Interpretable machine learning approaches to assess the compressive strength of metakaolin blended sustainable cement mortar

The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laborat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 19414 - 30
Hlavní autori: Khan, Naseer Muhammad, Ma, Liqiang, Inqiad, Waleed Bin, Khan, Muhammad Saud, Iqbal, Imtiaz, Emad, Muhammad Zaka, Alarifi, Saad S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 03.06.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing of 0.998 followed by BR having values equal to 0.946 while MEP had the lowest testing of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn’t produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
AbstractList Abstract The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing $$\:{\text{R}}^{2}$$ of 0.998 followed by BR having $$\:{\text{R}}^{2}$$ values equal to 0.946 while MEP had the lowest testing $$\:{\text{R}}^{2}$$ of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn’t produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing of 0.998 followed by BR having values equal to 0.946 while MEP had the lowest testing of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn’t produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing $$\:{\text{R}}^{2}$$ of 0.998 followed by BR having $$\:{\text{R}}^{2}$$ values equal to 0.946 while MEP had the lowest testing $$\:{\text{R}}^{2}$$ of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn’t produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing of 0.998 followed by BR having values equal to 0.946 while MEP had the lowest testing of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn’t produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing [Formula: see text] of 0.998 followed by BR having [Formula: see text] values equal to 0.946 while MEP had the lowest testing [Formula: see text] of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn't produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing [Formula: see text] of 0.998 followed by BR having [Formula: see text] values equal to 0.946 while MEP had the lowest testing [Formula: see text] of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn't produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the construction sector. This would reduce the stress on depleting natural resources and foster a sustainable construction industry. However, the laboratory determination of 28 day compressive strength (C-S) of MK-based mortar is associated with several time and resource constraints. Thus, this study was conducted to develop reliable empirical prediction models to assess CS of MK-based mortar from its mixture proportion using machine learning algorithms like gene expression programming (GEP), extreme gradient boosting (XGB), multi expression programming (MEP), bagging regressor (BR), and AdaBoost etc. A comprehensive dataset compiled from published literature having five input parameters including water-to-binder ratio, mortar age, and maximum aggregate diameter etc. was used for this purpose. The developed models were validated by means of error metrics, residual assessment, and external validation checks which revealed that XGB is the most accurate algorithm having testing [Formula: see text] of 0.998 followed by BR having [Formula: see text] values equal to 0.946 while MEP had the lowest testing [Formula: see text] of 0.893. However, MEP and GEP algorithms expressed their output in the form of empirical equations which other black-box algorithms couldn't produce. Moreover, interpretable machine learning approaches including shapely additive explanatory analysis (SHAP), individual conditional expectation (ICE), and partial dependence plots (PDP) were conducted on the XGB model which highlighted that water-to-binder ratio and sample age are some of the most significant variables to predict the C-S of MK-based cement mortars. Finally, a graphical user interface (GUI) was made for implementation of findings of this study in the civil engineering industry.
ArticleNumber 19414
Author Iqbal, Imtiaz
Emad, Muhammad Zaka
Khan, Muhammad Saud
Alarifi, Saad S.
Khan, Naseer Muhammad
Ma, Liqiang
Inqiad, Waleed Bin
Author_xml – sequence: 1
  givenname: Naseer Muhammad
  surname: Khan
  fullname: Khan, Naseer Muhammad
  email: nmkhan@mce.nust.edu.pk
  organization: Xinjiang Key Laboratory of Coal-bearing Resources Exploration and Exploitation, Xinjiang Institute of Engineering, Key Laboratory of Xinjiang Coal Resources Green Mining (Xinjiang Institute of Engineering), Ministry of Education, Xinjiang Engineering Research Center of Green Intelligent Coal Mining, Xinjiang Institute of Engineering, Sustainable Advanced Geomechanical Engineering, Military College of Engineering, National University of Sciences and Technology, School of Mines, China University of Mining and Technology
– sequence: 2
  givenname: Liqiang
  surname: Ma
  fullname: Ma, Liqiang
  email: ckma@cumt.edu.cn
  organization: Xinjiang Key Laboratory of Coal-bearing Resources Exploration and Exploitation, Xinjiang Institute of Engineering, Key Laboratory of Xinjiang Coal Resources Green Mining (Xinjiang Institute of Engineering), Ministry of Education, Xinjiang Engineering Research Center of Green Intelligent Coal Mining, Xinjiang Institute of Engineering, School of Mines, China University of Mining and Technology
– sequence: 3
  givenname: Waleed Bin
  surname: Inqiad
  fullname: Inqiad, Waleed Bin
  organization: Department of Civil Engineering, College of Engineering & Physical Sciences, Aston University
– sequence: 4
  givenname: Muhammad Saud
  surname: Khan
  fullname: Khan, Muhammad Saud
  organization: Department of Civil Engineering, Price Faculty of Engineering, University of Manitoba
– sequence: 5
  givenname: Imtiaz
  surname: Iqbal
  fullname: Iqbal, Imtiaz
  organization: Department of Civil Engineering, College of Engineering & Physical Sciences, Aston University
– sequence: 6
  givenname: Muhammad Zaka
  surname: Emad
  fullname: Emad, Muhammad Zaka
  organization: Department of Petroleum Engineering , King Fahd University of Petroleum and Minerals
– sequence: 7
  givenname: Saad S.
  surname: Alarifi
  fullname: Alarifi, Saad S.
  organization: Department of Geology and Geophysics, College of Science, King Saud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40461508$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbQP8ABWeLCZcGfjfeEUMVHpEpc4GzN2rOJw64dbKdSJX48TraFtof64tH4fR-PPfOyOQkxYNO8ZvQ9o0J_yJKpTreUq5YywZcte9accSpVywXnJ_fi0-Y85y2tS_FOsu5FcyqpvGCK6rPmzyoUTLuEBfoRyQR24wOSESEFH9YEdrsUaxIzKZFAzphrtEFi41RdOftrJLkkDOuyIXEgUyX9gjj6QCowOHQk73MBH44XWJwwFDLFVCC9ap4PMGY8v90Xzc8vn39cfmuvvn9dXX66aq2SorSs66lSCHopewViQOs4l5IOS9tzoI5boJJ2rufC9s6BVui4Fk6g7CzTVCya1cx1EbZml_wE6cZE8OaYiGltIBVvRzTDQHvH6w8DQwmw1ACc6X5gHBWDI-vjzNrt-wmdra9JMD6APjwJfmPW8dowzoRkF10lvLslpPh7j7mYyWeL4wgB4z4bwZlSS6qZrtK3j6TbuE-h_tVRJTrKavMXzZv7Jf2r5a7LVaBngU0x54SDsb5A8fFQoR8No-YwU2aeKVNnyhxnyhzY_JH1jv6kScymXMVhjel_2U-4_gIr_eFJ
CitedBy_id crossref_primary_10_3390_buildings15132244
crossref_primary_10_3390_buildings15142530
Cites_doi 10.1007/S40789-024-00690-0
10.1016/j.mtcomm.2023.106283
10.1007/S40789-024-00679-9
10.1016/j.tws.2020.106744
10.1016/j.ijhydene.2024.04.173
10.3390/app13158889
10.12989/cac.2017.19.3.275
10.3390/ma15217432
10.1016/j.mtcomm.2024.108600
10.3390/ma14051106
10.1145/2939672.2939785
10.1016/S0169-1317(01)00040-0
10.1016/j.heliyon.2024.e25997
10.1016/J.CONBUILDMAT.2024.136217
10.3390/pr10071387
10.1007/S40789-024-00715-8
10.1007/S40789-023-00579-4/FIGURES/5
10.1016/J.ISTRUC.2023.105500
10.12989/SCS.2022.44.3.309
10.1007/S40789-023-00644-Y
10.32604/cmes.2023.029392
10.1007/S40789-024-00735-4
10.1613/jair.1.11854
10.3390/APP112210826
10.1016/j.icheatmasstransfer.2021.105661
10.1016/j.clay.2011.06.008
10.1061/(ASCE)0899-1561(2006)18:4(619)
10.3390/ma14206094
10.1007/S00521-023-09384-1
10.1016/S0008-8846(03)00090-5
10.1007/S40789-024-00701-0
10.1007/S40789-024-00704-X
10.1007/S40789-024-00667-Z/FIGURES/20
10.1007/S40789-024-00694-W
10.1016/J.ADVENGSOFT.2023.103454
10.3390/MA16020583
10.1007/S40789-024-00702-Z
10.1016/j.jobe.2024.110417
10.1007/S40789-023-00595-4
10.1016/J.MTCOMM.2023.105793
10.1038/s41598-024-69271-0
10.1016/j.engfracmech.2022.108914
10.1016/j.uclim.2024.101982
10.1007/S12145-024-01520-2/FIGURES/2
10.1007/S40789-023-00601-9/TABLES/6
10.1007/S40789-023-00657-7
10.1016/j.conbuildmat.2022.129534
10.1007/s41939-023-00220-6
10.1061/JENMDT.EMENG-7206
10.1016/j.asej.2021.03.018
10.1007/S40789-023-00575-8/FIGURES/12
10.1007/s00521-015-1997-6
10.1016/j.rser.2024.114683
10.1007/s00521-021-06004-8
10.1016/j.envsci.2004.12.006
10.1016/J.IJIMPENG.2017.01.011
10.1016/j.conbuildmat.2019.117000
10.1007/s12205-011-1117-9
10.1038/s41598-025-85585-z
10.1016/j.istruc.2024.107109
10.1007/S40789-024-00666-0/FIGURES/16
10.1002/SAM.11161
10.1016/J.RSER.2015.11.058
10.1016/j.jobe.2020.101326
10.1016/J.MEASUREMENT.2021.109777
10.1016/j.conbuildmat.2022.127490
10.1016/j.cscm.2021.e00703
10.1016/j.conbuildmat.2021.123642
10.1016/j.jclepro.2022.131285
10.1016/J.CONBUILDMAT.2024.136626
10.1016/j.cie.2018.02.028
10.1007/S40789-023-00588-3/TABLES/4
10.1007/s10973-005-0806-3
10.1016/J.SCP.2025.101918
10.1016/J.RINENG.2025.104089
10.1007/S40789-024-00718-5
10.1016/J.JOBE.2023.107041
10.3390/PR10071387
10.1007/S40789-025-00764-7
10.1016/j.conbuildmat.2022.126578
10.1007/s00366-019-00808-y
10.29187/jscmt.2020.43
10.1016/j.jclepro.2012.10.049
10.1038/s41598-023-47196-4
10.1016/j.mtcomm.2024.109222
10.1016/J.ADDMA.2024.104296
10.1016/J.CSCM.2024.E03745
10.1007/S40789-024-00696-8
10.1007/S40789-024-00721-W
10.1016/J.TUST.2024.105861
10.1007/S40789-023-00630-4
10.1007/S00521-021-06004-8/TABLES/6
10.3390/infrastructures9050082
10.1016/j.istruc.2023.05.140
10.1016/J.TUST.2021.103857
10.1016/j.cemconres.2021.106449
10.1016/j.cscm.2024.e04112
10.1016/J.JNGSE.2020.103644
10.1016/j.conbuildmat.2023.132464
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-01327-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 30
ExternalDocumentID oai_doaj_org_article_ff0bd2103a1e4aa78aa218bf12e51a80
PMC12134169
40461508
10_1038_s41598_025_01327_1
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c543t-19b055ea874b5a3fecd22440f7cb2a0d2ca0409db23cbdda85ed283d3e49c1803
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001520517500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:42 EDT 2025
Tue Nov 04 02:03:13 EST 2025
Fri Sep 05 15:55:50 EDT 2025
Tue Oct 07 07:50:08 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Sat Nov 29 07:47:09 EST 2025
Tue Nov 18 21:22:23 EST 2025
Wed Jun 04 01:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metakaolin
Interpretable machine learning
Cement mortar
Compressive strength
Gene expression programming
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-19b055ea874b5a3fecd22440f7cb2a0d2ca0409db23cbdda85ed283d3e49c1803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3215390101?pq-origsite=%requestingapplication%
PMID 40461508
PQID 3215390101
PQPubID 2041939
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_ff0bd2103a1e4aa78aa218bf12e51a80
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12134169
proquest_miscellaneous_3215570818
proquest_journals_3215390101
pubmed_primary_40461508
crossref_citationtrail_10_1038_s41598_025_01327_1
crossref_primary_10_1038_s41598_025_01327_1
springer_journals_10_1038_s41598_025_01327_1
PublicationCentury 2000
PublicationDate 2025-06-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 1327_CR95
1327_CR94
1327_CR97
H Dhawan (1327_CR76) 2024
G Kakali (1327_CR7) 2001; 20
WB Inqiad (1327_CR61) 2024; 39
D Lu (1327_CR34) 2017; 103
M Sun (1327_CR101) 2024
1327_CR16
A Mahanta (1327_CR77) 2024
1327_CR19
Z Fei (1327_CR50) 2023; 16
H He (1327_CR8) 2024
F Soleimani (1327_CR20) 2023
MS Khan (1327_CR86) 2025
1327_CR82
Y Ali (1327_CR45) 2021
S Lu (1327_CR92) 2024
A Sahu (1327_CR23) 2024
1327_CR84
E Badogiannis (1327_CR6) 2005; 81
1327_CR85
L He (1327_CR104) 2024; 21
J Yu (1327_CR5) 2021
1327_CR89
A Sarkar (1327_CR70) 2024
ZM Alhakeem (1327_CR88) 2022
L He (1327_CR54) 2024
S Qin (1327_CR22) 2023
1327_CR4
M Wasim (1327_CR14) 2021
F Amoih (1327_CR102) 2024
E Elfadaly (1327_CR11) 2025; 44
RH Faraj (1327_CR37) 2024; 138
1327_CR2
AHA Gandomi Amir (1327_CR59) 2011; 15
B Zou (1327_CR42) 2024
Z Han (1327_CR21) 2024
VL Tran (1327_CR24) 2020
M Wang (1327_CR28) 2023; 10
G Nakkeeran (1327_CR51) 2023; 180
A Modiga (1327_CR83) 2024; 11
A Dehestani (1327_CR44) 2022
1327_CR38
EH Kadri (1327_CR74) 2011; 53
F Aslam (1327_CR65) 2023; 54
A Rostami (1327_CR93) 2020
X Diao (1327_CR15) 2024
Z Kurt (1327_CR52) 2023; 76
RS Chen (1327_CR10) 2024
PG Asteris (1327_CR96) 2021; 33
MA Khan (1327_CR100) 2021; 14
C Liu (1327_CR12) 2021
1327_CR27
H Lu (1327_CR46) 2024
1327_CR29
AA Shahmansouri (1327_CR3) 2020
ND Hoang (1327_CR90) 2023
B Iftikhar (1327_CR81) 2022
H Izadgoshasb (1327_CR49) 2021; 11
AM Handousa (1327_CR35) 2025; 15
L Courard (1327_CR71) 2003; 33
HH Chu (1327_CR80) 2021; 12
1327_CR53
1327_CR55
1327_CR57
1327_CR56
1327_CR58
R Rehan (1327_CR1) 2005; 8
M Abdellatief (1327_CR36) 2025; 25
SK Rahman (1327_CR17) 2023
SFA Shah (1327_CR43) 2022
G Ozcan (1327_CR68) 2017; 19
F Huang (1327_CR31) 2023; 10
Y Zhang (1327_CR99) 2024
SR Al-Taai (1327_CR91) 2023
D Lu (1327_CR40) 2023
JC Hower (1327_CR98) 2025; 12
A Bushenkova (1327_CR62) 2024; 55
H Zheng (1327_CR32) 2024; 11
A Memarzadeh (1327_CR26) 2022; 44
PG Asteris (1327_CR47) 2021; 33
P Sarir (1327_CR25) 2021; 37
1327_CR72
1327_CR75
R Gayathri (1327_CR67) 2022
S Wang (1327_CR18) 2023; 10
1327_CR78
R Gayathri (1327_CR48) 2022; 10
C Qi (1327_CR30) 2018; 118
WB Inqiad (1327_CR87) 2025; 18
R Bakır (1327_CR64) 2024; 67
AA Abdalla (1327_CR73) 2024; 36
1327_CR103
1327_CR60
V Quan Tran (1327_CR105) 2022
N Wang (1327_CR66) 2023
F Saberi (1327_CR13) 2024; 11
A Çalışkan (1327_CR39) 2022
1327_CR63
Q Qi (1327_CR33) 2023; 10
1327_CR69
Z Chen (1327_CR41) 2024
MI Khan (1327_CR79) 2023; 35
Q Li (1327_CR9) 2023
References_xml – ident: 1327_CR97
  doi: 10.1007/S40789-024-00690-0
– year: 2023
  ident: 1327_CR66
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106283
– year: 2024
  ident: 1327_CR76
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00679-9
– year: 2020
  ident: 1327_CR24
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.106744
– volume: 67
  start-page: 101
  year: 2024
  ident: 1327_CR64
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.04.173
– year: 2023
  ident: 1327_CR91
  publication-title: Appl. Sci. (Switzerland)
  doi: 10.3390/app13158889
– volume: 19
  start-page: 275
  issue: 3
  year: 2017
  ident: 1327_CR68
  publication-title: Computers Concrete
  doi: 10.12989/cac.2017.19.3.275
– year: 2022
  ident: 1327_CR88
  publication-title: Materials
  doi: 10.3390/ma15217432
– year: 2024
  ident: 1327_CR41
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.108600
– volume: 14
  start-page: 1
  issue: 5
  year: 2021
  ident: 1327_CR100
  publication-title: Materials
  doi: 10.3390/ma14051106
– ident: 1327_CR60
  doi: 10.1145/2939672.2939785
– volume: 20
  start-page: 1
  year: 2001
  ident: 1327_CR7
  publication-title: Appl. Clay Sci.
  doi: 10.1016/S0169-1317(01)00040-0
– ident: 1327_CR29
  doi: 10.1016/j.heliyon.2024.e25997
– year: 2024
  ident: 1327_CR8
  publication-title: Constr. Build. Mater.
  doi: 10.1016/J.CONBUILDMAT.2024.136217
– year: 2022
  ident: 1327_CR67
  publication-title: Processes
  doi: 10.3390/pr10071387
– year: 2024
  ident: 1327_CR101
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00715-8
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 1327_CR31
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00579-4/FIGURES/5
– ident: 1327_CR95
  doi: 10.1016/J.ISTRUC.2023.105500
– volume: 44
  start-page: 309
  issue: 3
  year: 2022
  ident: 1327_CR26
  publication-title: Steel Compos. Struct.
  doi: 10.12989/SCS.2022.44.3.309
– year: 2023
  ident: 1327_CR22
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00644-Y
– volume: 138
  start-page: 2925
  issue: 3
  year: 2024
  ident: 1327_CR37
  publication-title: Comput. Model. Eng. Sci.
  doi: 10.32604/cmes.2023.029392
– year: 2024
  ident: 1327_CR77
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00735-4
– ident: 1327_CR89
  doi: 10.1613/jair.1.11854
– ident: 1327_CR56
– volume: 11
  start-page: 10826
  issue: 22
  year: 2021
  ident: 1327_CR49
  publication-title: Appl. Sci. Vol
  doi: 10.3390/APP112210826
– ident: 1327_CR57
  doi: 10.1016/j.icheatmasstransfer.2021.105661
– volume: 53
  start-page: 704
  issue: 4
  year: 2011
  ident: 1327_CR74
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.06.008
– ident: 1327_CR72
  doi: 10.1061/(ASCE)0899-1561(2006)18:4(619)
– ident: 1327_CR4
  doi: 10.3390/ma14206094
– volume: 36
  start-page: 6209
  issue: 11
  year: 2024
  ident: 1327_CR73
  publication-title: Neural Comput. Appl.
  doi: 10.1007/S00521-023-09384-1
– volume: 33
  start-page: 1473
  issue: 9
  year: 2003
  ident: 1327_CR71
  publication-title: Cem. Concr Res.
  doi: 10.1016/S0008-8846(03)00090-5
– year: 2024
  ident: 1327_CR92
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00701-0
– year: 2024
  ident: 1327_CR99
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00704-X
– volume: 11
  start-page: 1
  issue: 1
  year: 2024
  ident: 1327_CR32
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00667-Z/FIGURES/20
– year: 2024
  ident: 1327_CR46
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00694-W
– volume: 180
  start-page: 103454
  year: 2023
  ident: 1327_CR51
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/J.ADVENGSOFT.2023.103454
– volume: 16
  start-page: 583
  issue: 2
  year: 2023
  ident: 1327_CR50
  publication-title: Materials
  doi: 10.3390/MA16020583
– volume: 11
  start-page: 65
  issue: 1
  year: 2024
  ident: 1327_CR83
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00702-Z
– ident: 1327_CR85
  doi: 10.1016/j.jobe.2024.110417
– ident: 1327_CR53
– ident: 1327_CR19
  doi: 10.1007/S40789-023-00595-4
– volume: 35
  start-page: 105793
  year: 2023
  ident: 1327_CR79
  publication-title: Mater. Today Commun.
  doi: 10.1016/J.MTCOMM.2023.105793
– ident: 1327_CR84
  doi: 10.1038/s41598-024-69271-0
– year: 2022
  ident: 1327_CR44
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108914
– volume: 55
  start-page: 101982
  year: 2024
  ident: 1327_CR62
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2024.101982
– volume: 18
  start-page: 1
  issue: 1
  year: 2025
  ident: 1327_CR87
  publication-title: Earth Sci. Inf.
  doi: 10.1007/S12145-024-01520-2/FIGURES/2
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 1327_CR18
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00601-9/TABLES/6
– year: 2023
  ident: 1327_CR20
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00657-7
– year: 2022
  ident: 1327_CR43
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129534
– year: 2023
  ident: 1327_CR90
  publication-title: Multiscale Multidisciplinary Model. Experiments Des.
  doi: 10.1007/s41939-023-00220-6
– year: 2023
  ident: 1327_CR40
  publication-title: J. Eng. Mech.
  doi: 10.1061/JENMDT.EMENG-7206
– ident: 1327_CR58
– volume: 12
  start-page: 3603
  issue: 4
  year: 2021
  ident: 1327_CR80
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.03.018
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 1327_CR28
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00575-8/FIGURES/12
– ident: 1327_CR82
  doi: 10.1007/s00521-015-1997-6
– ident: 1327_CR16
  doi: 10.1016/j.rser.2024.114683
– volume: 33
  start-page: 13089
  year: 2021
  ident: 1327_CR96
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06004-8
– volume: 8
  start-page: 105
  issue: 2
  year: 2005
  ident: 1327_CR1
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2004.12.006
– volume: 103
  start-page: 124
  year: 2017
  ident: 1327_CR34
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/J.IJIMPENG.2017.01.011
– ident: 1327_CR63
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 15
  start-page: 363
  issue: 2
  year: 2011
  ident: 1327_CR59
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-011-1117-9
– ident: 1327_CR55
– volume: 15
  start-page: 1
  issue: 1
  year: 2025
  ident: 1327_CR35
  publication-title: Sci. Rep. Vol
  doi: 10.1038/s41598-025-85585-z
– ident: 1327_CR75
– year: 2024
  ident: 1327_CR10
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.107109
– volume: 11
  start-page: 1
  issue: 1
  year: 2024
  ident: 1327_CR13
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00666-0/FIGURES/16
– ident: 1327_CR69
– ident: 1327_CR78
  doi: 10.1002/SAM.11161
– ident: 1327_CR94
  doi: 10.1016/J.RSER.2015.11.058
– year: 2020
  ident: 1327_CR3
  publication-title: J. Building Eng.
  doi: 10.1016/j.jobe.2020.101326
– year: 2021
  ident: 1327_CR5
  publication-title: Meas. (Lond)
  doi: 10.1016/J.MEASUREMENT.2021.109777
– year: 2022
  ident: 1327_CR39
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127490
– year: 2021
  ident: 1327_CR14
  publication-title: Case Stud. Constr. Mater.
  doi: 10.1016/j.cscm.2021.e00703
– year: 2021
  ident: 1327_CR45
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123642
– year: 2022
  ident: 1327_CR81
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131285
– year: 2024
  ident: 1327_CR15
  publication-title: Constr. Build. Mater.
  doi: 10.1016/J.CONBUILDMAT.2024.136626
– volume: 118
  start-page: 112
  year: 2018
  ident: 1327_CR30
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.02.028
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 1327_CR33
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00588-3/TABLES/4
– volume: 81
  start-page: 457
  issue: 2
  year: 2005
  ident: 1327_CR6
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-0806-3
– volume: 44
  start-page: 101918
  year: 2025
  ident: 1327_CR11
  publication-title: Sustain. Chem. Pharm.
  doi: 10.1016/J.SCP.2025.101918
– volume: 25
  start-page: 104089
  year: 2025
  ident: 1327_CR36
  publication-title: Results Eng.
  doi: 10.1016/J.RINENG.2025.104089
– year: 2024
  ident: 1327_CR21
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00718-5
– volume: 76
  start-page: 107041
  year: 2023
  ident: 1327_CR52
  publication-title: J. Building Eng.
  doi: 10.1016/J.JOBE.2023.107041
– volume: 10
  start-page: 1387
  issue: 7
  year: 2022
  ident: 1327_CR48
  publication-title: Processes
  doi: 10.3390/PR10071387
– volume: 12
  start-page: 22
  issue: 1
  year: 2025
  ident: 1327_CR98
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-025-00764-7
– year: 2022
  ident: 1327_CR105
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126578
– volume: 37
  start-page: 1
  issue: 1
  year: 2021
  ident: 1327_CR25
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00808-y
– ident: 1327_CR38
  doi: 10.29187/jscmt.2020.43
– ident: 1327_CR2
  doi: 10.1016/j.jclepro.2012.10.049
– year: 2023
  ident: 1327_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-47196-4
– volume: 39
  start-page: 109222
  year: 2024
  ident: 1327_CR61
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2024.109222
– year: 2024
  ident: 1327_CR54
  publication-title: Addit. Manuf.
  doi: 10.1016/J.ADDMA.2024.104296
– volume: 21
  start-page: e03745
  year: 2024
  ident: 1327_CR104
  publication-title: Case Stud. Constr. Mater.
  doi: 10.1016/J.CSCM.2024.E03745
– year: 2024
  ident: 1327_CR102
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00696-8
– year: 2024
  ident: 1327_CR70
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-024-00721-W
– year: 2024
  ident: 1327_CR42
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/J.TUST.2024.105861
– year: 2024
  ident: 1327_CR23
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/S40789-023-00630-4
– volume: 33
  start-page: 13089
  year: 2021
  ident: 1327_CR47
  publication-title: Neural Comput. Appl.
  doi: 10.1007/S00521-021-06004-8/TABLES/6
– ident: 1327_CR27
  doi: 10.3390/infrastructures9050082
– volume: 54
  start-page: 1717
  year: 2023
  ident: 1327_CR65
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.05.140
– year: 2021
  ident: 1327_CR12
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/J.TUST.2021.103857
– ident: 1327_CR103
  doi: 10.1016/j.cemconres.2021.106449
– year: 2025
  ident: 1327_CR86
  publication-title: Case Stud. Constr. Mater.
  doi: 10.1016/j.cscm.2024.e04112
– year: 2020
  ident: 1327_CR93
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/J.JNGSE.2020.103644
– year: 2023
  ident: 1327_CR17
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.132464
SSID ssj0000529419
Score 2.4623513
Snippet The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the...
Abstract The use of naturally available materials such as metakaolin (MK) can greatly reduce the utilization of emission intensive materials like cement in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19414
SubjectTerms 639/166
704/172/4081
Algorithms
Cement
Cement mortar
Civil engineering
Compressive strength
Construction industry
Gene expression
Gene expression programming
Green development
Humanities and Social Sciences
Interpretable machine learning
Learning algorithms
Machine learning
Metakaolin
multidisciplinary
Natural resources
Prediction models
Resource depletion
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJvQgozEDaI6cbK2j4CoOKCKA6DerIkfbUU3W23SSkj8-M7Y2d0uzwvX2HEmnhnNjGf8DWMvVQemig2UUQIGKITeqtFKl8aBUrLVzqdeh18_qsNDfXRkPl1r9UU1YRkeOG_cfoyi8xiX4FKhAVAaAK1SF6s6tBXoFK0LZa4FUxnVuzZNZaZbMkLq_QEtFd0mq6lWTdaqrLYsUQLs_52X-Wux5E8Z02SIDu6yO5MHyd9kyu-xG6G_z27lnpLfH7AfmzLC7izweSqWDHzqDnHMVyDiYeDjgkPK-XL0AjkVl6ei2MvA6QZJfzye8EXkc1zpG1BvH44L0oE5Hza3rrhL54t8Tm788iH7cvD-87sP5dRioXRtI8eyMp1o2wBaNV0LMgbkDRp8EZXrahC-doBabnxXS9d5D7oNHh0SL0NjXKWFfMR2-kUfnjDuG9Ng-CRCHSVh1BgI0XiQkpyKmQsFq1bbbd2EP05tMM5syoNLbTOLLLLIJhbZqmCv1u-cZ_SNv85-S1xczyTk7PQA5clO8mT_JU8F21vJgJ3UebD0D3Q4JPAbL9bDqIiUXYE-LC7ynFYRQmDBHmeRWVPSEKw9usIF01vCtEXq9kh_epLAvjPk3swU7PVK7jZ0_Xkvnv6Pvdhlt-ukMLNSyD22My4vwjN2012Op8PyedK4K4OCMHs
  priority: 102
  providerName: Directory of Open Access Journals
Title Interpretable machine learning approaches to assess the compressive strength of metakaolin blended sustainable cement mortar
URI https://link.springer.com/article/10.1038/s41598-025-01327-1
https://www.ncbi.nlm.nih.gov/pubmed/40461508
https://www.proquest.com/docview/3215390101
https://www.proquest.com/docview/3215570818
https://pubmed.ncbi.nlm.nih.gov/PMC12134169
https://doaj.org/article/ff0bd2103a1e4aa78aa218bf12e51a80
Volume 15
WOSCitedRecordID wos001520517500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFyQuvAuBsjISN4gax8naPiGKWoFEVxECtJwix3a2Fd2kbNJKSPx4PM5jtTx64eJD7FhOZux5-huAF7xQkpaJCkumnIGC6K3CSelQasU5S4U2vtbhlw98PheLhcx6h1vTp1UOZ6I_qE2t0Ue-z5xsQvs8oq_Pv4dYNQqjq30JjeswwbLZyOd8wUcfC0axEir7uzIRE_uNk1d4pyzGjDUW85BuySMP2_83XfPPlMnf4qZeHB3d-d8PuQu3e0WUvOk45x5cs9V9uNmVpvzxAH5ushGLM0tWPufSkr7IxJIMWOS2IW1NlA8dE6dMEsxR97m1l5bgRZRq2Z6QuiQrN9M3hSWCiJsQ_e6k2VzeItq7KckKrYH1Q_h8dPjp7buwr9QQ6jRhbUhlEaWpVYInRapYaR2Jnd4QlVwXsYpMrJU7LKQpYqYLY5RIrXF6jWE2kZqKiO3CTlVX9jEQk8jEWWGRjUuGUDdS2VIaxfC30Zm2AdCBXrnuYcyxmsZZ7sPpTOQdjXNH49zTOKcBvBzfOe9APK4cfYBsMI5EAG7_oF4v834_52UZFcaZy47DbaIUF0o5ZakoaWxTqkQUwN5A_bw_FZp8Q_oAno_dbj9jkEZVtr7oxqQcgQYDeNTx3LiSBNHxnUYdgNjixq2lbvdUpyceM7xD7pvJAF4NjLtZ17__xZOrP-Mp3Ir9XpqFEduDnXZ9YZ_BDX3Znjbrqd-MvhVTmBwczrOPU-_zcO1xnGHLXTvJ3h9nX38BbVFEvw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0T1I9nYB4R4VV11u-qhoPZkHNvZVnSTstkWVeI38RuxnWRXy6O3HrjGjmUnn2c8nplvAJ5nuRKkSFRcMOUMFM_eyp2WjoVWWcZSrk2odfh5mI1GfG9P7KzAzy4XxodVdjIxCGpTaX9Hvs6cbvL2OSZvjr_FvmqU9652JTQaWGzZs-_OZKtfDz64__uC0o2Pu-8347aqQKzThM1iInKcplbxLMlTxQrrpuN0HC4ynVOFDdXKAVuYnDKdG6N4ao3TwYbZRGjCMXPjXoLVxIEd92B1Z7C9sz-_1fF-s4SINjsHM75eOw3ps9ioj5FjNIvJkgYMhQL-drr9M0jzN09tUIAbN_63T3cTrrdHbfS22Ru3YMWWt-FKU3zz7A78WMRb5kcWTUJUqUVtGY0x6tjWbY1mFVLBOY7ccRn5KPwQPXxqkU-1KcezA1QVaOJG-qp8ESTkBvSeBVQv0tOQDhexaOLtneld-HQhS78HvbIq7QNAJhGJszOxpQXzZD5C2UIYxfxvIn1tIyAdPqRuidp9vZAjGQIGGJcNpqTDlAyYkiSCl_N3jhuaknN7v_Owm_f0FOPhQTUdy1ZiyaLAuaFuBEVsolTGlXLHwbwg1KZEcRzBWoc22cq9Wi6gFsGzebOTWN4NpUpbnTR90sxTKUZwv8H4fCaJ5_93NkMEfAn9S1NdbikPDwIresNN2BcRvOo2ymJe__4WD89fxlO4urm7PZTDwWjrEVyjYR_3Y8zWoDebntjHcFmfzg7r6ZNWFCD4ctFb6Be4Pp27
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCE0Qb28nGPiBEaVdUrVYrBKg34_ixregmZbMtqsQv49dhO8mulkdvPXBNHMtJvpnxeB4fwPO8kBzbVMaWSueg-O6tzFnpmCuZ5zRjSgeuw897-WjE9vf5eA1-drUwPq2y04lBUetK-TPyPnW2yfvnCe7bNi1ivDV8c_wt9gxSPtLa0Wk0ENk1Z9-d-1a_3tly__oFIcPtj-_exy3DQKyylM5jzIsky4xkeVpkklrjlubsXWJzVRCZaKKkAznXBaGq0FqyzGhnjzU1KVeYJdTNewnWc-qcnh6sb26Pxh8WJzw-hpZi3lbqJJT1a2ctfUUb8flylOQxXrGGgTTgbzvdPxM2f4vaBmM4vPE_f8abcL3dgqO3jczcgjVT3oYrDSnn2R34sczDLI4MmoZsU4Naeo0J6rqwmxrNKyRD0By5bTTy2fkhq_jUIF-CU07mB6iyaOpm-io9ORJyE_qIA6qXZWtIhQNaNPV-0OwufLqQV78HvbIqzQNAOuWp8z8TQyz1TX64NJZrSf0vwwNlIsAdVoRqG7h7HpEjERIJKBMNvoTDlwj4EjiCl4tnjpv2JeeO3vQQXIz0rcfDhWo2Ea0mE9YmhSZuBolNKmXOpHTbxMJiYjIsWRLBRoc80erDWixhF8GzxW2nyXx4SpamOmnGZLlvsRjB_Qbvi5WknhfA-RIRsBVJWFnq6p3y8CB0S296Fg54BK86oVmu69_f4uH5r_EUrjq5EXs7o91HcI0EkR7ECd2A3nx2Yh7DZXU6P6xnT1qtgODLRUvQL92DplU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+machine+learning+approaches+to+assess+the+compressive+strength+of+metakaolin+blended+sustainable+cement+mortar&rft.jtitle=Scientific+reports&rft.au=Khan%2C+Naseer+Muhammad&rft.au=Ma%2C+Liqiang&rft.au=Inqiad%2C+Waleed+Bin&rft.au=Khan%2C+Muhammad+Saud&rft.date=2025-06-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-01327-1&rft_id=info%3Apmid%2F40461508&rft.externalDocID=PMC12134169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon