018; 4
984_CR48
HH Loeffler (984_CR21) 2024; 16
MHS Segler (984_CR9) 2017; 4
M Davies (984_CR54) 2015; 43
M Sumita (984_CR4) 2022; 8
T Hasrod (984_CR33) 2024; 101
T Fujita (984_CR5) 2022; 23
K Terayama (984_CR44) 2020; 11
984_CR51
A Nigam (984_CR23) 2022; 1
984_CR16
984_CR14
984_CR56
CA Lipinski (984_CR36) 1997; 23
984_CR55
MM Attwood (984_CR45) 2021; 20
Y Murakami (984_CR25) 2023; 2
DM Anstine (984_CR26) 2023; 145
T Yoshizawa (984_CR24) 2022; 62
C Wang (984_CR52) 2021; 3
984_CR28
DA Boiko (984_CR27) 2023; 624
F Bao (984_CR19) 2023
S Kajita (984_CR2) 2020; 3
M Olivecrona (984_CR20) 2017; 9
WX Zhao (984_CR50) 2023
Y Zhang (984_CR3) 2021; 10
J Guan (984_CR18) 2023
K Abe (984_CR6) 2023; 6
A Bateman (984_CR53) 2022; 51
Y Ivanenkov (984_CR8) 2023; 14
References_xml – ident: 984_CR16
  doi: 10.1145/3394486.3403104
– ident: 984_CR34
– volume: 23
  start-page: 3
  year: 1997
  ident: 984_CR36
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(96)00423-1
– ident: 984_CR40
– ident: 984_CR28
– volume: 624
  start-page: 570
  year: 2023
  ident: 984_CR27
  publication-title: Nature
  doi: 10.1038/s41586-023-06792-0
– volume: 6
  start-page: 956
  year: 2023
  ident: 984_CR6
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-05334-8
– volume-title: Gaussian$$^{\sim }$$16 Revision C.01
  year: 2016
  ident: 984_CR46
– volume: 20
  start-page: 839
  year: 2021
  ident: 984_CR45
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-021-00252-y
– ident: 984_CR38
– volume: 14
  start-page: 901
  year: 2023
  ident: 984_CR8
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.3c00041
– year: 2020
  ident: 984_CR17
  publication-title: Int Conf Learn Represent
  doi: 10.48550/arXiv.2001.09382
– volume: 1
  start-page: 1
  year: 2009
  ident: 984_CR35
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-1-8
– volume: 4
  start-page: 268
  year: 2018
  ident: 984_CR15
  publication-title: ACS Central Sci
  doi: 10.1021/acscentsci.7b00572
– ident: 984_CR37
– volume: 13
  year: 2023
  ident: 984_CR11
  publication-title: WIREs Comput Mol Sci
  doi: 10.1002/wcms.1680
– volume: 1
  start-page: 390
  year: 2022
  ident: 984_CR23
  publication-title: Digital Discov
  doi: 10.1039/D2DD00003B
– volume: 9
  start-page: 1
  year: 2017
  ident: 984_CR20
  publication-title: J Cheminform
  doi: 10.1186/s13321-017-0235-x
– volume: 11
  start-page: 5959
  year: 2020
  ident: 984_CR44
  publication-title: Chem Sci
  doi: 10.1039/D0SC00982B
– volume: 145
  start-page: 8736
  year: 2023
  ident: 984_CR26
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c13467
– ident: 984_CR48
– ident: 984_CR55
  doi: 10.25080/Majora-92bf1922-00a
– year: 2023
  ident: 984_CR18
  publication-title: Eleventh Int Conf Learn Represent
  doi: 10.48550/arXiv.2303.03543
– volume: 61
  start-page: 3891
  year: 2021
  ident: 984_CR47
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00203
– volume: 12
  start-page: 8362
  year: 2021
  ident: 984_CR12
  publication-title: Chem Sci
  doi: 10.1039/D1SC01050F
– volume: 18
  start-page: 972
  year: 2017
  ident: 984_CR10
  publication-title: Sci Technol Adv Mater
  doi: 10.1080/14686996.2017.1401424
– volume: 51
  start-page: D523
  year: 2022
  ident: 984_CR53
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 20
  year: 2024
  ident: 984_CR21
  publication-title: J Cheminform
  doi: 10.1186/s13321-024-00812-5
– volume: 10
  start-page: 0051902
  issue: 1063/5
  year: 2021
  ident: 984_CR3
  publication-title: Appl Phys Lett
– volume: 8
  start-page: eabj3906
  year: 2022
  ident: 984_CR4
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abj3906
– volume: 4
  start-page: 1126
  year: 2018
  ident: 984_CR1
  publication-title: ACS Central Sci
  doi: 10.1021/acscentsci.8b00213
– volume: 4
  start-page: 120
  year: 2017
  ident: 984_CR9
  publication-title: ACS Central Sci
  doi: 10.1021/acscentsci.7b00512
– year: 2023
  ident: 984_CR19
  publication-title: Eleventh Int Conf Learn Represent
  doi: 10.48550/arXiv.2209.15408
– volume: 62
  start-page: 2064
  year: 2021
  ident: 984_CR13
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00600
– ident: 984_CR51
– ident: 984_CR30
  doi: 10.18653/v1/2023.acl-long.201
– volume: 101
  start-page: 653
  year: 2024
  ident: 984_CR33
  publication-title: J Chem Educ
  doi: 10.1021/acs.jchemed.3c01170
– ident: 984_CR56
– ident: 984_CR14
– ident: 984_CR31
– volume: 2
  start-page: 1347
  year: 2023
  ident: 984_CR25
  publication-title: Digital Discov
  doi: 10.1039/D3DD00090G
– ident: 984_CR41
– volume: 24
  start-page: 2651
  year: 2023
  ident: 984_CR43
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24032651
– ident: 984_CR29
– volume: 3
  start-page: 77
  year: 2020
  ident: 984_CR2
  publication-title: Commun Phys
  doi: 10.1038/s42005-020-0338-y
– year: 2023
  ident: 984_CR50
  publication-title: arXiv
  doi: 10.48550/arXiv.2303.18223
– volume: 2014
  start-page: 2
  issue: 239
  year: 2014
  ident: 984_CR42
  publication-title: Linux J
– volume: 23
  start-page: 352
  year: 2022
  ident: 984_CR5
  publication-title: Sci Technol Adv Mater
  doi: 10.1080/14686996.2022.2075240
– year: 2024
  ident: 984_CR49
  publication-title: arXiv
  doi: 10.48550/arXiv.2305.06488
– volume: 43
  start-page: W612
  year: 2015
  ident: 984_CR54
  publication-title: Nucleic Acids Rese
  doi: 10.1093/nar/gkv352
– volume: 62
  start-page: 5351
  year: 2022
  ident: 984_CR24
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.2c00787
– ident: 984_CR39
– volume: 10
  start-page: 3567
  year: 2019
  ident: 984_CR22
  publication-title: Chem Sci
  doi: 10.1039/C8SC05372C
– volume: 3
  start-page: 434
  year: 2021
  ident: 984_CR52
  publication-title: Proc Mach Learn Syst
– ident: 984_CR7
  doi: 10.1038/s41587-024-02143-0
– volume: 64
  start-page: 799
  year: 2024
  ident: 984_CR32
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.3c01702
SSID ssj0065707
Score 2.377175
Snippet Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional...
Abstract Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Antineoplastic drugs
Artificial intelligence
Chemistry
Chemistry and Materials Science
Chemists
Chromophores
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Design
Documentation and Information in Chemistry
Drug development
Growth factors
Improving Reproducibility and Reusability in the Journal of Cheminformatics
Large language models
Multiple objective analysis
Open source software
Skills
Software
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9ShHqR1vqxbZUI3jR0P5JNcqylRUEeHhR6C0kmwYLsK91Xpf99J8nu0-dHvXhbsrNhmEySmc3k9yPkFTheA-ayLDQgGdcxMNdAZLEWNkYInQefySbkYqHOz_XHn6i-Uk1YgQcuhjtyIBppRdeDi1x4TNGF0sIDRrbQdpBxPmup52SqrMGpnkPOV2RUfzRiJtZi2twKlgA0OVMb21BG6_9TiPl7peQvx6V5FzrbIQ-n8JEeF7V3yb0wPCLbJzNr2x5ZfEil3XT-DUkz081IE0kWxQiafrc3dBnp8XuGUXMaYkCRzJAbKORqDophLPWlx_Ex-Xx2-unkHZs4E5gXvFuxlH6A5hK60Iogo7aq4c6LGlqrtdSADco54E57razvHefgLXiOiZgH1T0hW8NyCM8IbUK65toF6J3jttfWcutdgi2I-NjwijSzCY2fAMUTr8VXkxML1ZtidoNmN9nsRlXk9fqbywKncaf02zQya8kEhZ0b0EHM5CDmXw5SkcN5XM00P0eDK1ktE0OPrMjL9Ws0bDousUNYXhcZneD-6oo8LW6w1oSnfV0q1FBtOMiGqptvhosvGb27wZCZ9wo7fTP70g-9_m6L_f9hiwPyoM2ToGMtPyRbq6vr8Jzc999WF-PVizyFbgHqMx8l
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbxUhECdaTfTi98faajDxpqS7C7vAqamNjSbmpQdNeiPAgG1iduvbV03_-zLs7mueH7142wBLgBlgBobfj5A34EQJyZdloQLJhI6BuQoii2VjY4TAPfhMNiEXC3V8rI-mA7dhCquc18S8UEPv8Yx8N-leKZFTRe6d_WDIGoW3qxOFxk1yC1ES6hy6dzSvxBjVIeeHMqrdHZI_VifnuW4YwmgKpjY2o4zZ_zdD8894yd8uTfNedHj_f3vxgNybrFC6P6rNQ3IjdI_InYOZ_O0xWXzGCHE6n2bSTJgzUOTaoskQp7_sBe0j3f_EkvGNmgKpSCbaDRRyUAhN1jD1Y43DE_L18MOXg49sol5gvhF8xdCLAS0k8FA3QUZtVSWcb0qordZSQ0pQzoFw2mtlfeuEAG_Bi-TPeVD8Kdnq-i48J7QK-FqWB2idE7bV1grrHaIfxPRZiYJUswyMn3DJkR7ju8n-iWrNKDeT5Gay3IwqyNv1P2cjKse1pd-jaNclEVE7J_TLb2aaoMZBU0nb8BZcFI3nGvkWGw_Jg4KaAy_IzixRM03zwVyJsyCv19lpYPHWxXahPx_LaEQNLAvybNSjdUsEmgdSpRaqDQ3baOpmTnd6kkHAq2R5i1alSt_NynjVrn-PxYvru7FN7tZ5fnBWix2ytVqeh5fktv-5Oh2Wr_LsugTi_C2A
  priority: 102
  providerName: ProQuest
Title Large language models open new way of AI-assisted molecule design for chemists
URI https://link.springer.com/article/10.1186/s13321-025-00984-8
https://www.ncbi.nlm.nih.gov/pubmed/40128788
https://www.proquest.com/docview/3180773727
https://www.proquest.com/docview/3180986770
https://pubmed.ncbi.nlm.nih.gov/PMC11934680
https://doaj.org/article/bd517a536dbf45c3905895cd049d23d3
Volume 17
WOSCitedRecordID wos001450827300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M7P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: KB.
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9QgECfenYm--P1RPTeY-KZoW6DA4-1mL17UTWM0WX0hwFC9xHTNdk_ji3-7QNs1q6eJvpAGBjKZDjADw_wQegSW5RB8WeILEISpxhNbQEOanJumAU8duAQ2IRYLuVyqengU1o3R7uOVZFqp07SW1bMueFNlcH1LTmISTEbkHjrghVQxkG8W3zj062-M5RDj85hz--1sQSlT_3nm5e9Rkr9claYd6Pjq__F-DV0ZLE581KvIdXTBtzfQpdkI9HYTLV7GaHA8nlziBI7T4YirhYPRjb-ab3jV4KMTEgztqBUQSBKorseQAkBwsHyx60fsbqG3x_M3s-dkgFkgjjO6IdFjAcUEUF9yLxplZMGs4zmURimhIFRIa4FZ5ZQ0rrKMgTPgWPDdHEh6G-23q9bfRbjw8WUs9VBZy0yljGHG2ZjpoAmfBctQMUpeuyEHeYTC-KSTLyIr3UtKB0npJCktM_R42-dzn4Hjr9TT-EO3lDF7dqpYrT_oYTJqC7wQhtMKbMO4oypiK3IHwVuCkgLN0OGoDnqY0p0Oi18uIqiPyNDDbXMQbLxhMa1fnfU0KmYIzDN0p9eeLScsmgJCBg7ljl7tsLrb0p5-TAm_i2Bls0qGQZ-M6vWTrz_L4t6_kd9Hl8ukoZSU7BDtb9Zn_gG66L5sTrv1BO2JpUilnKCD6XxRv56keTdJxxihfDF9Oomhs3Usv89DWfP3gbY-eVW_-wHZsC0E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58H4sFDASnMDqJnES-4BQKVRddbvqoUjl5NoeByqh3bLZUvVP8RvxOMlWy6O3HrhFiWM5zjeT-eLxfAAv0YoBBi7LfYIlF6ry3CZY8WqQm6pCnzl0UWyiHI_l4aHaX4Gf3V4YSqvsfGJ01Dh19I98I2BvUJKmSvnu5Dsn1ShaXe0kNBpY7Przs0DZ6rfDD-H9vkrT7Y8HWzu8VRXgLhfZnFOAjkqUmPk092WljEyEdfkAU6NUqTCckNaisMopaVxhhUBn0IlAVRzKLPR7DVYFgb0Hq_vDvf3Pne-nPJKy25oji406MMA00PU051S4U3C59PmLKgF_C23_zND8bZk2fv22b_1v83YbbrZxNttsDOMOrPjJXVjb6uTt7sF4RDnwrPtfy6IkUM1ITYwFqsHOzDmbVmxzyAO9IFvA0CRKCXuGMe2FhXifuabH-j58upLHeQC9yXTiHwFLPO0HzjwW1gpTKGOEcZbqO1ThMBF9SLp3rl1beZ0EQL7pyMBkoRuc6IATHXGiZR9eL-45aeqOXNr6PUFp0ZJqhscT09kX3bogbTFPSpNnBdpK5C5TpCiZOwwcEdMMsz6sdwjSrSOr9QV8-vBicTlMLK0rmYmfnjZtFNVFHPThYYPbxUgEBUClDCOUS4heGurylcnx11jmPAncQhQydPqmA__FuP49F48vf4znsLZzsDfSo-F49wncSKNtZjwV69Cbz079U7jufsyP69mz1rYZHF21WfwCU_ONww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQZQN78dAASPBCqzJw4ntBUKlZcSo1WgWIFVsXNvXoZXQpEymVP01vo5rJ5lqeHTXBbvIdizHOdf2sa_vIeQlWJ4AclnmUxCMq8ozm0LFqqQwVQU-d-Ci2ISYTOT-vpqukZ_9XZjgVtmPiXGghtqFPfIhYi8RQVNFDKvOLWK6M3p3_J0FBalw0trLabQQ2fVnp0jfmrfjHfzXr7Js9OHT9kfWKQwwV_B8wcJiHRQXkPus8KJSRqbcuiKBzCglFGCCtBa4VU5J40rLOTgDjiNtcSBzrPcKuSqQYwZ3wmnxpZ8FgkeJ6C_pyHLYIBfMkLhnBQshPDmTKxNh1Av42yL3T1_N3w5s4zw4uvU_9-BtcrNbfdOt1lzukDU_u0s2tnvRu3tkshc842m_i0ujUFBDg8YYRQJCT80ZrSu6NWZIOoKFABaJAsOeQnSGocgCqGtrbO6Tz5fyOQ_I-qye-UeEpj7cEs49lNZyUypjuHE2RH2o8DHlA5L2_1-7Lh57kAX5piMvk6VuMaMRMzpiRssBeb1857iNRnJh6fcBVsuSIZJ4TKjnX3U3MGkLRSpMkZdgK164XAWdycIBMkfIcsgHZLNHk-6Gt0afQ2lAXiyzsWPDaZOZ-fqkLaNCtMRkQB62GF62hIdlkZDYQrmC7pWmrubMjg5j8PMUGQcvJVb6pjeE83b9uy8eX_wZz8l1tAW9N57sPiE3smimOcv4JllfzE_8U3LN_VgcNfNn0cgpObhsm_gFp_CVJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+language+models+open+new+way+of+AI-assisted+molecule+design+for+chemists&rft.jtitle=Journal+of+cheminformatics&rft.au=Ishida%2C+Shoichi&rft.au=Sato%2C+Tomohiro&rft.au=Honma%2C+Teruki&rft.au=Terayama%2C+Kei&rft.date=2025-03-24&rft.pub=Springer+International+Publishing&rft.eissn=1758-2946&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs13321-025-00984-8&rft.externalDocID=10_1186_s13321_025_00984_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon