A novel two-stage feature selection method based on random forest and improved genetic algorithm for enhancing classification in machine learning

The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models’ accuracy. Many studies have sought to improve model performance through feature selection. H...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 16828 - 16
Hlavní autori: Ding, Junyao, Du, Jianchao, Wang, Hejie, Xiao, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 14.05.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models’ accuracy. Many studies have sought to improve model performance through feature selection. However, a single feature selection method has incomplete, unstable, or time-consuming shortcomings. Combining the advantages of various feature selection methods can help overcome these defects. This paper proposes a two-stage feature selection method based on random forest and improved genetic algorithm. First, the importance scores of the random forest are calculated and ranked, and the features are preliminarily eliminated according to the scores, reducing the time complexity of the subsequent process. Then, the improved genetic algorithm is used to search for the global optimal feature subset further. This process introduces a multi-objective fitness function to guide the feature subset, minimizing the number of features in the subset while enhancing classification accuracy. This paper also adds an adaptive mechanism and evolution strategy to improve the loss of population diversity and degeneration in the later stages of iteration, thereby enhancing search efficiency. The experimental results on eight UCI datasets show that the proposed method significantly improves classification performance and has excellent feature selection capability.
AbstractList The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models' accuracy. Many studies have sought to improve model performance through feature selection. However, a single feature selection method has incomplete, unstable, or time-consuming shortcomings. Combining the advantages of various feature selection methods can help overcome these defects. This paper proposes a two-stage feature selection method based on random forest and improved genetic algorithm. First, the importance scores of the random forest are calculated and ranked, and the features are preliminarily eliminated according to the scores, reducing the time complexity of the subsequent process. Then, the improved genetic algorithm is used to search for the global optimal feature subset further. This process introduces a multi-objective fitness function to guide the feature subset, minimizing the number of features in the subset while enhancing classification accuracy. This paper also adds an adaptive mechanism and evolution strategy to improve the loss of population diversity and degeneration in the later stages of iteration, thereby enhancing search efficiency. The experimental results on eight UCI datasets show that the proposed method significantly improves classification performance and has excellent feature selection capability.
Abstract The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models’ accuracy. Many studies have sought to improve model performance through feature selection. However, a single feature selection method has incomplete, unstable, or time-consuming shortcomings. Combining the advantages of various feature selection methods can help overcome these defects. This paper proposes a two-stage feature selection method based on random forest and improved genetic algorithm. First, the importance scores of the random forest are calculated and ranked, and the features are preliminarily eliminated according to the scores, reducing the time complexity of the subsequent process. Then, the improved genetic algorithm is used to search for the global optimal feature subset further. This process introduces a multi-objective fitness function to guide the feature subset, minimizing the number of features in the subset while enhancing classification accuracy. This paper also adds an adaptive mechanism and evolution strategy to improve the loss of population diversity and degeneration in the later stages of iteration, thereby enhancing search efficiency. The experimental results on eight UCI datasets show that the proposed method significantly improves classification performance and has excellent feature selection capability.
The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models' accuracy. Many studies have sought to improve model performance through feature selection. However, a single feature selection method has incomplete, unstable, or time-consuming shortcomings. Combining the advantages of various feature selection methods can help overcome these defects. This paper proposes a two-stage feature selection method based on random forest and improved genetic algorithm. First, the importance scores of the random forest are calculated and ranked, and the features are preliminarily eliminated according to the scores, reducing the time complexity of the subsequent process. Then, the improved genetic algorithm is used to search for the global optimal feature subset further. This process introduces a multi-objective fitness function to guide the feature subset, minimizing the number of features in the subset while enhancing classification accuracy. This paper also adds an adaptive mechanism and evolution strategy to improve the loss of population diversity and degeneration in the later stages of iteration, thereby enhancing search efficiency. The experimental results on eight UCI datasets show that the proposed method significantly improves classification performance and has excellent feature selection capability.The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and overfitting datasets, affecting machine learning models' accuracy. Many studies have sought to improve model performance through feature selection. However, a single feature selection method has incomplete, unstable, or time-consuming shortcomings. Combining the advantages of various feature selection methods can help overcome these defects. This paper proposes a two-stage feature selection method based on random forest and improved genetic algorithm. First, the importance scores of the random forest are calculated and ranked, and the features are preliminarily eliminated according to the scores, reducing the time complexity of the subsequent process. Then, the improved genetic algorithm is used to search for the global optimal feature subset further. This process introduces a multi-objective fitness function to guide the feature subset, minimizing the number of features in the subset while enhancing classification accuracy. This paper also adds an adaptive mechanism and evolution strategy to improve the loss of population diversity and degeneration in the later stages of iteration, thereby enhancing search efficiency. The experimental results on eight UCI datasets show that the proposed method significantly improves classification performance and has excellent feature selection capability.
ArticleNumber 16828
Author Wang, Hejie
Ding, Junyao
Xiao, Song
Du, Jianchao
Author_xml – sequence: 1
  givenname: Junyao
  surname: Ding
  fullname: Ding, Junyao
  organization: School of Telecommunications Engineering, Xidian University
– sequence: 2
  givenname: Jianchao
  surname: Du
  fullname: Du, Jianchao
  email: jcdu@xidian.edu.cn
  organization: School of Telecommunications Engineering, Xidian University
– sequence: 3
  givenname: Hejie
  surname: Wang
  fullname: Wang, Hejie
  organization: School of Telecommunications Engineering, Xidian University
– sequence: 4
  givenname: Song
  surname: Xiao
  fullname: Xiao, Song
  organization: Beijing Electronic Science and Technology Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40369050$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAltiwCfiaOCtUVVwqVWIDa8uxJzk-cuyD7VPEY_DGuDkttF00m8TJN5_-zMzL5ijEAE3zmuD3BDP5IXMiBtliKlpM-o605FlzQjEXLWWUHt17Pm7Oct7iegk6cDK8aI45Zt2ABT5p_pyjEK_Bo_IrtrnoGdAEuuwToAweTHExoAXKJlo06gwW1XPSwcYFTTFBLqgekFt2qWosmiFAcQZpP8fkymalEISNDsaFGRmvc3aTM3o1uyrXZuMCIA86hYq8ap5P2mc4u72fNj8-f_p-8bW9-vbl8uL8qjWCs9Jy3nVA2QiCGj71fOqIHBjppRBWMJADYQYI9LInnbCjEXIc7SQYHibJBm3ZaXN58Nqot2qX3KLTbxW1U-uLmGalU_0VD0py3NmRaABuOautA8KlZiC4tN2op-r6eHDt9uMC1kAoSfsH0odfgtuoOV4rQvFNQlYN724NKf7c17aqxWUD3usAcZ8Vq-NkDHcDrejbR-g27lOovVopInpOSaXe3I_0L8vd6CsgD4BJMecEkzKurFOpCZ1XBKubRVOHRVN10dS6aOrGTR-V3tmfLGKHolzhMEP6H_uJqr-K-ech
CitedBy_id crossref_primary_10_1080_02626667_2025_2539843
Cites_doi 10.1016/j.knosys.2024.111960
10.1016/j.patrec.2010.03.014
10.1007/s12652-021-02936-0
10.1007/s10489-021-02659-x
10.1016/j.ipm.2009.03.002
10.3390/app11157140
10.3390/s21062222
10.1088/1402-4896/ad36ef
10.1055/s-0043-1762904
10.1080/01431160701442070
10.1016/j.apenergy.2021.116452
10.1016/j.eng.2023.02.019
10.1007/3-540-49257-7_15
10.1007/s10489-022-03760-5
10.1109/TCBB.2021.3089417
10.1016/j.csda.2007.08.015
10.1016/j.compag.2018.12.006
10.7717/peerj-cs.1229
10.1016/j.asr.2024.02.037
10.1016/j.snb.2015.02.025
10.1007/s13042-013-0156-6
10.1007/s44196-024-00428-5
10.1109/ICBEIA.2011.5994250
10.1088/1361-6579/acff35
10.3390/rs16173190
10.1109/21.286385
10.1016/j.advengsoft.2013.12.007
10.1023/A:1008202821328
10.1007/s00500-016-2474-6
10.1007/s10489-021-02412-4
10.1093/bioinformatics/btm344
10.1109/ICMA.2019.8816628
10.1016/j.patcog.2009.12.002
10.1016/j.advengsoft.2016.01.008
10.1111/exsy.13553
10.1038/s41580-021-00407-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-01761-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_8406db1aee4d43369e148a3e548d6baf
PMC12078713
40369050
10_1038_s41598_025_01761_1
Genre Journal Article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 62476013; 62476013
– fundername: National Nature Science Foundation of China
  grantid: 62476013
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-4466e23be52c4f74f6189317855d53e8913ce1e787165dbc58bbdf5309f839ad3
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488655700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:49:00 EDT 2025
Tue Nov 04 02:04:31 EST 2025
Fri Sep 05 16:42:09 EDT 2025
Tue Oct 07 07:57:15 EDT 2025
Sun May 18 01:30:28 EDT 2025
Sat Nov 29 07:54:03 EST 2025
Tue Nov 18 20:44:41 EST 2025
Fri May 16 02:04:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature selection
Random forest
Data mining
Improved genetic algorithm
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-4466e23be52c4f74f6189317855d53e8913ce1e787165dbc58bbdf5309f839ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3204157421?pq-origsite=%requestingapplication%
PMID 40369050
PQID 3204157421
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_8406db1aee4d43369e148a3e548d6baf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12078713
proquest_miscellaneous_3204330692
proquest_journals_3204157421
pubmed_primary_40369050
crossref_citationtrail_10_1038_s41598_025_01761_1
crossref_primary_10_1038_s41598_025_01761_1
springer_journals_10_1038_s41598_025_01761_1
PublicationCentury 2000
PublicationDate 2025-05-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Mirjalili (1761_CR33) 2016; 95
J Lemmon (1761_CR32) 2023; 62
EH Houssein (1761_CR13) 2024; 297
X Cui (1761_CR11) 2022; 52
Y Su (1761_CR21) 2024; 16
H Wang (1761_CR6) 2024; 99
K Yan (1761_CR12) 2015; 212
1761_CR24
J Xu (1761_CR20) 2023; 53
1761_CR27
1761_CR2
1761_CR25
U Kaya (1761_CR10) 2022; 13
R Mesiar (1761_CR22) 2021; 11
1761_CR29
JG Greener (1761_CR3) 2022; 23
Y Saeys (1761_CR8) 2007; 23
D Ghosh (1761_CR23) 2021; 19
1761_CR7
Z Xie (1761_CR16) 2014; 5
M Sokolova (1761_CR30) 2009; 45
TU Rehman (1761_CR4) 2019; 156
L Zhang (1761_CR5) 2021; 285
R Storn (1761_CR35) 1997; 11
MS Moustafa (1761_CR38) 2024; 73
J Kang (1761_CR1) 2021; 21
M Srinivas (1761_CR26) 1994; 24
R Genuer (1761_CR18) 2010; 31
1761_CR37
D Wang (1761_CR34) 2018; 22
X Gu (1761_CR9) 2022; 52
A Saif Alghawli (1761_CR14) 2022; 2022
YY Wang (1761_CR17) 2008; 29
KJ Archer (1761_CR28) 2008; 52
S Mirjalili (1761_CR36) 2014; 69
R Kazerani (1761_CR15) 2024; 17
O Aran (1761_CR31) 2010; 43
W Wang (1761_CR19) 2023; 44
J Liu (1761_CR39) 2023; 9
References_xml – volume: 297
  start-page: 111960
  year: 2024
  ident: 1761_CR13
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111960
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 1761_CR18
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 13
  start-page: 821
  issue: 2
  year: 2022
  ident: 1761_CR10
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-02936-0
– volume: 52
  start-page: 5063
  issue: 5
  year: 2022
  ident: 1761_CR11
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02659-x
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 1761_CR30
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 11
  start-page: 7140
  issue: 15
  year: 2021
  ident: 1761_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app11157140
– volume: 21
  start-page: 2222
  issue: 6
  year: 2021
  ident: 1761_CR1
  publication-title: Sensors
  doi: 10.3390/s21062222
– volume: 99
  start-page: 056006
  issue: 5
  year: 2024
  ident: 1761_CR6
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad36ef
– volume: 62
  start-page: 060
  issue: 01/02
  year: 2023
  ident: 1761_CR32
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0043-1762904
– volume: 2022
  start-page: 1332664
  issue: 1
  year: 2022
  ident: 1761_CR14
  publication-title: Comput. Intell. Neurosci.
– volume: 29
  start-page: 2993
  issue: 10
  year: 2008
  ident: 1761_CR17
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701442070
– volume: 285
  start-page: 116452
  year: 2021
  ident: 1761_CR5
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116452
– ident: 1761_CR2
  doi: 10.1016/j.eng.2023.02.019
– ident: 1761_CR7
  doi: 10.1007/3-540-49257-7_15
– volume: 53
  start-page: 4524
  issue: 4
  year: 2023
  ident: 1761_CR20
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03760-5
– volume: 19
  start-page: 2817
  issue: 5
  year: 2021
  ident: 1761_CR23
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2021.3089417
– volume: 52
  start-page: 2249
  issue: 4
  year: 2008
  ident: 1761_CR28
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.08.015
– volume: 156
  start-page: 585
  year: 2019
  ident: 1761_CR4
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.006
– volume: 9
  start-page: e1229
  year: 2023
  ident: 1761_CR39
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1229
– volume: 73
  start-page: 5005
  issue: 10
  year: 2024
  ident: 1761_CR38
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2024.02.037
– volume: 212
  start-page: 353
  year: 2015
  ident: 1761_CR12
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.02.025
– volume: 5
  start-page: 201
  year: 2014
  ident: 1761_CR16
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-013-0156-6
– volume: 17
  start-page: 44
  issue: 1
  year: 2024
  ident: 1761_CR15
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-024-00428-5
– ident: 1761_CR24
  doi: 10.1109/ICBEIA.2011.5994250
– volume: 44
  start-page: 105008
  issue: 10
  year: 2023
  ident: 1761_CR19
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/acff35
– volume: 16
  start-page: 3190
  issue: 17
  year: 2024
  ident: 1761_CR21
  publication-title: Remote Sens.
  doi: 10.3390/rs16173190
– volume: 24
  start-page: 656
  issue: 4
  year: 1994
  ident: 1761_CR26
  publication-title: IEEE Trans. Syst. Man. Cybernetics
  doi: 10.1109/21.286385
– volume: 69
  start-page: 46
  year: 2014
  ident: 1761_CR36
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 1761_CR25
– volume: 11
  start-page: 341
  year: 1997
  ident: 1761_CR35
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 1761_CR34
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 52
  start-page: 1436
  issue: 2
  year: 2022
  ident: 1761_CR9
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02412-4
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 1761_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– ident: 1761_CR27
  doi: 10.1109/ICMA.2019.8816628
– ident: 1761_CR29
– volume: 43
  start-page: 1776
  issue: 5
  year: 2010
  ident: 1761_CR31
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.12.002
– volume: 95
  start-page: 51
  year: 2016
  ident: 1761_CR33
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 1761_CR37
  doi: 10.1111/exsy.13553
– volume: 23
  start-page: 40
  issue: 1
  year: 2022
  ident: 1761_CR3
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00407-0
SSID ssj0000529419
Score 2.4608462
Snippet The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and...
Abstract The data acquisition methods are becoming increasingly diverse and advanced, leading to higher data dimensions, blurred classification boundaries, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16828
SubjectTerms 639/705/117
639/705/258
Algorithms
Classification
Data acquisition
Data mining
Evolution
Feature selection
Genetic algorithms
Humanities and Social Sciences
Improved genetic algorithm
Learning algorithms
Machine learning
multidisciplinary
Random forest
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDeBBRmJG1gbv_I4LogVB7TiAGhvlh-TNlJJUJtdxM_gHzO207LleeGY2GlHnnHmm8z4G0KeAcJUUNwyZ4VlSjjPrHaCOWErWbUIEVL_lI9v69PT5uysfXep1VesCcv0wHnhjjAAqYLjFkAFJfFxQABvJSDSDpWzXXz7lnV7KZjKrN6iVbydT8mUsjnaoKeKp8lErFXD2J3xPU-UCPt_hzJ_LZb8KWOaHNHJTXJjRpD0OEt-i1yB4Ta5lntKfr1Dvh3TYbyAFZ2-jAyh3wJoB4m9k25SzxtUBM19o2l0YYHiNTqsMH6iCGBRKIoXtE8fG3AUDSyec6R2tRjX_bRMsygMy0jUMSyoj_A71hslFdMefzzVZwKdG1Is7pIPJ6_fv3rD5r4LzGslJxZTvCCkAy286mrVVRxRDa8brYOWEBObHjjUMdbSwXndOBc6Lcu2Q7hlg7xHDoZxgAeEQi07Li0ieMBAvKmtc9Z3yksOzqEKC8K3OjB-JiWPvTFWJiXHZWOy3gzqzSS9GV6Q57tnPmdKjr_OfhlVu5sZ6bTTDTQyMxuZ-ZeRFeRwaxhm3uMbI0WkN6iVwP94uhvG3RlTLnaA8TzPkRiVtaIg97Md7SRRCB7aUpcFafYsbE_U_ZGhXyYGcI4mj6svC_Jia4w_5PrzWjz8H2vxiFwXaRdpxtUhOZjW5_CYXPUXU79ZP0nb8Ds8uTcu
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel two-stage feature selection method based on random forest and improved genetic algorithm for enhancing classification in machine learning
URI https://link.springer.com/article/10.1038/s41598-025-01761-1
https://www.ncbi.nlm.nih.gov/pubmed/40369050
https://www.proquest.com/docview/3204157421
https://www.proquest.com/docview/3204330692
https://pubmed.ncbi.nlm.nih.gov/PMC12078713
https://doaj.org/article/8406db1aee4d43369e148a3e548d6baf
Volume 15
WOSCitedRecordID wos001488655700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgBYkXvgeBMRmJN7BWfzXJE9rQJpBYVSFA5SmynUtbqSSj7Yb4M_iPuXPSTuVjL7xYSuxEl9zP9n35jrEXgGIqGOmEd8oJo3wQznolvHIDPchRRIj1Uz6_T4fDbDzOR53BbdmFVa7XxLhQl00gG_mBVnSYHBU5-frsm6CqUeRd7UpoXGc9KptNOE_H6cbGQl4sI_PurExfZwdLfAedKVMUsYYavJBb-1FM2_83WfPPkMnf_KZxOzq5878fcpfd7gRRftgi5x67BvV9drMtTfnjAft5yOvmAuZ89b0RKEFOgFcQk4DyZSydg_zkbflpTjthyfEa972y-cpRDkZyOF7wWbRZYC_ilI5LcjefIDGraRzFoZ5Svo96wgNJ8RS2FJHCZ_jyGOYJvKtrMXnIPp0cf3zzVnTlG0SwRq8EeYpBaQ9WBVOlphpIFI5kmllbWg3kHw0gISWVzZY-2Mz7srK6n1cotblS77KduqnhMeOQ6kpqh4oAoD6fpc57FyoTtATvUedKmFwzsQhdbnMqsTEvoo9dZ0XL-AIZX0TGFzJhLzfPnLWZPa4cfUTY2IykrNzxRrOYFN0kL1BZHpReOgBTGo1QB1Q2nQaksBx4VyVsbw2JolsqlsUlHhL2fNONk5w8N66G5rwdo1G5y1XCHrVA3FBiUAbJ-7afsGwLolukbvfUs2lMJC5Vn_6-TtirNZov6fr3v3hy9Wc8ZbdUnGBWSLPHdlaLc3jGboSL1Wy52I8zNLbZPusdHQ9HH_ajIQTbUzWiNsW2N3p3OvryC9OQS5Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUWCE1j1PuzYB4TKo2rUNMqhoPZkdu1xEinYJUlb9WfwR_iNzK7tVOHRWw8cnd1Yu-tvZmd2ZucDeIlkpqLi2jdaaF8Jk_k6NMI3QkcySshEcPwpX_rdwSA-OEiGa_CzvQtj0ypbnegUdV5l9ox8Uwp7mZwcOf7u6LtvWaNsdLWl0KhhsYtnp-Syzd_2PtL3fSXE9qf9Dzt-wyrgZ6GSC98GMFFIg6HIVNFVRcRpz7Yk9WEeSrRhuww5dq0nEeYmC2Nj8iKUQVKQMaFzSe-9AuuKwB50YH3Y2xseLk91bNxM8aS5nRPIeHNOo7a32ITNketG3OcrO6AjCvibdftnkuZvkVq3AW7f-t-W7jbcbExttlXLxh1Yw_IuXKvJN8_uwY8tVlYnOGWL08onG3mErEBX5pTNHTkQIZbVBNvM7vU5o2fa2fPqGyNLn6bP6IFN3KkMtZIk2guhTE9HNPnF2PViWI5tRZNyxDLrp9jELCcLbEIvd4msyBrmjtF9-Hwp6_EAOmVV4iNg2JUFl5pcHQxUFHe1MTorVCY5GkNepQe8BU2aNdXbLYnINHVZBDJOa6ClBLTUAS3lHrxe_ueorl1yYe_3FovLnrbuuPuhmo3SRo2lMdl_ueEaUeVKkjAjudNaIo0wj4wuPNhoIZg2ynCenuPPgxfLZlJjNjalS6yO6z6S3NdEePCwBv5yJIqsrCQIAw_iFZFYGepqSzkZu1LpXAR29aUHb1rpOR_Xv9fi8cXTeA7Xd_b3-mm_N9h9AjeEE-7Q52oDOovZMT6Fq9nJYjKfPWv0A4Ovly1XvwDMMaFu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3g9DgUWCE1jxPvw6INTSVlStoggB6s3s2uMkUrBLkrbqz-Dv8OuYXdupwqO3Hjg6u7F2xzOzMzuPD-AlkpmKimvfaKF9JUzu69AI3wgdySglE8Hhp3w5iAeD5PAwHa7Bz64WxqZVdjrRKeqizu0deV8KW0xOjhzvl21axHB7993Rd98iSNlIawen0bDIPp6dkvs2f7u3Td_6lRC7O5_ef_BbhAE_D5Vc-DaYiUIaDEWuyliVEafz2wLWh0Uo0YbwcuQYW68iLEweJsYUZSiDtCTDQheS3nsF1mNJTk8P1rd2BsOPyxseG0NTPG0rdQKZ9Oe0A1vRJmy-XBxxn6-chg404G-W7p8Jm79Fbd1huHvrfybjbbjZmuBss5GZO7CG1V241oBynt2DH5usqk9wyhantU-28whZia79KZs70CDiZNYAbzNrAxSMnunEL-pvjDwAIgWjBzZxtzU0ShJqC0WZno5o84uxm8WwGttOJ9WI5dZ_sQlbTkbYhF7uElyRtYgeo_vw-VLo8QB6VV3hI2AYy5JLTS4QBipKYm2MzkuVS47GkLfpAe8YKMvbru4WXGSauewCmWQN02XEdJljuox78Hr5n6Omp8mFs7csXy5n2n7k7od6Nspa9ZYlZBcWhmtEVShJQo7kZmuJtMIiMrr0YKNjx6xVkvPsnBc9eLEcJvVmY1a6wvq4mSPJrU2FBw8bIViuRJH1lQZh4EGyIh4rS10dqSZj10Kdi8BSX3rwppOk83X9mxaPL97Gc7hOwpQd7A32n8AN4eQ89LnagN5idoxP4Wp-spjMZ89aVcHg62WL1S-lHaoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+two-stage+feature+selection+method+based+on+random+forest+and+improved+genetic+algorithm+for+enhancing+classification+in+machine+learning&rft.jtitle=Scientific+reports&rft.au=Ding%2C+Junyao&rft.au=Du%2C+Jianchao&rft.au=Wang%2C+Hejie&rft.au=Xiao%2C+Song&rft.date=2025-05-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=16828&rft_id=info:doi/10.1038%2Fs41598-025-01761-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon