Large Scale 3D Morphable Models

We present large scale facial model (LSFM)—a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human populati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 126; číslo 2-4; s. 233 - 254
Hlavní autoři: Booth, James, Roussos, Anastasios, Ponniah, Allan, Dunaway, David, Zafeiriou, Stefanos
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2018
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present large scale facial model (LSFM)—a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human population. To build such a large model we introduce a novel fully automated and robust Morphable Model construction pipeline, informed by an evaluation of state-of-the-art dense correspondence techniques. The dataset that LSFM is trained on includes rich demographic information about each subject, allowing for the construction of not only a global 3DMM model but also models tailored for specific age, gender or ethnicity groups. We utilize the proposed model to perform age classification from 3D shape alone and to reconstruct noisy out-of-sample data in the low-dimensional model space. Furthermore, we perform a systematic analysis of the constructed 3DMM models that showcases their quality and descriptive power. The presented extensive qualitative and quantitative evaluations reveal that the proposed 3DMM achieves state-of-the-art results, outperforming existing models by a large margin. Finally, for the benefit of the research community, we make publicly available the source code of the proposed automatic 3DMM construction pipeline, as well as the constructed global 3DMM and a variety of bespoke models tailored by age, gender and ethnicity.
AbstractList We present large scale facial model (LSFM)-a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human population. To build such a large model we introduce a novel fully automated and robust Morphable Model construction pipeline, informed by an evaluation of state-of-the-art dense correspondence techniques. The dataset that LSFM is trained on includes rich demographic information about each subject, allowing for the construction of not only a global 3DMM model but also models tailored for specific age, gender or ethnicity groups. We utilize the proposed model to perform age classification from 3D shape alone and to reconstruct noisy out-of-sample data in the low-dimensional model space. Furthermore, we perform a systematic analysis of the constructed 3DMM models that showcases their quality and descriptive power. The presented extensive qualitative and quantitative evaluations reveal that the proposed 3DMM achieves state-of-the-art results, outperforming existing models by a large margin. Finally, for the benefit of the research community, we make publicly available the source code of the proposed automatic 3DMM construction pipeline, as well as the constructed global 3DMM and a variety of bespoke models tailored by age, gender and ethnicity.We present large scale facial model (LSFM)-a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human population. To build such a large model we introduce a novel fully automated and robust Morphable Model construction pipeline, informed by an evaluation of state-of-the-art dense correspondence techniques. The dataset that LSFM is trained on includes rich demographic information about each subject, allowing for the construction of not only a global 3DMM model but also models tailored for specific age, gender or ethnicity groups. We utilize the proposed model to perform age classification from 3D shape alone and to reconstruct noisy out-of-sample data in the low-dimensional model space. Furthermore, we perform a systematic analysis of the constructed 3DMM models that showcases their quality and descriptive power. The presented extensive qualitative and quantitative evaluations reveal that the proposed 3DMM achieves state-of-the-art results, outperforming existing models by a large margin. Finally, for the benefit of the research community, we make publicly available the source code of the proposed automatic 3DMM construction pipeline, as well as the constructed global 3DMM and a variety of bespoke models tailored by age, gender and ethnicity.
We present large scale facial model (LSFM)—a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human population. To build such a large model we introduce a novel fully automated and robust Morphable Model construction pipeline, informed by an evaluation of state-of-the-art dense correspondence techniques. The dataset that LSFM is trained on includes rich demographic information about each subject, allowing for the construction of not only a global 3DMM model but also models tailored for specific age, gender or ethnicity groups. We utilize the proposed model to perform age classification from 3D shape alone and to reconstruct noisy out-of-sample data in the low-dimensional model space. Furthermore, we perform a systematic analysis of the constructed 3DMM models that showcases their quality and descriptive power. The presented extensive qualitative and quantitative evaluations reveal that the proposed 3DMM achieves state-of-the-art results, outperforming existing models by a large margin. Finally, for the benefit of the research community, we make publicly available the source code of the proposed automatic 3DMM construction pipeline, as well as the constructed global 3DMM and a variety of bespoke models tailored by age, gender and ethnicity.
Audience Academic
Author Roussos, Anastasios
Booth, James
Dunaway, David
Ponniah, Allan
Zafeiriou, Stefanos
Author_xml – sequence: 1
  givenname: James
  orcidid: 0000-0003-2114-9595
  surname: Booth
  fullname: Booth, James
  email: james.booth@imperial.ac.uk
  organization: Imperial College London
– sequence: 2
  givenname: Anastasios
  surname: Roussos
  fullname: Roussos, Anastasios
  organization: Imperial College London, University of Exeter
– sequence: 3
  givenname: Allan
  surname: Ponniah
  fullname: Ponniah, Allan
  organization: Great Ormond Street Hospital
– sequence: 4
  givenname: David
  surname: Dunaway
  fullname: Dunaway, David
  organization: Great Ormond Street Hospital
– sequence: 5
  givenname: Stefanos
  surname: Zafeiriou
  fullname: Zafeiriou, Stefanos
  organization: Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31983806$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDVKx29Uf4Isu-KIPU2-SzdeLUOpXYYtg9TlksplpyuxkTWZE_713mFrdghJCOMk59-aec0KO-tQHQp5SOKUA6nWhlEleAVUVYlOpB2RBheIVXYM4IgswDCohDT0mJ6XcAADTjD8ix5wazTXIBXm-cbkNqyvvurDib1eXKe-vXY3gMm1DVx6Th43rSnhyey7J1_fvvpx_rDafPlycn20qL9Z8qCTUsKVQe2GYCdJzxRptJDBpgDHptPaKa--CorRmBr-kHTO1N4gNF5ovyZu57n6sd2HrQz9k19l9jjuXf9rkoj186eO1bdN3K43gBveSvLwtkNO3MZTB7mLxoetcH9JYLONryYGBmKgv7lFv0ph7HM8yAKnWCtCmJTmdWS1aY2PfJOzrcW3DLnoMool4fybY5CROjYJXBwLkDOHH0LqxFHtx9fmQ--zvce_m_B0MEuhM8DmVkkNzR6Fgp_DtHL7F8CdsrEKNuqfxcXBDTJNjsfuvks3Kgl36NuQ_jvxb9AthIb0G
CitedBy_id crossref_primary_10_1109_TPAMI_2021_3138762
crossref_primary_10_1145_3450626_3459806
crossref_primary_10_1016_j_prosdent_2023_02_019
crossref_primary_10_1016_j_bjps_2020_10_017
crossref_primary_10_1016_j_patcog_2022_108971
crossref_primary_10_1109_TIP_2025_3563762
crossref_primary_10_1007_s00371_025_03914_9
crossref_primary_10_1097_SCS_0000000000007875
crossref_primary_10_1109_TVCG_2023_3284500
crossref_primary_10_3390_app11188588
crossref_primary_10_1007_s00170_024_13876_2
crossref_primary_10_1097_SCS_0000000000007632
crossref_primary_10_1109_TPAMI_2021_3090942
crossref_primary_10_1093_humrep_dead006
crossref_primary_10_1002_aisy_202400159
crossref_primary_10_1016_j_inffus_2024_102869
crossref_primary_10_1145_3476576_3476645
crossref_primary_10_1016_j_apergo_2022_103933
crossref_primary_10_1007_s11263_020_01304_3
crossref_primary_10_1145_3197517_3201283
crossref_primary_10_32604_cmc_2023_035344
crossref_primary_10_1109_ACCESS_2021_3064179
crossref_primary_10_4018_IJCPS_314572
crossref_primary_10_1145_3395208
crossref_primary_10_1109_ACCESS_2023_3255099
crossref_primary_10_1016_j_dsp_2022_103628
crossref_primary_10_1016_j_ins_2021_09_024
crossref_primary_10_1109_TMM_2019_2933338
crossref_primary_10_1002_cav_2028
crossref_primary_10_1016_j_dsp_2025_104986
crossref_primary_10_1016_j_cag_2021_06_004
crossref_primary_10_1007_s11263_022_01730_5
crossref_primary_10_1016_j_cad_2023_103483
crossref_primary_10_1016_j_imavis_2021_104119
crossref_primary_10_1097_PRS_0000000000011831
crossref_primary_10_1109_TVCG_2023_3323578
crossref_primary_10_1038_s41598_021_02411_y
crossref_primary_10_3390_ani13030385
crossref_primary_10_1016_j_patrec_2019_09_026
crossref_primary_10_1016_j_neucom_2024_128168
crossref_primary_10_1109_TCSVT_2023_3288903
crossref_primary_10_1145_3272127_3275075
crossref_primary_10_1109_ACCESS_2020_3031886
crossref_primary_10_1111_cgf_70170
crossref_primary_10_1016_j_bonr_2022_101528
crossref_primary_10_1186_s13638_020_01760_y
crossref_primary_10_1002_cav_2044
crossref_primary_10_1007_s00381_021_05330_5
crossref_primary_10_1109_TAFFC_2022_3182342
crossref_primary_10_1527_tjsai_40_4_AG25_C
crossref_primary_10_1007_s11263_019_01260_7
crossref_primary_10_1145_3397765
crossref_primary_10_1145_3592093
crossref_primary_10_1016_j_jbi_2022_104121
crossref_primary_10_1007_s00371_021_02129_y
crossref_primary_10_3390_ani13071179
crossref_primary_10_1007_s00371_024_03473_5
crossref_primary_10_1109_TPAMI_2023_3253243
crossref_primary_10_1109_ACCESS_2020_2979518
crossref_primary_10_1007_s10489_023_05094_2
crossref_primary_10_1016_j_cag_2023_12_010
crossref_primary_10_1016_j_asoc_2024_112260
crossref_primary_10_1007_s10044_021_01012_9
crossref_primary_10_1016_j_engappai_2022_104669
crossref_primary_10_1109_TMM_2024_3521835
crossref_primary_10_1007_s11263_018_1134_y
crossref_primary_10_1016_j_eswa_2023_119678
crossref_primary_10_1145_3550454_3555494
crossref_primary_10_1016_j_artmed_2022_102425
crossref_primary_10_1016_j_jcms_2021_02_020
crossref_primary_10_1109_JSTSP_2018_2877108
crossref_primary_10_1007_s11831_021_09705_4
crossref_primary_10_1109_TNNLS_2022_3190068
crossref_primary_10_1016_j_cviu_2021_103244
crossref_primary_10_1109_ACCESS_2024_3396632
crossref_primary_10_1109_TIP_2021_3065798
crossref_primary_10_1007_s10044_022_01060_9
crossref_primary_10_1016_j_neucom_2021_06_023
crossref_primary_10_1109_TPAMI_2024_3480151
crossref_primary_10_1016_j_cad_2022_103271
crossref_primary_10_1016_j_cviu_2022_103384
crossref_primary_10_1109_ACCESS_2022_3193386
crossref_primary_10_1097_PRS_0000000000010331
crossref_primary_10_1109_JBHI_2022_3164848
crossref_primary_10_1016_j_displa_2021_102063
crossref_primary_10_1016_j_prosdent_2024_03_006
crossref_primary_10_1016_j_displa_2024_102725
crossref_primary_10_1016_j_jcms_2023_11_006
crossref_primary_10_1007_s00371_025_04068_4
crossref_primary_10_1038_s41598_019_42533_y
crossref_primary_10_1016_j_cad_2025_103888
crossref_primary_10_1111_cgf_14071
crossref_primary_10_4103_jpn_JPN_48_22
crossref_primary_10_1007_s11548_023_02858_6
crossref_primary_10_1109_TCSVT_2024_3386671
crossref_primary_10_1007_s00371_024_03319_0
crossref_primary_10_1016_j_prosdent_2025_03_002
crossref_primary_10_1016_j_sigpro_2020_107755
crossref_primary_10_1016_j_cag_2024_104096
crossref_primary_10_1007_s00784_023_05076_1
crossref_primary_10_1111_cgf_14639
crossref_primary_10_1038_s41598_019_49506_1
crossref_primary_10_1007_s11042_020_09147_3
crossref_primary_10_1007_s11042_020_09189_7
crossref_primary_10_1109_ACCESS_2024_3381975
crossref_primary_10_1109_TPAMI_2018_2832138
crossref_primary_10_1007_s11263_023_01870_2
crossref_primary_10_1007_s11263_021_01494_4
crossref_primary_10_1109_TVCG_2021_3126659
crossref_primary_10_1016_j_patrec_2022_12_027
crossref_primary_10_1109_TCSVT_2021_3136589
crossref_primary_10_1111_cgf_14760
crossref_primary_10_1109_TMM_2019_2903724
crossref_primary_10_1111_cgf_14762
crossref_primary_10_3390_jimaging3040055
crossref_primary_10_1145_3306346_3323028
crossref_primary_10_1145_3337067
crossref_primary_10_1007_s11263_023_01825_7
crossref_primary_10_3390_s20226554
crossref_primary_10_1109_LSP_2023_3238908
crossref_primary_10_1016_j_ergon_2022_103321
crossref_primary_10_1089_fpsam_2023_0030
Cites_doi 10.1109/ICCV.2013.404
10.1109/TPAMI.2012.206
10.1109/CVPR.2009.5206522
10.1145/311535.311556
10.1109/34.927467
10.1109/AFGR.2008.4813376
10.1016/j.cviu.2014.05.005
10.1109/TPAMI.2011.275
10.1007/978-3-642-03798-6_24
10.1145/1186822.1073209
10.1109/CVPR.2007.383165
10.1109/ICIP.2014.7025947
10.1007/s00138-013-0579-9
10.1109/AVSS.2009.58
10.1007/978-3-319-10590-1_20
10.1109/ICCVW.2013.59
10.1002/humu.22054
10.1109/CVPR.2011.5995602
10.1007/978-3-642-03061-1_2
10.1109/TPAMI.2003.1227983
10.5220/0005669500790086
10.1109/ICIP.2014.7025044
10.1016/j.cviu.2014.06.013
10.1109/ICCV.2015.411
10.1109/ICCV.2011.6126510
10.1007/s11263-009-0275-4
10.1109/CVPR.2015.7299095
10.1109/34.24792
10.1145/2647868.2654890
10.1109/CRV.2011.53
10.1007/s11263-009-0300-7
10.1016/j.jcms.2015.02.005
10.1016/j.neucom.2014.04.089
ContentType Journal Article
Copyright The Author(s) 2017
The Author(s) 2017.
COPYRIGHT 2018 Springer
International Journal of Computer Vision is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: The Author(s) 2017.
– notice: COPYRIGHT 2018 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
7X8
5PM
DOI 10.1007/s11263-017-1009-7
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 254
ExternalDocumentID PMC6953995
A528380929
31983806
10_1007_s11263_017_1009_7
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/J017787/1; EP/N007743/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: DTA
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: ;
  grantid: DTA
– fundername: ;
  grantid: EP/J017787/1; EP/N007743/1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
NPM
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-60b0d10bc5929e6c372f89602690226a88c738cae711b296918a29bc971193583
IEDL.DBID K7-
ISICitedReferencesCount 230
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425619100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Tue Nov 04 02:02:49 EST 2025
Thu Oct 02 09:54:05 EDT 2025
Tue Nov 04 22:56:54 EST 2025
Sat Nov 29 09:51:27 EST 2025
Wed Nov 26 10:06:29 EST 2025
Thu Apr 03 06:59:51 EDT 2025
Tue Nov 18 20:15:33 EST 2025
Sat Nov 29 06:42:27 EST 2025
Fri Feb 21 02:35:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-4
Keywords 3D morphable models
Demographic-specific models
Dense correspondence
Language English
License The Author(s) 2017.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-60b0d10bc5929e6c372f89602690226a88c738cae711b296918a29bc971193583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Edmond Boyer, Cordelia Schmid.
ORCID 0000-0003-2114-9595
OpenAccessLink https://link.springer.com/10.1007/s11263-017-1009-7
PMID 31983806
PQID 2006747082
PQPubID 1456341
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6953995
proquest_miscellaneous_2346302055
proquest_journals_2006747082
gale_infotracacademiconefile_A528380929
gale_incontextgauss_ISR_A528380929
pubmed_primary_31983806
crossref_primary_10_1007_s11263_017_1009_7
crossref_citationtrail_10_1007_s11263_017_1009_7
springer_journals_10_1007_s11263_017_1009_7
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationTitleAlternate Int J Comput Vis
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Bolkart, T., Brunton, A., Salazar, A., & Wuhrer, S. (2013). Website of statistical 3d shape models of human faces. http://statistical-face-models.mmci.uni-saarland.de/.
Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, W. P., Christmas, W., Rätsch, M., & Kittler, J. (2016). A multiresolution 3d morphable face model and fitting framework. In: Proceedings of the 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). Website of basel face model. http://faces.cs.unibas.ch/bfm/.
Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3d faces. In: IEEE International Conference on Computer Vision (ICCV).
Amberg, B., Knothe, R., & Vetter, T. (2008). Expression invariant 3D face recognition with a morphable model. In 8th IEEE international conference on automatic face & gesture recognition FG’08, pp. 1–6. IEEE.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255. IEEE.
SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9
Van der MaatenLHintonGVisualizing data using t-SNEJournal of Machine Learning Research200892579–2605851225.68219
BolkartTWuhrerS3D faces in motion: Fully automatic registration and statistical analysisComputer Vision and Image Understanding201513110011510.1016/j.cviu.2014.06.013
Brunton, A., & Bolkart, T., & Wuhrer, S. (2014). Multilinear wavelets: A statistical shape space for human faces. In: European Conference on Computer Vision (ECCV), pp. 297–312. Springer.
Cosker, D., Krumhuber, E., & Hilton, A. (2011). A facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modeling. In: Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 2296–2303. IEEE.
Antonakos, E., Alabort-i Medina, J., Tzimiropoulos, G., & Zafeiriou, S. (2014). Hog active appearance models. In IEEE international conference on image processing (ICIP), pp. 224–228. IEEE.
DuanFHuangDTianYLuKWuZZhouM3d face reconstruction from skull by regression modeling in shape parameter spacesNeurocomputing201515167468210.1016/j.neucom.2014.04.089
Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid icp algorithms for surface registration. In IEEE conference on computer vision and pattern recognition CVPR’07, pp. 1–8. IEEE.
DaviesRTaylorCStatistical models of shape: Optimisation and evaluation2008BerlinSpringer1161.68761
KingDEDlib-ml: A machine learning toolkitJournal of Machine Learning Research20091017551758
BlanzVVetterTFace recognition based on fitting a 3d morphable modelPattern Analysis and Machine Intelligence, IEEE Transactions on20032591063107410.1109/TPAMI.2003.1227983
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co.
Alabort-i Medina, J., Antonakos, E., Booth, J., Snape, P., & Zafeiriou, S. (2014). Menpo: A comprehensive platform for parametric image alignment and visual deformable models. In Proceedings of the ACM international conference on multimedia, MM ’14, pp. 679–682. ACM, New York, NY, USA. doi:10.1145/2647868.2654890.
Zulqarnain Gilani, S., Shafait, F., & Mian, A. (2015). Shape-based automatic detection of a large number of 3D facial landmarks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4639–4648.
BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on pattern analysis and machine intelligence198911656758510.1109/34.247920691.65002
Jain, V., & Learned-Miller, E. G. (2010). Fddb: A benchmark for face detection in unconstrained settings. UMass Amherst Technical Report.
Kemelmacher-Shlizerman, I. (2013). Internet based morphable model. In: 2013 IEEE international conference on computer vision (ICCV), pp. 3256–3263. IEEE.
StaalFCPonniahAJAngulliaFRuffCKoudstaalMJDunawayDDescribing Crouzon and Pfeiffer syndrome based on principal component analysisJournal of Cranio-Maxillofacial Surgery201543452853610.1016/j.jcms.2015.02.005
Vlasic, D., Brand, M., Pfister, H., & Popović, J. (2005). Face transfer with multilinear models. In ACM transactions on graphics (TOG) (Vol. 24, pp. 426–433). ACM.
Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L1 optical flow. In Statistical and geometrical approaches to visual motion analysis. Lecture Notes in Computer Science (pp. 23–45). Berlin: Springer.
TodericiGOmalleySMPassalisGTheoharisTKakadiarisIAEthnicity-and gender-based subject retrieval using 3-D face-recognition techniquesInternational Journal of Computer Vision2010892–338239110.1007/s11263-009-0300-7
Belhumeur, P. N., Jacobs, D.W., Kriegman, D., & Kumar, N. (2011). Localizing parts of faces using a consensus of exemplars. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 545–552. IEEE.
Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In: Canadian Conference on Computer and Robot Vision (CRV), pp. 347–354.
Patel, A., & Smith, W. A. (2009). 3d morphable face models revisited. In 2009 IEEE conference on computer vision and pattern recognition, CVPR, pp. 1327–1334. IEEE.
EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInternational journal of computer vision201088230333810.1007/s11263-009-0275-4
HeoJSavvidesMGender and ethnicity specific generic elastic models from a single 2d image for novel 2d pose face synthesis and recognitionPattern Analysis and Machine Intelligence, IEEE Transactions on201234122341235010.1109/TPAMI.2011.275
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300 faces in-the-wild challenge: The first facial landmark localization challenge. In 2013 IEEE international conference on computer vision workshops (ICCVW), pp. 397–403. IEEE.
AldrianOSmithWAInverse rendering of faces with a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20133551080109310.1109/TPAMI.2012.206
HammondPSuttieMLarge-scale objective phenotyping of 3d facial morphologyHuman mutation201233581782510.1002/humu.22054
Paysan, P., Lüthi, M., Albrecht, T., Lerch, A., Amberg, B., Santini, F., & Vetter, T. (2009). Face reconstruction from skull shapes and physical attributes. In DAGM-symposium, pp. 232–241. Springer.
Booth, J., & Zafeiriou, S. (2014). Optimal uv spaces for facial morphable model construction. In: Image Processing (ICIP), 2014 IEEE International Conference on, pp. 4672–4676. IEEE.
BruntonASalazarABolkartTWuhrerSReview of statistical shape spaces for 3d data with comparative analysis for human facesComputer Vision and Image Understanding201412811710.1016/j.cviu.2014.05.005
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, AVSS’09, pp. 296–301. IEEE.
CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on pattern analysis and machine intelligence200123668168510.1109/34.927467
T Bolkart (1009_CR10) 2015; 131
R Davies (1009_CR19) 2008
A Brunton (1009_CR16) 2014; 128
M Everingham (1009_CR22) 2010; 88
1009_CR38
FL Bookstein (1009_CR12) 1989; 11
1009_CR15
F Duan (1009_CR21) 2015; 151
1009_CR14
1009_CR13
1009_CR18
1009_CR39
1009_CR30
DE King (1009_CR28) 2009; 10
1009_CR11
1009_CR33
1009_CR32
1009_CR31
TF Cootes (1009_CR17) 2001; 23
L Maaten Van der (1009_CR37) 2008; 9
P Hammond (1009_CR23) 2012; 33
G Toderici (1009_CR36) 2010; 89
FC Staal (1009_CR35) 2015; 43
O Aldrian (1009_CR2) 2013; 35
1009_CR6
1009_CR7
1009_CR9
1009_CR27
1009_CR3
1009_CR26
1009_CR4
1009_CR25
1009_CR5
J Heo (1009_CR24) 2012; 34
1009_CR29
1009_CR1
1009_CR40
A Salazar (1009_CR34) 2014; 25
V Blanz (1009_CR8) 2003; 25
1009_CR20
References_xml – reference: BolkartTWuhrerS3D faces in motion: Fully automatic registration and statistical analysisComputer Vision and Image Understanding201513110011510.1016/j.cviu.2014.06.013
– reference: Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). Website of basel face model. http://faces.cs.unibas.ch/bfm/.
– reference: KingDEDlib-ml: A machine learning toolkitJournal of Machine Learning Research20091017551758
– reference: Patel, A., & Smith, W. A. (2009). 3d morphable face models revisited. In 2009 IEEE conference on computer vision and pattern recognition, CVPR, pp. 1327–1334. IEEE.
– reference: Vlasic, D., Brand, M., Pfister, H., & Popović, J. (2005). Face transfer with multilinear models. In ACM transactions on graphics (TOG) (Vol. 24, pp. 426–433). ACM.
– reference: AldrianOSmithWAInverse rendering of faces with a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine Intelligence20133551080109310.1109/TPAMI.2012.206
– reference: DuanFHuangDTianYLuKWuZZhouM3d face reconstruction from skull by regression modeling in shape parameter spacesNeurocomputing201515167468210.1016/j.neucom.2014.04.089
– reference: TodericiGOmalleySMPassalisGTheoharisTKakadiarisIAEthnicity-and gender-based subject retrieval using 3-D face-recognition techniquesInternational Journal of Computer Vision2010892–338239110.1007/s11263-009-0300-7
– reference: BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on pattern analysis and machine intelligence198911656758510.1109/34.247920691.65002
– reference: Brunton, A., Lang, J., Dubois, E., & Shu, C. (2011). Wavelet model-based stereo for fast, robust face reconstruction. In: Canadian Conference on Computer and Robot Vision (CRV), pp. 347–354.
– reference: Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In Sixth IEEE international conference on advanced video and signal based surveillance, AVSS’09, pp. 296–301. IEEE.
– reference: BruntonASalazarABolkartTWuhrerSReview of statistical shape spaces for 3d data with comparative analysis for human facesComputer Vision and Image Understanding201412811710.1016/j.cviu.2014.05.005
– reference: Amberg, B., Knothe, R., & Vetter, T. (2008). Expression invariant 3D face recognition with a morphable model. In 8th IEEE international conference on automatic face & gesture recognition FG’08, pp. 1–6. IEEE.
– reference: Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid icp algorithms for surface registration. In IEEE conference on computer vision and pattern recognition CVPR’07, pp. 1–8. IEEE.
– reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co.
– reference: Cosker, D., Krumhuber, E., & Hilton, A. (2011). A facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modeling. In: Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 2296–2303. IEEE.
– reference: HammondPSuttieMLarge-scale objective phenotyping of 3d facial morphologyHuman mutation201233581782510.1002/humu.22054
– reference: HeoJSavvidesMGender and ethnicity specific generic elastic models from a single 2d image for novel 2d pose face synthesis and recognitionPattern Analysis and Machine Intelligence, IEEE Transactions on201234122341235010.1109/TPAMI.2011.275
– reference: Bolkart, T., Brunton, A., Salazar, A., & Wuhrer, S. (2013). Website of statistical 3d shape models of human faces. http://statistical-face-models.mmci.uni-saarland.de/.
– reference: Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3d faces. In: IEEE International Conference on Computer Vision (ICCV).
– reference: Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300 faces in-the-wild challenge: The first facial landmark localization challenge. In 2013 IEEE international conference on computer vision workshops (ICCVW), pp. 397–403. IEEE.
– reference: StaalFCPonniahAJAngulliaFRuffCKoudstaalMJDunawayDDescribing Crouzon and Pfeiffer syndrome based on principal component analysisJournal of Cranio-Maxillofacial Surgery201543452853610.1016/j.jcms.2015.02.005
– reference: SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications201425485987910.1007/s00138-013-0579-9
– reference: BlanzVVetterTFace recognition based on fitting a 3d morphable modelPattern Analysis and Machine Intelligence, IEEE Transactions on20032591063107410.1109/TPAMI.2003.1227983
– reference: Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, W. P., Christmas, W., Rätsch, M., & Kittler, J. (2016). A multiresolution 3d morphable face model and fitting framework. In: Proceedings of the 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
– reference: Alabort-i Medina, J., Antonakos, E., Booth, J., Snape, P., & Zafeiriou, S. (2014). Menpo: A comprehensive platform for parametric image alignment and visual deformable models. In Proceedings of the ACM international conference on multimedia, MM ’14, pp. 679–682. ACM, New York, NY, USA. doi:10.1145/2647868.2654890.
– reference: Van der MaatenLHintonGVisualizing data using t-SNEJournal of Machine Learning Research200892579–2605851225.68219
– reference: Brunton, A., & Bolkart, T., & Wuhrer, S. (2014). Multilinear wavelets: A statistical shape space for human faces. In: European Conference on Computer Vision (ECCV), pp. 297–312. Springer.
– reference: Zulqarnain Gilani, S., Shafait, F., & Mian, A. (2015). Shape-based automatic detection of a large number of 3D facial landmarks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4639–4648.
– reference: Belhumeur, P. N., Jacobs, D.W., Kriegman, D., & Kumar, N. (2011). Localizing parts of faces using a consensus of exemplars. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 545–552. IEEE.
– reference: Booth, J., & Zafeiriou, S. (2014). Optimal uv spaces for facial morphable model construction. In: Image Processing (ICIP), 2014 IEEE International Conference on, pp. 4672–4676. IEEE.
– reference: DaviesRTaylorCStatistical models of shape: Optimisation and evaluation2008BerlinSpringer1161.68761
– reference: Kemelmacher-Shlizerman, I. (2013). Internet based morphable model. In: 2013 IEEE international conference on computer vision (ICCV), pp. 3256–3263. IEEE.
– reference: Paysan, P., Lüthi, M., Albrecht, T., Lerch, A., Amberg, B., Santini, F., & Vetter, T. (2009). Face reconstruction from skull shapes and physical attributes. In DAGM-symposium, pp. 232–241. Springer.
– reference: Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L1 optical flow. In Statistical and geometrical approaches to visual motion analysis. Lecture Notes in Computer Science (pp. 23–45). Berlin: Springer.
– reference: Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255. IEEE.
– reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Transactions on pattern analysis and machine intelligence200123668168510.1109/34.927467
– reference: Antonakos, E., Alabort-i Medina, J., Tzimiropoulos, G., & Zafeiriou, S. (2014). Hog active appearance models. In IEEE international conference on image processing (ICIP), pp. 224–228. IEEE.
– reference: Jain, V., & Learned-Miller, E. G. (2010). Fddb: A benchmark for face detection in unconstrained settings. UMass Amherst Technical Report.
– reference: EveringhamMVan GoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInternational journal of computer vision201088230333810.1007/s11263-009-0275-4
– ident: 1009_CR27
  doi: 10.1109/ICCV.2013.404
– volume: 35
  start-page: 1080
  issue: 5
  year: 2013
  ident: 1009_CR2
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.206
– ident: 1009_CR29
  doi: 10.1109/CVPR.2009.5206522
– ident: 1009_CR7
  doi: 10.1145/311535.311556
– ident: 1009_CR9
– ident: 1009_CR26
– volume: 23
  start-page: 681
  issue: 6
  year: 2001
  ident: 1009_CR17
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
  doi: 10.1109/34.927467
– ident: 1009_CR3
  doi: 10.1109/AFGR.2008.4813376
– volume: 128
  start-page: 1
  year: 2014
  ident: 1009_CR16
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2014.05.005
– volume: 34
  start-page: 2341
  issue: 12
  year: 2012
  ident: 1009_CR24
  publication-title: Pattern Analysis and Machine Intelligence, IEEE Transactions on
  doi: 10.1109/TPAMI.2011.275
– ident: 1009_CR32
  doi: 10.1007/978-3-642-03798-6_24
– ident: 1009_CR38
  doi: 10.1145/1186822.1073209
– ident: 1009_CR4
  doi: 10.1109/CVPR.2007.383165
– ident: 1009_CR13
  doi: 10.1109/ICIP.2014.7025947
– volume: 25
  start-page: 859
  issue: 4
  year: 2014
  ident: 1009_CR34
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-013-0579-9
– ident: 1009_CR30
  doi: 10.1109/AVSS.2009.58
– ident: 1009_CR14
  doi: 10.1007/978-3-319-10590-1_20
– ident: 1009_CR33
  doi: 10.1109/ICCVW.2013.59
– volume: 33
  start-page: 817
  issue: 5
  year: 2012
  ident: 1009_CR23
  publication-title: Human mutation
  doi: 10.1002/humu.22054
– ident: 1009_CR6
  doi: 10.1109/CVPR.2011.5995602
– ident: 1009_CR39
  doi: 10.1007/978-3-642-03061-1_2
– volume: 25
  start-page: 1063
  issue: 9
  year: 2003
  ident: 1009_CR8
  publication-title: Pattern Analysis and Machine Intelligence, IEEE Transactions on
  doi: 10.1109/TPAMI.2003.1227983
– volume-title: Statistical models of shape: Optimisation and evaluation
  year: 2008
  ident: 1009_CR19
– ident: 1009_CR25
  doi: 10.5220/0005669500790086
– ident: 1009_CR5
  doi: 10.1109/ICIP.2014.7025044
– volume: 131
  start-page: 100
  year: 2015
  ident: 1009_CR10
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2014.06.013
– ident: 1009_CR11
  doi: 10.1109/ICCV.2015.411
– ident: 1009_CR18
  doi: 10.1109/ICCV.2011.6126510
– ident: 1009_CR20
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1009_CR22
  publication-title: International journal of computer vision
  doi: 10.1007/s11263-009-0275-4
– ident: 1009_CR40
  doi: 10.1109/CVPR.2015.7299095
– volume: 9
  start-page: 85
  issue: 2579–2605
  year: 2008
  ident: 1009_CR37
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 567
  issue: 6
  year: 1989
  ident: 1009_CR12
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
  doi: 10.1109/34.24792
– ident: 1009_CR1
  doi: 10.1145/2647868.2654890
– ident: 1009_CR15
  doi: 10.1109/CRV.2011.53
– volume: 89
  start-page: 382
  issue: 2–3
  year: 2010
  ident: 1009_CR36
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0300-7
– volume: 10
  start-page: 1755
  year: 2009
  ident: 1009_CR28
  publication-title: Journal of Machine Learning Research
– ident: 1009_CR31
– volume: 43
  start-page: 528
  issue: 4
  year: 2015
  ident: 1009_CR35
  publication-title: Journal of Cranio-Maxillofacial Surgery
  doi: 10.1016/j.jcms.2015.02.005
– volume: 151
  start-page: 674
  year: 2015
  ident: 1009_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.089
SSID ssj0002823
Score 2.6569204
Snippet We present large scale facial model (LSFM)—a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our...
We present large scale facial model (LSFM)-a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms 3-D technology
Age
Artificial Intelligence
Automation
Computer Imaging
Computer Science
Demographics
Ethnicity
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Pipeline construction
Population (statistical)
Scale (ratio)
State of the art
Three dimensional models
Vision
Well construction
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6dh_2ZX3sUfc1twwGGwbbsvX4WPqgha6UZBv9ZiRFXgvBGXGyv393tuwsYRusXwyyz4p0Pt2dcqffAbwXzuiMxzoq3YhFWZmbyKRmFKnSShdbMrENZP6NuL2V9_fqzp_jrrts9y4k2WjqxWG3JKWYI2rVhP7RF89gA62dpNU4GH7r1S_uIdr68bgvyrlKulDmn7pYMkarKvk3m7SaL7kSNG1s0eXmk2axBS-96xmetrKyDWuu2oFN74aGfpHXeKur9NDdewXvbihhHNs49pCdh58n-Hno0FVItdTG9Wv4ennx5ewq8qUVIptnbBbx2MSjJDY2R_fIcctEWkpF5agUGnWupbSCSaudSBKTKmSj1KkyVmGbIqfsDaxXk8rtQjhCp1CVmUul1hnDa8ZRcbE8M1bE3OUBxB2PC-txx6n8xbhYICYTTwrkCbVVIQL42L_yowXd-BfxCX24gsAsKsqW-a7ndV1cDwfFKSHXSJQEFcAHT1RO8Met9ocPcAqEf7VEedAJQOGXc021Ojnuu9BdCuC4f4wLkaIrunKTOdKwjDN0vnOc8dtWXvrBo56j7nkAYkmSegIC-V5-Uj0-NGDfXBF2MPb5qZOnxbD-ypO9_6LehxfoBso2H-kA1mfTuTuE5_bn7LGeHjWr6xf2bBln
  priority: 102
  providerName: Springer Nature
Title Large Scale 3D Morphable Models
URI https://link.springer.com/article/10.1007/s11263-017-1009-7
https://www.ncbi.nlm.nih.gov/pubmed/31983806
https://www.proquest.com/docview/2006747082
https://www.proquest.com/docview/2346302055
https://pubmed.ncbi.nlm.nih.gov/PMC6953995
Volume 126
WOSCitedRecordID wos000425619100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9NAzGIbD7xsfBMYJSAkJFBEkkvu4wmNsQnEVlUdHx0v0eVyGZOmZCwtvx87uaS0EnvhxdIlbhqffbYv9tkAL4XNdcJDHZS2YEFSpnmQx3kRqNJIGxoysW3J_CMxHsvZTE3cB7fGpVX2OrFV1EVt6Bv5W9r6ouuLFuvd5a-AukZRdNW10NiArSiOI5LzzyIYNDFuJ7pW8rhFSrmK-qhme3QuiimCiTo6oviAWLFL69r5L_O0njq5Fj9tzdLhzv8SdBu2nUPq73USdAdu2Oou7Djn1HdLv8FLff-H_to9eHZEaeQ4RjJ89sE_rpFpdBTLpw5rF819-Hp48GX_Y-AaLgQmTdg84GEeFlGYmxSdJssNE3EpFTWpUmjquZbSCCaNtiKK8ljhjEodq9woHFM8lT2Azaqu7CPwC3QVVZnYWGqdMIQJR3XG0iQ3IuQ29SDspzszrho5NcW4yJZ1lIlDGXKIxioTHrwefnLZleK4DvkF8TCjEhcV5dCc6UXTZJ9Optke1bORKBTKg1cOqazxz412RxKQBKqKtYK52zMxc4u8yZYc9OD5cBuXJ8VcdGXrBeKwhDN0yVOk-GEnOsPLo_ajx3MPxIpQDQhU-nv1TnX-sy0BzhVVFMZnvunFb_la_5yTx9cT8QRuoTcou7SkXdicXy3sU7hpfs_Pm6sRbIjvpwRncgRb7w_Gk-moXW0Ij8N9hJP0B8Lpybc_KdsqOQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlGcJFBoQCKkoIokdxz4gVLVUXXW7QlCk3ozjOFCpSkqzC-JP8RuZyWvZleitBy4rOZk4tvN5HjvjGYAXqcsMF6EJCpezgBdJFmRxlgeqsNKFlkRskzJ_nE4m8uREfViB3_1ZGAqr7Hliw6jzytJ_5G_I9EXVFyXWu_PvAVWNIu9qX0KjhcWh-_UTTbb67WgPv-_LON5_f7x7EHRVBQKbcDYNRJiFeRRmNkHNwAnL0riQiioxKZRnwkhpUyatcWkUZbESKpImVplV2CanIcN-r8F1znE7UKhguDtwfjRf2tL1aJIl-GDvRW2O6kUxeUxRJkTkj0gX5OCyNPhLHC6Hai75axsxuL_-vy3gbbjVKdz-TrtD7sCKK-_Ceqd8-x1rq_FSX9-iv3YPtsYUJo9tXDaf7flHFYKSjpr5VEHurL4Pn69k5A9gtaxK9xD8HFVhVXAXS2M4w18ukF2zhGc2DYVLPAj7z6ttl22din6c6XmeaEKERkRQW-nUg-3hkfM21chlxM8JM5pSeJQUI_TVzOpajz591DuUr0ciCJUHrzqiosKXW9MducApUNavBcrNHjS6Y2K1niPGg2fDbWQ_5FMypatmSMO4YGhyJDjjjRaqw-CRu1P3woN0AcQDAaU2X7xTnn5rUpwLRRmTsc_XPdznw_rnmjy6fBJbcPPg-Gisx6PJ4WNYQ81XtiFYm7A6vZi5J3DD_pie1hdPm13tw5er3gV_ACURfCM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VglBfKDeBQgMCIRVFTeLExwNCFcuK1S6rikPqm3Ecp1SqktLsgvhr_DpmcuyyK9G3PvASycnE8fF5jow9A_BcuMwkPDRB4XIWJEWaBVmc5YEqrHShJRHbhMyfiOlUHh2pww343Z-FoW2VPU9sGHVeWfpHvk-mL6q-KLH2i25bxOFg-Obse0AZpMjT2qfTaCEydr9-ovlWvx4NcK5fxPHw3ee374Muw0Bg04TNAh5mYR6FmU1RS3DcMhEXUlFWJoWyjRsprWDSGieiKIsVV5E0scqswjI5EBnWewWuohROaY2NRbCQAmjKtGns0TxL8cXeo9oc24ti8p6ifIjINyFWZOK6ZPhLNK5v21zz3TYicbj9Pw_mTbjRKeL-QbtybsGGK2_DdqeU-x3Lq_FWn_eiv3cHdie0fR7LOIQ-G_gfKgQrHUHzKbPcaX0XvlxKy-_BZlmV7gH4OarIqkhcLI1JGF4TjmycpUlmRchd6kHYT7W2XRR2SgZyqpfxowkdGtFBZaWFB3uLV87aECQXET8j_GgK7VHSvB6beV3r0aeP-oDi-EgEpPLgZUdUVPhxa7qjGNgFiga2QrnTA0h3zK3WS_R48HTxGNkS-ZpM6ao50rCEMzRFUuzx_Ra2i8Yj16fquQdiBdALAgp5vvqkPPnWhD7niiIpY52veugvm_XPMXl4cSd24TqCX09G0_Ej2EKFWLY7s3Zgc3Y-d4_hmv0xO6nPnzQL3Ievl70I_gB4SoTJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Scale+3D+Morphable+Models&rft.jtitle=International+journal+of+computer+vision&rft.au=Booth%2C+James&rft.au=Roussos%2C+Anastasios&rft.au=Ponniah%2C+Allan&rft.au=Dunaway%2C+David&rft.date=2018-04-01&rft.issn=0920-5691&rft.volume=126&rft.issue=2&rft.spage=233&rft_id=info:doi/10.1007%2Fs11263-017-1009-7&rft_id=info%3Apmid%2F31983806&rft.externalDocID=31983806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon