Cross-validation failure: Small sample sizes lead to large error bars
Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 180; H. Pt A; S. 68 - 77 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
15.10.2018
Elsevier Limited Elsevier |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data. |
|---|---|
| AbstractList | Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data. Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg ±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data. Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data.Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The principled approach to establish their validity and usefulness is cross-validation, testing prediction on unseen data. Here, I would like to raise awareness on error bars of cross-validation, which are often underestimated. Simple experiments show that sample sizes of many neuroimaging studies inherently lead to large error bars, eg±10% for 100 samples. The standard error across folds strongly underestimates them. These large error bars compromise the reliability of conclusions drawn with predictive models, such as biomarkers or methods developments where, unlike with cognitive neuroimaging MVPA approaches, more samples cannot be acquired by repeating the experiment across many subjects. Solutions to increase sample size must be investigated, tackling possible increases in heterogeneity of the data. |
| Author | Varoquaux, Gaël |
| Author_xml | – sequence: 1 givenname: Gaël surname: Varoquaux fullname: Varoquaux, Gaël email: gael.varoquaux@inria.fr organization: Parietal Project-team, INRIA Saclay-île de France, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28655633$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-01545002$$DView record in HAL |
| BookMark | eNqNkU9r3DAQxUVJaP40X6EIemkP3o5ky5Z7KEmXpAks9NDmLGR5nGorW1vJXkg_feVs0sKeFgYkxG_eaN47I0eDH5AQymDBgJUf14sBp-Btrx9wwYFVCyhTsVfklEEtslpU_Gi-izyTjNUn5CzGNQDUrJCvyQmXpRBlnp-S62XwMWZb7WyrR-sH2mnrpoCf6PdeO0ej7jcOabR_MFKHuqWjp06HB6QYgg-00SG-IceddhEvns9zcn9z_WN5m62-fb1bXq0yI4p8zLgpOOYCSo2s7gCMFI0A0xo0vJG6aVvomppD03EseYEdypoXvCu4rhqu8_ycfNjp_tRObULaPzwqr626vVqp-Q2YKAQA37LEvt-xm-B_TxhH1dto0Dk9oJ-iYskLUckaZELf7aFrP4UhbaI41JVIPpY8UW-fqanpsf03_8XMBHzeAWb2NGCnjB2fTB1DMlUxUHN6aq3-p6fm9BSUqeYvyz2BlxkHtH7ZtWKyf2sxqGgsDgZbG9CMqvX2EJHLPRHj7GCNdr_w8TCJvy54z1M |
| CitedBy_id | crossref_primary_10_3758_s13415_025_01268_2 crossref_primary_10_1007_s10548_023_00950_3 crossref_primary_10_1016_j_cexr_2023_100016 crossref_primary_10_1016_j_cageo_2023_105457 crossref_primary_10_1093_gigascience_giaf091 crossref_primary_10_3389_fpsyt_2022_804440 crossref_primary_10_3390_diagnostics15020216 crossref_primary_10_1016_j_cpr_2022_102193 crossref_primary_10_1016_j_nicl_2022_103120 crossref_primary_10_1140_epjc_s10052_019_6767_7 crossref_primary_10_1016_j_yebeh_2020_107525 crossref_primary_10_1038_s41598_024_60507_7 crossref_primary_10_1016_j_eswa_2023_119879 crossref_primary_10_1016_j_nicl_2021_102790 crossref_primary_10_1038_s41586_022_05118_w crossref_primary_10_1371_journal_pone_0256152 crossref_primary_10_1016_j_euroneuro_2020_03_008 crossref_primary_10_1016_j_schres_2023_02_024 crossref_primary_10_1002_pne2_12065 crossref_primary_10_3389_fpsyt_2024_1436006 crossref_primary_10_1016_j_neuroimage_2025_121334 crossref_primary_10_1038_s41366_025_01761_1 crossref_primary_10_1016_j_neuroimage_2023_120246 crossref_primary_10_1002_hbm_26631 crossref_primary_10_3389_fninf_2021_577451 crossref_primary_10_1038_s41398_019_0663_7 crossref_primary_10_1097_j_pain_0000000000002958 crossref_primary_10_3389_fpsyt_2021_680811 crossref_primary_10_1109_TBME_2023_3330087 crossref_primary_10_1186_s40537_019_0181_8 crossref_primary_10_1038_s41380_022_01635_2 crossref_primary_10_1007_s41811_020_00089_0 crossref_primary_10_3390_microorganisms10081658 crossref_primary_10_1038_s41598_022_24541_7 crossref_primary_10_1038_s41597_022_01226_4 crossref_primary_10_1192_bjp_2019_245 crossref_primary_10_1016_j_neuroimage_2021_118044 crossref_primary_10_1093_brain_awac224 crossref_primary_10_1186_s12859_020_03773_2 crossref_primary_10_1038_s41598_022_23327_1 crossref_primary_10_1038_s41746_020_00336_w crossref_primary_10_3389_fnagi_2018_00290 crossref_primary_10_1109_TMI_2017_2789181 crossref_primary_10_1038_s41398_022_02214_3 crossref_primary_10_1093_iob_obae010 crossref_primary_10_1523_JNEUROSCI_0884_18_2018 crossref_primary_10_1177_20539517231155060 crossref_primary_10_1080_2331186X_2024_2408836 crossref_primary_10_1038_s41598_023_39738_7 crossref_primary_10_1088_1741_2552_acad2b crossref_primary_10_1523_JNEUROSCI_1312_22_2022 crossref_primary_10_1002_alz_12948 crossref_primary_10_1016_j_bpsc_2019_05_018 crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1002_ccd_31689 crossref_primary_10_1016_j_ejrad_2020_108871 crossref_primary_10_1016_j_inffus_2022_11_007 crossref_primary_10_1093_comjnl_bxac033 crossref_primary_10_1016_j_eplepsyres_2024_107357 crossref_primary_10_1016_j_media_2025_103565 crossref_primary_10_1016_j_mran_2022_100201 crossref_primary_10_1016_j_watres_2020_116004 crossref_primary_10_1002_hbm_70336 crossref_primary_10_1109_JTEHM_2018_2874887 crossref_primary_10_1155_da_5512539 crossref_primary_10_1051_0004_6361_202038040 crossref_primary_10_1016_j_neuroimage_2021_118253 crossref_primary_10_1016_j_brat_2019_103530 crossref_primary_10_1038_s41598_022_06459_2 crossref_primary_10_1093_ajcn_nqy344 crossref_primary_10_1007_s00415_022_11148_1 crossref_primary_10_1093_brain_awab002 crossref_primary_10_1038_s41386_020_0666_3 crossref_primary_10_1016_j_neuroimage_2019_116388 crossref_primary_10_1016_j_jtbi_2020_110268 crossref_primary_10_1016_j_biopsych_2021_08_024 crossref_primary_10_1016_j_nicl_2021_102898 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_1029_2023WR034933 crossref_primary_10_1176_appi_ajp_2021_21040370 crossref_primary_10_1016_j_psychres_2023_115378 crossref_primary_10_1038_s43587_025_00928_9 crossref_primary_10_1016_j_nicl_2022_103135 crossref_primary_10_3389_fnagi_2021_624731 crossref_primary_10_1016_j_compbiomed_2021_104324 crossref_primary_10_1109_TCDS_2021_3101643 crossref_primary_10_3389_fpsyg_2020_00220 crossref_primary_10_1016_j_neubiorev_2020_09_036 crossref_primary_10_1016_j_sleep_2025_106645 crossref_primary_10_1093_schbul_sby189 crossref_primary_10_1002_hbm_25436 crossref_primary_10_1109_ACCESS_2020_3030787 crossref_primary_10_1038_s41398_020_01013_y crossref_primary_10_1111_add_16047 crossref_primary_10_1016_j_matchar_2025_115148 crossref_primary_10_1155_2023_8594273 crossref_primary_10_7554_eLife_53498 crossref_primary_10_3390_s20164629 crossref_primary_10_1038_s41598_021_01361_9 crossref_primary_10_1109_JBHI_2021_3101662 crossref_primary_10_1093_schbul_sbab112 crossref_primary_10_1162_netn_a_00402 crossref_primary_10_1038_s41380_019_0520_3 crossref_primary_10_1515_revneuro_2023_0117 crossref_primary_10_1016_j_nicl_2020_102195 crossref_primary_10_1080_10494820_2025_2553118 crossref_primary_10_1002_mds_28517 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_1016_j_applthermaleng_2019_03_111 crossref_primary_10_1016_j_neucom_2020_04_152 crossref_primary_10_1161_STROKEAHA_121_036749 crossref_primary_10_1007_s00429_024_02792_6 crossref_primary_10_1038_s41467_024_54022_6 crossref_primary_10_1038_s44220_024_00281_7 crossref_primary_10_1371_journal_pone_0224365 crossref_primary_10_1016_j_bpsc_2021_06_010 crossref_primary_10_1016_j_biopsych_2022_07_025 crossref_primary_10_1515_revneuro_2022_0122 crossref_primary_10_2147_OPTH_S367722 crossref_primary_10_1016_j_neuroimage_2022_119275 crossref_primary_10_1016_j_bpsc_2018_06_003 crossref_primary_10_1016_j_neuroimage_2024_120665 crossref_primary_10_1093_brain_awaa095 crossref_primary_10_3389_fnins_2019_01165 crossref_primary_10_1016_j_psychres_2020_112938 crossref_primary_10_3390_brainsci11060722 crossref_primary_10_1016_j_ijforecast_2021_04_002 crossref_primary_10_1038_s41598_019_50881_y crossref_primary_10_1002_ldr_3922 crossref_primary_10_1017_S0033291724003118 crossref_primary_10_1038_s41398_020_01193_7 crossref_primary_10_1016_j_csbj_2020_10_011 crossref_primary_10_1111_deci_12445 crossref_primary_10_1093_gigascience_giab071 crossref_primary_10_1109_TCYB_2022_3158697 crossref_primary_10_1117_1_JBO_24_5_056007 crossref_primary_10_1080_10503307_2020_1839140 crossref_primary_10_1038_s41386_024_01960_w crossref_primary_10_1038_s44184_023_00035_w crossref_primary_10_2196_18331 crossref_primary_10_1016_j_janxdis_2021_102448 crossref_primary_10_1038_s41390_025_04131_9 crossref_primary_10_1038_s41746_022_00592_y crossref_primary_10_52294_51f2e656_d4da_457e_851e_139131a68f14 crossref_primary_10_3390_diagnostics10070444 crossref_primary_10_1002_hbm_24886 crossref_primary_10_1016_j_foodcont_2021_108353 crossref_primary_10_1093_plphys_kiab322 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1186_s12905_025_03584_8 crossref_primary_10_1016_j_foodchem_2025_143465 crossref_primary_10_1038_s41598_020_79170_9 crossref_primary_10_1016_j_bpsgos_2025_100589 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_2196_58572 crossref_primary_10_1016_j_neuroimage_2023_120213 crossref_primary_10_1002_brb3_70323 crossref_primary_10_1002_advs_202000675 crossref_primary_10_1016_j_nicl_2019_101782 crossref_primary_10_1002_jmri_28544 crossref_primary_10_1007_s00216_021_03665_1 crossref_primary_10_1016_j_pnpbp_2020_110136 crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1371_journal_pntd_0012782 crossref_primary_10_1016_j_jneumeth_2025_110406 crossref_primary_10_1007_s40336_024_00617_4 crossref_primary_10_1002_jclp_23763 crossref_primary_10_1007_s11357_023_00924_0 crossref_primary_10_1016_j_jtice_2021_11_001 crossref_primary_10_1371_journal_pcbi_1011849 crossref_primary_10_3389_fonc_2022_843436 crossref_primary_10_3758_s13428_022_01793_9 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1016_j_jad_2024_09_066 crossref_primary_10_3390_app15105495 crossref_primary_10_1002_hbm_24554 crossref_primary_10_1016_j_neucom_2021_05_048 crossref_primary_10_1146_annurev_clinpsy_072220_014550 crossref_primary_10_1097_PR9_0000000000000751 crossref_primary_10_1007_s00429_020_02113_7 crossref_primary_10_1371_journal_pone_0282402 crossref_primary_10_1038_s41562_023_01642_5 crossref_primary_10_1016_j_zemedi_2025_03_003 crossref_primary_10_1109_ACCESS_2020_3025165 crossref_primary_10_1002_eat_23650 crossref_primary_10_1038_s41598_020_80751_x crossref_primary_10_1016_j_jpsychires_2022_03_063 crossref_primary_10_1016_j_bpsc_2019_10_006 crossref_primary_10_1177_20531680231211640 crossref_primary_10_1371_journal_pcbi_1008795 crossref_primary_10_3389_fpubh_2024_1373883 crossref_primary_10_1016_j_neuroimage_2024_120639 crossref_primary_10_1016_j_ynirp_2023_100170 crossref_primary_10_1016_j_neuroimage_2022_119171 crossref_primary_10_1016_j_seizure_2021_07_025 crossref_primary_10_1016_j_dscb_2021_100005 crossref_primary_10_1016_j_jpsychires_2020_08_004 crossref_primary_10_1016_j_eswa_2021_115549 crossref_primary_10_1016_j_intell_2022_101654 crossref_primary_10_1016_j_media_2020_101848 crossref_primary_10_1007_s11682_019_00191_8 crossref_primary_10_1016_j_inffus_2020_09_008 crossref_primary_10_1038_s41386_021_01104_4 crossref_primary_10_1038_s41467_024_46508_0 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1007_s10822_019_00274_0 crossref_primary_10_1038_s41467_021_21732_0 crossref_primary_10_1080_10503307_2021_1916120 crossref_primary_10_3233_JND_230075 crossref_primary_10_1038_s41586_023_05746_w crossref_primary_10_1002_hbm_25023 crossref_primary_10_1038_s41597_020_00680_2 crossref_primary_10_1002_hbm_25020 crossref_primary_10_1177_23328584241303495 crossref_primary_10_1016_j_neuroimage_2023_120089 crossref_primary_10_3390_land14091883 crossref_primary_10_1111_ejn_14954 crossref_primary_10_1016_j_biopsych_2022_08_024 crossref_primary_10_1016_j_jhydrol_2025_132697 crossref_primary_10_1088_1741_2552_adbfbd crossref_primary_10_1088_1741_2552_ac28d4 crossref_primary_10_1038_s41598_022_04854_3 crossref_primary_10_1088_1741_2552_abcefe crossref_primary_10_1007_s00330_023_09519_x crossref_primary_10_3389_fgene_2022_821832 crossref_primary_10_1186_s11689_021_09405_x crossref_primary_10_1111_bdi_12895 crossref_primary_10_1038_s41398_021_01286_x crossref_primary_10_1016_j_procs_2021_08_128 crossref_primary_10_1038_s41386_024_01893_4 crossref_primary_10_2118_221475_PA crossref_primary_10_1177_17470218211039502 crossref_primary_10_1038_s41562_022_01301_1 crossref_primary_10_1109_TBME_2019_2898871 crossref_primary_10_1001_jamaneurol_2025_2351 crossref_primary_10_1016_j_cej_2024_158322 crossref_primary_10_1007_s11682_021_00501_z crossref_primary_10_1038_s41598_023_50050_2 crossref_primary_10_1111_acps_13233 crossref_primary_10_1038_s41582_020_0362_2 crossref_primary_10_3390_app12073673 crossref_primary_10_1016_j_bja_2020_10_034 crossref_primary_10_1038_s42256_019_0069_5 crossref_primary_10_1088_2632_2153_acac01 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1038_s41598_023_44322_0 crossref_primary_10_1038_s41386_021_01020_7 crossref_primary_10_1038_s42003_024_05869_4 crossref_primary_10_1016_j_neubiorev_2024_105695 crossref_primary_10_1162_imag_a_00222 crossref_primary_10_1016_j_neuroimage_2021_118096 crossref_primary_10_1016_j_cogpsych_2020_101305 crossref_primary_10_1016_j_jad_2020_05_048 crossref_primary_10_1038_s41380_020_0771_z crossref_primary_10_1016_j_ajp_2025_104695 crossref_primary_10_3390_s22176361 crossref_primary_10_1038_s42003_025_08132_6 crossref_primary_10_1038_s41562_021_01086_9 crossref_primary_10_1038_s41598_025_12026_2 crossref_primary_10_1017_S003329172400223X crossref_primary_10_1109_ACCESS_2021_3117891 crossref_primary_10_52294_001c_117311 crossref_primary_10_1038_s41398_024_02954_4 crossref_primary_10_3389_fnins_2018_00737 crossref_primary_10_1093_brain_awz384 crossref_primary_10_1155_2020_8871712 crossref_primary_10_1016_j_scib_2020_04_003 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_1016_j_neucom_2022_09_001 crossref_primary_10_1016_j_brat_2022_104116 crossref_primary_10_1093_pm_pnaa178 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_neurobiolaging_2022_06_008 crossref_primary_10_1055_a_2142_9325 crossref_primary_10_1016_j_eswa_2024_126295 crossref_primary_10_1016_j_neuroimage_2023_120412 crossref_primary_10_3390_s23094199 crossref_primary_10_1111_brv_12752 crossref_primary_10_3389_fnins_2023_1174080 crossref_primary_10_1016_j_dcn_2021_100966 crossref_primary_10_1016_j_scib_2019_04_034 crossref_primary_10_1371_journal_pone_0292047 crossref_primary_10_1002_hbm_26683 crossref_primary_10_1002_hbm_70280 crossref_primary_10_53464_JMTE_01_2024_04 crossref_primary_10_1038_s41598_020_65384_4 crossref_primary_10_1016_j_neuroimage_2023_119960 crossref_primary_10_1089_brain_2021_0186 crossref_primary_10_1038_s44220_023_00173_2 crossref_primary_10_1016_j_jvcir_2025_104436 crossref_primary_10_1016_j_schres_2023_01_014 crossref_primary_10_1038_s41586_022_04492_9 crossref_primary_10_1111_psyp_14762 crossref_primary_10_1080_03610926_2021_2021240 crossref_primary_10_1016_j_inffus_2025_103482 crossref_primary_10_1016_j_eswa_2019_04_063 crossref_primary_10_1038_s41467_024_53743_y crossref_primary_10_1002_hbm_25907 crossref_primary_10_1001_jamanetworkopen_2023_36094 crossref_primary_10_1016_j_neuroimage_2021_118756 crossref_primary_10_1016_j_biopsych_2022_03_007 crossref_primary_10_1016_j_bpsc_2022_12_006 crossref_primary_10_7554_eLife_56929 crossref_primary_10_3389_fneur_2022_923988 crossref_primary_10_1016_j_chemosphere_2019_03_007 crossref_primary_10_1109_TII_2020_3036159 crossref_primary_10_3390_su15097086 crossref_primary_10_1016_j_neuroimage_2023_120162 crossref_primary_10_1016_j_saa_2024_124189 crossref_primary_10_1162_imag_a_00219 crossref_primary_10_7554_eLife_54055 crossref_primary_10_1016_j_cmpb_2021_106549 crossref_primary_10_1038_s42003_024_06574_y crossref_primary_10_1016_j_jare_2025_04_026 crossref_primary_10_1016_j_nsa_2023_103931 crossref_primary_10_1111_ejn_15842 crossref_primary_10_1590_1516_3180_2020_0474_r2_03052021 crossref_primary_10_1162_netn_a_00233 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_7717_peerj_18490 crossref_primary_10_1016_j_seppur_2024_130497 crossref_primary_10_2478_amns_2024_3085 crossref_primary_10_1093_cercor_bhac309 crossref_primary_10_1093_gigascience_giaf036 crossref_primary_10_1007_s12021_021_09519_6 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1038_s41386_020_0785_x crossref_primary_10_1016_j_neubiorev_2024_105640 crossref_primary_10_1038_s41586_025_09250_1 crossref_primary_10_1038_s41467_021_25492_9 crossref_primary_10_1002_hbm_24802 crossref_primary_10_1007_s00406_020_01201_3 crossref_primary_10_1093_bib_bbac040 crossref_primary_10_1016_j_neubiorev_2022_104552 crossref_primary_10_1016_j_nic_2019_09_005 crossref_primary_10_1038_s41598_024_64487_6 crossref_primary_10_1016_j_cortex_2019_01_018 crossref_primary_10_3389_fpsyg_2025_1520186 crossref_primary_10_1016_j_neuroimage_2023_119986 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_nicl_2019_101821 crossref_primary_10_1016_j_pnpbp_2022_110574 crossref_primary_10_3390_jpm11100957 crossref_primary_10_1016_j_mri_2020_11_006 crossref_primary_10_1111_epi_16853 crossref_primary_10_3389_fgene_2022_848205 crossref_primary_10_1016_j_ejrad_2024_111731 crossref_primary_10_1016_j_neuropsychologia_2021_107893 crossref_primary_10_1016_j_bionps_2024_100102 crossref_primary_10_7554_eLife_39324 crossref_primary_10_1007_s11920_022_01385_6 crossref_primary_10_1002_trc2_12303 crossref_primary_10_1111_iej_70034 crossref_primary_10_1002_hbm_25803 crossref_primary_10_1016_j_jpsychires_2020_11_014 crossref_primary_10_1111_jcpp_13545 crossref_primary_10_3233_IDA_230220 crossref_primary_10_1162_netn_a_00338 crossref_primary_10_1016_j_biopsych_2022_10_014 crossref_primary_10_1002_per_2235 crossref_primary_10_1038_s41598_021_03785_9 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1016_j_biombioe_2025_107956 crossref_primary_10_1038_s41562_021_01085_w crossref_primary_10_1111_pcn_13612 crossref_primary_10_1093_brain_awy251 crossref_primary_10_3389_fnins_2018_00149 crossref_primary_10_1192_j_eurpsy_2021_2248 crossref_primary_10_1038_s41598_023_37034_y crossref_primary_10_1016_j_neuroimage_2021_118623 crossref_primary_10_1016_j_artmed_2021_102039 crossref_primary_10_1111_2041_210X_13785 crossref_primary_10_1016_j_neuroimage_2018_06_064 crossref_primary_10_1016_j_dcn_2025_101555 crossref_primary_10_1007_s00115_021_01197_8 crossref_primary_10_3389_fneur_2024_1425490 |
| Cites_doi | 10.1016/j.neuroimage.2008.11.007 10.3389/fninf.2015.00008 10.3389/fninf.2013.00012 10.1016/j.cub.2011.08.031 10.1002/hbm.20136 10.1016/j.neuroimage.2016.02.079 10.1016/j.neuron.2011.08.026 10.1038/nrn.2016.167 10.1177/0956797611417632 10.1186/2047-217X-3-28 10.1016/j.neuroimage.2010.05.026 10.1186/1471-2202-8-91 10.1056/NEJMoa1204471 10.1371/journal.pmed.0020124 10.1214/09-SS054 10.1016/j.neuroimage.2012.07.004 10.1037/0033-2909.86.3.638 10.1038/mp.2013.78 10.1038/nn.4393 10.1038/nature06713 10.1038/nrn1931 10.1016/j.neuroimage.2017.01.072 10.1016/j.tics.2006.07.005 10.1016/j.patcog.2011.04.006 10.1126/science.1063736 10.1016/j.neuroimage.2013.05.041 10.1097/EDE.0b013e31818131e7 10.1038/nn.4478 10.1016/j.neuroimage.2016.10.045 10.1016/j.neuroimage.2014.04.018 10.1038/nrn3475 10.1111/j.1467-9280.2009.02460.x 10.1038/nn.4125 10.1016/j.neuroimage.2005.12.062 10.3389/neuro.11.033.2009 10.1038/nn.3818 10.1111/j.1745-6924.2009.01125.x 10.1016/j.neubiorev.2015.08.001 10.1126/science.aaa9375 10.1016/j.neuroimage.2016.10.038 10.1073/pnas.0600244103 10.1016/j.neuroimage.2012.09.063 10.1093/bioinformatics/btg419 10.1007/s11682-013-9269-5 10.1073/pnas.0911855107 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. 2017. Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: 2017. Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES |
| DOI | 10.1016/j.neuroimage.2017.06.061 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics Psychology Computer Science |
| EISSN | 1095-9572 |
| EndPage | 77 |
| ExternalDocumentID | oai:HAL:hal-01545002v1 28655633 10_1016_j_neuroimage_2017_06_061 S1053811917305311 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 1XC VOOES |
| ID | FETCH-LOGICAL-c543t-2c42e3506ae19f00c85b50cdcec2b8abdd0fb920bf2e624efe89242f42a7b2a33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 417 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443268900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 20:46:26 EDT 2025 Thu Oct 02 10:16:52 EDT 2025 Sat Nov 29 15:02:37 EST 2025 Wed Feb 19 02:33:28 EST 2025 Tue Nov 18 22:35:00 EST 2025 Sat Nov 29 07:05:57 EST 2025 Fri Feb 23 02:36:54 EST 2024 Tue Oct 14 19:31:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | fMRI Model selection Cross-validation Biomarkers Decoding Statistics MVPA biomarkers model selection Comments and Controversies cross-validation decoding statistics |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-2c42e3506ae19f00c85b50cdcec2b8abdd0fb920bf2e624efe89242f42a7b2a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1076-5122 |
| OpenAccessLink | https://inria.hal.science/hal-01545002 |
| PMID | 28655633 |
| PQID | 2097510562 |
| PQPubID | 2031077 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01545002v1 proquest_miscellaneous_1914578908 proquest_journals_2097510562 pubmed_primary_28655633 crossref_citationtrail_10_1016_j_neuroimage_2017_06_061 crossref_primary_10_1016_j_neuroimage_2017_06_061 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_06_061 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_06_061 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-15 |
| PublicationDateYYYYMMDD | 2018-10-15 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Hoyos-Idrobo, Varoquaux, Kahn, Thirion (bib20) 2016 Poldrack, Gorgolewski (bib37) 2014; 17 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium, W.M.H (bib49) 2013; 80 Hastie, Tibshirani, Friedman (bib16) 2009 Costafreda (bib10) 2009; 3 Pereira, Botvinick (bib32) 2011; 56 Saxe, Brett, Kanwisher (bib41) 2006; 30 Dansereau, Benhajali, Risterucci, Pich, Orban, Arnold, Bellec (bib11) 2017; 149 Rosenthal (bib39) 1979; 86 Thompson, Stein, Medland, Hibar, Vasquez, Renteria, Toro, Jahanshad, Schumann, Franke (bib48) 2014; 8 Brown, Hamarneh (bib7) 2016 Woo, Chang, Lindquist, Wager (bib56) 2017; 20 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann (bib5) 2010; 107 Haxby, Gobbini, Furey (bib17) 2001; 293 Dwork, Feldman, Hardt, Pitassi, Reingold, Roth (bib14) 2015; 349 Carp (bib9) 2012; 63 Skocik, Collins, Callahan-Flintoft, Bowman, Wyble (bib44) 2016 Norman, Polyn, Detre, Haxby (bib30) 2006; 10 Poldrack, Barch, Mitchell, Wager, Wagner, Devlin, Cumba, Koyejo, Milham (bib36) 2013; 7 Ziegler, Ridgway, Dahnke, Gaser, Initiative (bib59) 2014; 97 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib13) 2014; 19 Kriegeskorte, Goebel, Bandettini (bib24) 2006; 103 Arbabshirani, Plis, Sui, Calhoun (bib2) 2017; 145 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson (bib28) 2016; 19 Yarkoni, Westfall (bib58) 2016 Kay, Naselaris, Prenger, Gallant (bib23) 2008; 452 Little, Varoquaux, Saeb, Lonini, Jayaraman, Mohr, Kording (bib26) 2017; 6 Szucs, Ioannidis (bib47) 2016 Ioannidis (bib21) 2005; 2 Silva, Castro, Gupta, Cetin, Arbabshirani, Potluru, Plis, Calhoun (bib42) 2014 Saeb, Lonini, Jayaraman, Mohr, David, Kording (bib40) 2017 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib8) 2013; 14 Haynes, Rees (bib19) 2006; 7 Wager, Atlas, Lindquist, Roy, Woo, Kross (bib54) 2013; 368 Varoquaux, Gramfort, Thirion (bib50) 2012 Wolfers, Buitelaar, Beckmann, Franke, Marquand (bib55) 2015; 57 Demšar (bib12) 2006; 7 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib18) 2011; 72 Penny, Friston, Ashburner, Kiebel, Nichols (bib31) 2007 Pinel, Thirion, Meriaux, Jobert, Serres, Le Bihan, Poline, Dehaene (bib34) 2007; 8 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib45) 2015; 18 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib1) 2017; 147 Stelzer, Chen, Turner (bib46) 2013; 65 Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bib29) 2011; 21 Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet, Sochat, Nichols, Poldrack, Poline (bib15) 2015; 9 Bengio, Grandvalet (bib4) 2004; 5 Ioannidis (bib22) 2008; 19 Yahata, Morimoto, Hashimoto, Lisi, Shibata, Kawakubo, Kuwabara, Kuroda, Yamada, Megumi (bib57) 2016; 7 Poldrack, Baker, Durnez, Gorgolewski, Matthews, Munafo, Nichols, Poline, Vul, Yarkoni (bib35) 2017; 18 Braga-Neto, Dougherty (bib6) 2004; 20 Arlot, Celisse (bib3) 2010; 4 Simmons, Nelson, Simonsohn (bib43) 2011; 22 Laird, Fox, Price, Glahn, Uecker, Lancaster, Turkeltaub, Kochunov, Fox (bib25) 2005; 25 Michel, Gramfort, Varoquaux, Eger, Keribin, Thirion (bib27) 2012; 45 Poldrack, Halchenko, Hanson (bib38) 2009; 20 Pereira, Mitchell, Botvinick (bib33) 2009; 45 Vul, Harris, Winkielman, Pashler (bib53) 2009; 4 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib51) 2017; 145 Varoquaux, Thirion (bib52) 2014; 3 Penny (10.1016/j.neuroimage.2017.06.061_bib31) 2007 Ioannidis (10.1016/j.neuroimage.2017.06.061_bib21) 2005; 2 Wager (10.1016/j.neuroimage.2017.06.061_bib54) 2013; 368 Silva (10.1016/j.neuroimage.2017.06.061_bib42) 2014 Di Martino (10.1016/j.neuroimage.2017.06.061_bib13) 2014; 19 Biswal (10.1016/j.neuroimage.2017.06.061_bib5) 2010; 107 Ioannidis (10.1016/j.neuroimage.2017.06.061_bib22) 2008; 19 Hoyos-Idrobo (10.1016/j.neuroimage.2017.06.061_bib20) 2016 Poldrack (10.1016/j.neuroimage.2017.06.061_bib38) 2009; 20 Gorgolewski (10.1016/j.neuroimage.2017.06.061_bib15) 2015; 9 Nishimoto (10.1016/j.neuroimage.2017.06.061_bib29) 2011; 21 Woo (10.1016/j.neuroimage.2017.06.061_bib56) 2017; 20 Wolfers (10.1016/j.neuroimage.2017.06.061_bib55) 2015; 57 Ziegler (10.1016/j.neuroimage.2017.06.061_bib59) 2014; 97 Carp (10.1016/j.neuroimage.2017.06.061_bib9) 2012; 63 Braga-Neto (10.1016/j.neuroimage.2017.06.061_bib6) 2004; 20 Poldrack (10.1016/j.neuroimage.2017.06.061_bib35) 2017; 18 Abraham (10.1016/j.neuroimage.2017.06.061_bib1) 2017; 147 Miller (10.1016/j.neuroimage.2017.06.061_bib28) 2016; 19 Saeb (10.1016/j.neuroimage.2017.06.061_bib40) 2017 Brown (10.1016/j.neuroimage.2017.06.061_bib7) 2016 Vul (10.1016/j.neuroimage.2017.06.061_bib53) 2009; 4 Haxby (10.1016/j.neuroimage.2017.06.061_bib18) 2011; 72 Arlot (10.1016/j.neuroimage.2017.06.061_bib3) 2010; 4 Varoquaux (10.1016/j.neuroimage.2017.06.061_bib52) 2014; 3 Arbabshirani (10.1016/j.neuroimage.2017.06.061_bib2) 2017; 145 Thompson (10.1016/j.neuroimage.2017.06.061_bib48) 2014; 8 Poldrack (10.1016/j.neuroimage.2017.06.061_bib37) 2014; 17 Demšar (10.1016/j.neuroimage.2017.06.061_bib12) 2006; 7 Simmons (10.1016/j.neuroimage.2017.06.061_bib43) 2011; 22 Laird (10.1016/j.neuroimage.2017.06.061_bib25) 2005; 25 Varoquaux (10.1016/j.neuroimage.2017.06.061_bib51) 2017; 145 Dansereau (10.1016/j.neuroimage.2017.06.061_bib11) 2017; 149 Pinel (10.1016/j.neuroimage.2017.06.061_bib34) 2007; 8 Haynes (10.1016/j.neuroimage.2017.06.061_bib19) 2006; 7 Pereira (10.1016/j.neuroimage.2017.06.061_bib33) 2009; 45 Bengio (10.1016/j.neuroimage.2017.06.061_bib4) 2004; 5 Yahata (10.1016/j.neuroimage.2017.06.061_bib57) 2016; 7 Norman (10.1016/j.neuroimage.2017.06.061_bib30) 2006; 10 Michel (10.1016/j.neuroimage.2017.06.061_bib27) 2012; 45 Smith (10.1016/j.neuroimage.2017.06.061_bib45) 2015; 18 Little (10.1016/j.neuroimage.2017.06.061_bib26) 2017; 6 Skocik (10.1016/j.neuroimage.2017.06.061_bib44) 2016 Varoquaux (10.1016/j.neuroimage.2017.06.061_bib50) 2012 Saxe (10.1016/j.neuroimage.2017.06.061_bib41) 2006; 30 Costafreda (10.1016/j.neuroimage.2017.06.061_bib10) 2009; 3 Button (10.1016/j.neuroimage.2017.06.061_bib8) 2013; 14 Yarkoni (10.1016/j.neuroimage.2017.06.061_bib58) 2016 Kay (10.1016/j.neuroimage.2017.06.061_bib23) 2008; 452 Pereira (10.1016/j.neuroimage.2017.06.061_bib32) 2011; 56 Haxby (10.1016/j.neuroimage.2017.06.061_bib17) 2001; 293 Van Essen (10.1016/j.neuroimage.2017.06.061_bib49) 2013; 80 Dwork (10.1016/j.neuroimage.2017.06.061_bib14) 2015; 349 Stelzer (10.1016/j.neuroimage.2017.06.061_bib46) 2013; 65 Kriegeskorte (10.1016/j.neuroimage.2017.06.061_bib24) 2006; 103 Poldrack (10.1016/j.neuroimage.2017.06.061_bib36) 2013; 7 Hastie (10.1016/j.neuroimage.2017.06.061_bib16) 2009 Szucs (10.1016/j.neuroimage.2017.06.061_bib47) 2016 Rosenthal (10.1016/j.neuroimage.2017.06.061_bib39) 1979; 86 |
| References_xml | – volume: 63 start-page: 289 year: 2012 end-page: 300 ident: bib9 article-title: The secret lives of experiments: methods reporting in the fmri literature publication-title: Neuroimage – volume: 30 start-page: 1088 year: 2006 end-page: 1096 ident: bib41 article-title: Divide and conquer: a defense of functional localizers publication-title: Neuroimage – volume: 21 start-page: 1641 year: 2011 ident: bib29 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. – volume: 57 start-page: 328 year: 2015 ident: bib55 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. – volume: 4 start-page: 40 year: 2010 ident: bib3 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – year: 2016 ident: bib44 article-title: I Tried a Bunch of Things: the Dangers of Unexpected Overfitting in Classification – volume: 149 start-page: 220 year: 2017 end-page: 232 ident: bib11 article-title: Statistical power and prediction accuracy in multisite resting-state fmri connectivity publication-title: NeuroImage – volume: 65 start-page: 69 year: 2013 end-page: 82 ident: bib46 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (mvpa): random permutations and cluster size control publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib49 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage – year: 2016 ident: bib58 article-title: Choosing Prediction over Explanation in Psychology: Lessons from machine Learning – volume: 7 start-page: 12 year: 2013 ident: bib36 article-title: Toward open sharing of task-based fmri data: the openfmri project publication-title: Front. Neuroinform. – volume: 97 start-page: 333 year: 2014 end-page: 348 ident: bib59 article-title: Individualized gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects publication-title: NeuroImage – volume: 5 start-page: 1089 year: 2004 ident: bib4 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. – volume: 349 start-page: 636 year: 2015 ident: bib14 article-title: The reusable holdout: preserving validity in adaptive data analysis publication-title: Science – volume: 19 start-page: 640 year: 2008 end-page: 648 ident: bib22 article-title: Why most discovered true associations are inflated publication-title: Epidemiology – volume: 45 start-page: S199 year: 2009 ident: bib33 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage – volume: 6 start-page: 1 year: 2017 end-page: 6 ident: bib26 article-title: Using and understanding cross-validation strategies. perspectives on Saeb et al – volume: 86 start-page: 638 year: 1979 ident: bib39 article-title: The file drawer problem and tolerance for null results publication-title: Psychol. Bull. – volume: 10 start-page: 424 year: 2006 ident: bib30 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. – volume: 7 start-page: 1 year: 2016 ident: bib57 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: NATURE – volume: 293 start-page: 2425 year: 2001 ident: bib17 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 20 start-page: 374 year: 2004 end-page: 380 ident: bib6 article-title: Is cross-validation valid for small-sample microarray classification? publication-title: Bioinformatics – volume: 56 start-page: 476 year: 2011 ident: bib32 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage – volume: 7 start-page: 523 year: 2006 ident: bib19 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib13 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. psychiatry – volume: 368 start-page: 1388 year: 2013 ident: bib54 article-title: An fMRI-based neurologic signature of physical pain publication-title: N. Engl. J. Med. – year: 2007 ident: bib31 article-title: Statistical Parametric Mapping: the Analysis of Functional Brain Images – volume: 8 start-page: 153 year: 2014 end-page: 182 ident: bib48 article-title: The enigma consortium: large-scale collaborative analyses of neuroimaging and genetic data publication-title: Brain Imaging Behav. – year: 2012 ident: bib50 article-title: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering publication-title: ICML – volume: 2 start-page: e124 year: 2005 ident: bib21 article-title: Why most published research findings are false publication-title: PLOS Med. – volume: 20 start-page: 1364 year: 2009 ident: bib38 article-title: Decoding the large-scale structure of brain function by classifying mental states across individuals publication-title: Psychol. Sci. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: bib23 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 4 start-page: 274 year: 2009 ident: bib53 article-title: Puzzlingly high correlations in fmri studies of emotion, personality, and social cognition publication-title: Perspect. Psychol. Sci. – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: bib28 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nat. Neurosci. – volume: 22 start-page: 1359 year: 2011 ident: bib43 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. – volume: 3 start-page: 33 year: 2009 ident: bib10 article-title: Pooling fmri data: meta-analysis, mega-analysis and multi-center studies publication-title: Front. Neuroinformatics – volume: 17 start-page: 1510 year: 2014 end-page: 1517 ident: bib37 article-title: Making big data open: data sharing in neuroimaging publication-title: Nat. Neurosci. – year: 2017 ident: bib40 article-title: The Need to Approximate the Use-case in Clinical machine Learning – volume: 9 start-page: 8 year: 2015 ident: bib15 article-title: Neurovault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinform. – volume: 8 start-page: 91 year: 2007 ident: bib34 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib2 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: NeuroImage – volume: 107 start-page: 4734 year: 2010 ident: bib5 article-title: Toward discovery science of human brain function publication-title: Proc. Ntl Acad. Sci. – volume: 18 start-page: 115 year: 2017 ident: bib35 article-title: Scanning the horizon: future challenges for neuroimaging research publication-title: Nat. Rev. Neurosci. – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib56 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – year: 2016 ident: bib47 article-title: Empirical Assessment of Published Effect Sizes and Power in the Recent Cognitive Neuroscience and Psychology Literature – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bib18 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 14 start-page: 365 year: 2013 end-page: 376 ident: bib8 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 25 start-page: 155 year: 2005 end-page: 164 ident: bib25 article-title: Ale meta-analysis: controlling the false discovery rate and performing statistical contrasts publication-title: Hum. Brain Mapp. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib45 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – volume: 3 start-page: 28 year: 2014 ident: bib52 article-title: How machine learning is shaping cognitive neuroimaging publication-title: GigaScience – volume: 103 start-page: 3863 year: 2006 ident: bib24 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 45 start-page: 2041 year: 2012 end-page: 2049 ident: bib27 article-title: A supervised clustering approach for fmri-based inference of brain states publication-title: Pattern Recognit. – start-page: 1 year: 2014 end-page: 6 ident: bib42 article-title: The tenth annual mlsp competition: schizophrenia classification challenge publication-title: Machine Learning for Signal Processing (MLSP) – year: 2016 ident: bib7 article-title: Machine Learning on Human Connectome Data from mri – year: 2016 ident: bib20 article-title: Recursive Nearest Agglomeration (Rena): Fast Clustering for Approximation of Structured Signals – year: 2009 ident: bib16 article-title: The Elements of Statistical Learning – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: bib51 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage – volume: 45 start-page: S199 year: 2009 ident: 10.1016/j.neuroimage.2017.06.061_bib33 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 9 start-page: 8 year: 2015 ident: 10.1016/j.neuroimage.2017.06.061_bib15 article-title: Neurovault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinform. doi: 10.3389/fninf.2015.00008 – year: 2007 ident: 10.1016/j.neuroimage.2017.06.061_bib31 – volume: 7 start-page: 12 year: 2013 ident: 10.1016/j.neuroimage.2017.06.061_bib36 article-title: Toward open sharing of task-based fmri data: the openfmri project publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00012 – year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib58 – volume: 21 start-page: 1641 year: 2011 ident: 10.1016/j.neuroimage.2017.06.061_bib29 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib40 – volume: 25 start-page: 155 year: 2005 ident: 10.1016/j.neuroimage.2017.06.061_bib25 article-title: Ale meta-analysis: controlling the false discovery rate and performing statistical contrasts publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20136 – start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib42 article-title: The tenth annual mlsp competition: schizophrenia classification challenge – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib2 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neuroimage.2017.06.061_bib18 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 18 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib35 article-title: Scanning the horizon: future challenges for neuroimaging research publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.167 – volume: 22 start-page: 1359 year: 2011 ident: 10.1016/j.neuroimage.2017.06.061_bib43 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. doi: 10.1177/0956797611417632 – volume: 3 start-page: 28 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib52 article-title: How machine learning is shaping cognitive neuroimaging publication-title: GigaScience doi: 10.1186/2047-217X-3-28 – volume: 56 start-page: 476 year: 2011 ident: 10.1016/j.neuroimage.2017.06.061_bib32 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.026 – volume: 8 start-page: 91 year: 2007 ident: 10.1016/j.neuroimage.2017.06.061_bib34 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. doi: 10.1186/1471-2202-8-91 – volume: 368 start-page: 1388 year: 2013 ident: 10.1016/j.neuroimage.2017.06.061_bib54 article-title: An fMRI-based neurologic signature of physical pain publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1204471 – volume: 2 start-page: e124 year: 2005 ident: 10.1016/j.neuroimage.2017.06.061_bib21 article-title: Why most published research findings are false publication-title: PLOS Med. doi: 10.1371/journal.pmed.0020124 – volume: 5 start-page: 1089 year: 2004 ident: 10.1016/j.neuroimage.2017.06.061_bib4 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.neuroimage.2017.06.061_bib3 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – volume: 63 start-page: 289 year: 2012 ident: 10.1016/j.neuroimage.2017.06.061_bib9 article-title: The secret lives of experiments: methods reporting in the fmri literature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.07.004 – volume: 86 start-page: 638 year: 1979 ident: 10.1016/j.neuroimage.2017.06.061_bib39 article-title: The file drawer problem and tolerance for null results publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.3.638 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib13 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. psychiatry doi: 10.1038/mp.2013.78 – volume: 19 start-page: 1523 issue: 11 year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib28 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.neuroimage.2017.06.061_bib23 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.neuroimage.2017.06.061_bib12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2017.06.061_bib19 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – volume: 149 start-page: 220 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib11 article-title: Statistical power and prediction accuracy in multisite resting-state fmri connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.072 – volume: 10 start-page: 424 year: 2006 ident: 10.1016/j.neuroimage.2017.06.061_bib30 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib44 – volume: 45 start-page: 2041 year: 2012 ident: 10.1016/j.neuroimage.2017.06.061_bib27 article-title: A supervised clustering approach for fmri-based inference of brain states publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.006 – volume: 293 start-page: 2425 year: 2001 ident: 10.1016/j.neuroimage.2017.06.061_bib17 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib26 – year: 2012 ident: 10.1016/j.neuroimage.2017.06.061_bib50 article-title: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2017.06.061_bib49 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 19 start-page: 640 year: 2008 ident: 10.1016/j.neuroimage.2017.06.061_bib22 article-title: Why most discovered true associations are inflated publication-title: Epidemiology doi: 10.1097/EDE.0b013e31818131e7 – volume: 20 start-page: 365 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib56 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib47 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 97 start-page: 333 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib59 article-title: Individualized gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.018 – volume: 14 start-page: 365 year: 2013 ident: 10.1016/j.neuroimage.2017.06.061_bib8 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 20 start-page: 1364 year: 2009 ident: 10.1016/j.neuroimage.2017.06.061_bib38 article-title: Decoding the large-scale structure of brain function by classifying mental states across individuals publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.2009.02460.x – volume: 18 start-page: 1565 year: 2015 ident: 10.1016/j.neuroimage.2017.06.061_bib45 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 30 start-page: 1088 year: 2006 ident: 10.1016/j.neuroimage.2017.06.061_bib41 article-title: Divide and conquer: a defense of functional localizers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.062 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib57 article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder publication-title: NATURE – volume: 3 start-page: 33 year: 2009 ident: 10.1016/j.neuroimage.2017.06.061_bib10 article-title: Pooling fmri data: meta-analysis, mega-analysis and multi-center studies publication-title: Front. Neuroinformatics doi: 10.3389/neuro.11.033.2009 – volume: 17 start-page: 1510 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib37 article-title: Making big data open: data sharing in neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.3818 – volume: 4 start-page: 274 year: 2009 ident: 10.1016/j.neuroimage.2017.06.061_bib53 article-title: Puzzlingly high correlations in fmri studies of emotion, personality, and social cognition publication-title: Perspect. Psychol. Sci. doi: 10.1111/j.1745-6924.2009.01125.x – volume: 57 start-page: 328 year: 2015 ident: 10.1016/j.neuroimage.2017.06.061_bib55 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.08.001 – volume: 349 start-page: 636 year: 2015 ident: 10.1016/j.neuroimage.2017.06.061_bib14 article-title: The reusable holdout: preserving validity in adaptive data analysis publication-title: Science doi: 10.1126/science.aaa9375 – volume: 145 start-page: 166 year: 2017 ident: 10.1016/j.neuroimage.2017.06.061_bib51 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 103 start-page: 3863 year: 2006 ident: 10.1016/j.neuroimage.2017.06.061_bib24 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0600244103 – year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib20 – volume: 65 start-page: 69 year: 2013 ident: 10.1016/j.neuroimage.2017.06.061_bib46 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (mvpa): random permutations and cluster size control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.063 – volume: 20 start-page: 374 year: 2004 ident: 10.1016/j.neuroimage.2017.06.061_bib6 article-title: Is cross-validation valid for small-sample microarray classification? publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg419 – year: 2016 ident: 10.1016/j.neuroimage.2017.06.061_bib7 – volume: 8 start-page: 153 year: 2014 ident: 10.1016/j.neuroimage.2017.06.061_bib48 article-title: The enigma consortium: large-scale collaborative analyses of neuroimaging and genetic data publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9269-5 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neuroimage.2017.06.061_bib5 article-title: Toward discovery science of human brain function publication-title: Proc. Ntl Acad. Sci. doi: 10.1073/pnas.0911855107 – year: 2009 ident: 10.1016/j.neuroimage.2017.06.061_bib16 |
| SSID | ssj0009148 |
| Score | 2.6924677 |
| Snippet | Predictive models ground many state-of-the-art developments in statistical brain image analysis: decoding, MVPA, searchlight, or extraction of biomarkers. The... |
| SourceID | hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 68 |
| SubjectTerms | Accuracy Bioinformatics Biomarkers Brain Mapping - methods Brain Mapping - standards Cognitive ability Cognitive science Computer Science Cross-validation Decoding Experiments fMRI Humans Image processing Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Machine Learning Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Medical imaging Methodology Model selection MVPA Neuroimaging Neuroscience Psychology Reproducibility of Results Sample Size Simulation Statistical analysis Statistics |
| Title | Cross-validation failure: Small sample sizes lead to large error bars |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917305311 https://dx.doi.org/10.1016/j.neuroimage.2017.06.061 https://www.ncbi.nlm.nih.gov/pubmed/28655633 https://www.proquest.com/docview/2097510562 https://www.proquest.com/docview/1914578908 https://inria.hal.science/hal-01545002 |
| Volume | 180 |
| WOSCitedRecordID | wos000443268900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELboLkJceD8KS2UQ10iJnYcDB1RWXS2IVhUPqTfLdiYiKNssSXcP_Ho8jpOeFlXikkhOxnHssWdsf_6GkLcKjFAZg4DnymAIMx3oVECQCWBaiUIpHbpgE9lqJTabfO0X3DoPqxzGRDdQF43BNXI7Sc8zdAZS9uHyd4BRo3B31YfQmJBjZEngDrq33pPuRnF_FC7hgYii3CN5enyX44usLmyvRYBX5lg80-gm8zT5iTjJm5xQZ4zO7v_vbzwg97wbSue93jwkt2D7iNxZ-o32x2RxisULrBpWfdAlWqoKEezv6LcLVde0U0grTLvqD3S0topCdw2tEVZOoW2blmo7Y35Cfpwtvp-eBz7iQmCSmO8CZmIGPAlTBVFehqERiU5CUxgwTAuliyIsdc5CXTJIWQwlCDt_Y2XMVKaZ4vwpOdo2W3hOaM4xHlGRGtBZDJCrgtv8IgAVQpKnYkqyoaKl8XTkGBWjlgPu7JfcN5HEJpIIwUujKYlGycuekuMAmXxoSzkcObWDpLR24wDZ96Osd0t6d-NA6TdWdcaCIpv3-fyLxDTnvlqLdG1fOhm0RfoxpJN7VZmS1-Nj2_txS0dtobnqJLLzJXiW2dbns14jx0-5M8cp5y_-nflLctcW13H8RskJOdq1V_CK3DbXu6prZ2SSbTJ3FTNyPP-02Hy294-L1fqrTV2y5cx1ub97rS-3 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQGwv3McKAwyCR0uJc7NBCE1jU6e1FRJD2puxnRMtU9aMpBuCH8VvxCe3Pg31ZQ-8tj1p4pybk-98HyFvNVihEw4skNqihJlhJhbAEgHcaJFqbbxGbCKZzcTJifyyRv70szAIq-xzYpOo09LiM3K3SZcJNgMx_3Txg6FqFL5d7SU0Wrc4gl8_3Zat_nj42d3fd5wf7B_vjVmnKsBsFAYLxm3IIYi8WIMvM8-zIjKRZ1MLlhuhTZp6mZHcMxmHmIeQgXB7FJ6FXCeGa3wA6lL-7dDthFAqYsqnS5JfP2xH76KACd-XHXKoxZM1_JT5ucsSCChLGtbQ2L-uHN46RVzmdU1vU_wO7v9vy_aA3OvabLrbxsVDsgbzR-TutAMSPCb7e7gczIVZ3opK0UzniNB_T7-e66KgtUbaZFrnv6GmhQsEuihpgbB5ClVVVtToqn5Cvt3IRWyR9Xk5h21CZYB6S2lswSQhgNRp4I7nA2gPIhmLEUn6G6tsR7eOqh-F6nF1Z2rpEgpdQiHEMPZHxB8sL1rKkRVsZO87qh-pdUVAubq4gu2HwbZru9p2akXrN85VhxNFtvLx7kThZ0177irulfvRTu-dqsuRtVq65oi8Hr522Q1fWek5lJe1QvbBCGe13Xo-bSNg-KtmpjoOgmf_PvgrsjE-nk7U5HB29JxsulNv-Iz9aIesL6pLeEHu2KtFXlcvm2Cm5PtNh8FfDoCIzw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQVUvlDdLCxgEx4jEedkghKq2q1Ytq5UAqTfXdiYiVbopybYIflp_XT3OY09Fe-mBa5JxEnteTr75hpB3CgxXKQMvFMpgCzPt6YSDl3JgWvFMKe27ZhPpZMKPj8V0hVz1tTAIq-x9onPUWWXwG7ndpIsUk4GEfcg7WMR0d_zl_JeHHaTwT2vfTqNVkUP489tu35rPB7t2rd8zNt77vrPvdR0GPBNH4dxjJmIQxn6iIBC57xse69g3mQHDNFc6y_xcC-brnEHCIsiB2_0KyyOmUs0Ufgy17v9uiqTlDjY4XRD-BlFbhheHHg8C0aGIWmyZ46oszqzHQHBZ6hhEk-Cm0HjnJ2I0b0qAXSAcb_zPU_iA3O_Sb7rd2stDsgKzR2TtawcweEz2dnBqPGt-RdtsiuaqQOT-R_rtTJUlbRTSKdOm-AsNLa2B0HlFS4TTU6jrqqZa1c0T8uNWXuIpWZ1VM3hOqAixD1OWGNBpBCBUFtrxAgDlQywSPiJpv8jSdDTs2A2klD3e7lQu1EOiekiEHibBiASD5HlLRbKEjOj1SPaltjY4SBsvl5D9NMh26VibZi0p_daq7fCgyGK-v30k8ZhL220kvrQXbfWaKjvf2ciFmo7Im-G09Xr4K0vNoLpoJLISxljDbefzWWsNw61crXUShi_-Pfhrsma1Xx4dTA43ybp9ckdzHMRbZHVeX8BLcs9czoumfuXsmpKT27aCa46PkaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-validation+failure%3A+Small+sample+sizes+lead+to+large+error+bars&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Varoquaux%2C+Ga%C3%ABl&rft.date=2018-10-15&rft.issn=1053-8119&rft.volume=180&rft.spage=68&rft.epage=77&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.06.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_06_061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |