Longitudinal observation of psychophysiological data as a novel approach to personalised postural defect rehabilitation
Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and da...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 15; číslo 1; s. 8382 - 15 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
11.03.2025
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation. |
|---|---|
| AbstractList | Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation. Abstract Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation. Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups-a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process's quality, duration, and effectiveness. Physiological features determine the patient's involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups-a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process's quality, duration, and effectiveness. Physiological features determine the patient's involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation. |
| ArticleNumber | 8382 |
| Author | Kania, Damian Romaniszyn-Kania, Patrycja Pollak, Anita Mitas, Andrzej W. |
| Author_xml | – sequence: 1 givenname: Patrycja surname: Romaniszyn-Kania fullname: Romaniszyn-Kania, Patrycja email: patrycja.romaniszyn-kania@polsl.pl organization: Faculty of Biomedical Engineering, Silesian University of Technology – sequence: 2 givenname: Anita surname: Pollak fullname: Pollak, Anita organization: Institute of Psychology, University of Silesia in Katowice – sequence: 3 givenname: Damian surname: Kania fullname: Kania, Damian organization: Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice – sequence: 4 givenname: Andrzej W. surname: Mitas fullname: Mitas, Andrzej W. organization: Faculty of Biomedical Engineering, Silesian University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40069355$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1vFCEYxiemxtbaf8CDIfHiZZTvgZMxjR9NNvGiZwIM7LKZHUZgtmn_eunOVtseygXyvs_zywO8r5uTMY6uad4i-BFBIj5lipgULcSslZhw0d6-aM4wpKzFBOOTB-fT5iLnLayLYUmRfNWcUgi5JIydNderOK5Dmfsw6gFEk13a6xLiCKIHU76xmzhtbnKIQ1wHWyW9LhroDDQY494NQE9TitpuQIlgcinHygnZ9WCKuczpzuG8swUkt9EmDKEc8G-al14P2V0c9_Pm97evvy5_tKuf368uv6xayygpLaJeeMsZlMYbwbznFPVEop4SKK0UGAtvpO9oTwyR3NhaNo566TCnpkfkvLlauH3UWzWlsNPpRkUd1KEQ01rpVIIdnOqo5Nz1wlJnqZFQQsIpYxDWBhNYVtbnhTXNZud668ZS7_cI-rgzho1ax71CSMgOdaISPhwJKf6ZXS5qF7J1w6BHF-esCOo4obgjXZW-fyLdxjnVx11UCGPIcVW9exjpX5b7D64CsQhsijkn55U9_kBNGAaFoLobJ7WMk6rjpA7jpG6rFT-x3tOfNZHFlKt4XLv0P_Yzrr8hl99Q |
| CitedBy_id | crossref_primary_10_3390_app15126840 |
| Cites_doi | 10.1007/BF02344719 10.1016/j.bspc.2019.101646 10.1007/s10055-024-00989-y 10.1016/S0079-6123(00)26011-1 10.3389/fphys.2022.960118 10.1109/TIM.2024.3420349 10.3390/s20020479 10.1007/978-3-030-49666-1_13 10.1016/S0025-6196(12)62272-1 10.31254/jmr.2020.6517 10.1109/ACII.2017.8273620 10.1038/s41598-020-72289-9 10.1007/978-1-4899-0643-4_4 10.1016/j.procs.2020.04.213 10.1007/978-3-319-59063-9_55 10.1109/ICACC.2013.97. 10.1145/2960413 10.1109/TIM.2024.3369130 10.3390/s21031018 10.38094/jastt20165 10.1109/ACCESS.2023.3273303 10.1007/s12559-023-10200-0 10.1080/01621459.1977.10479905 10.3390/s23041807 10.2478/bhk-2020-0004 10.1080/10447318.2022.2116530 10.1007/s12124-023-09781-0 10.30849/rip/ijp.v5i3&4.620 10.4184/asj.2016.10.6.1163 10.1186/s12984-024-01501-y 10.1007/s11227-022-05026-w 10.1007/978-3-030-49666-1_16 10.1109/TBME.2015.2474131 10.3390/s20144037 10.1186/1748-7161-2-1 10.1007/978-1-4899-7641-3_9 10.1016/j.compbiomed.2022.105327 10.3390/s23073565 10.1109/TAFFC.2023.3265433 10.1149/10701.12535ecst 10.1016/j.jbi.2017.08.006 10.3390/s20123510 10.1007/978-1-4614-1126-0 10.3390/s20216343 10.1109/SII55687.2023.10039222 10.4135/9780857020994.n20 10.1016/j.knosys.2019.104886 10.1007/s11760-023-02606-y 10.1109/SAMI.2013.6480971 10.1016/j.newideapsych.2019.100755 10.3390/app13116368 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-92368-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_74966ed8c4ec4b909036455007495829 PMC11897178 40069355 10_1038_s41598_025_92368_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Silesian University of Technology statutory financial support grantid: BK-290/RIB1/2023; BK-290/RIB1/2023 – fundername: Silesian University of Technology statutory financial support grantid: BK-290/RIB1/2023 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PJZUB PPXIY PQGLB SNYQT CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c543t-14f8fc6509bfb85ff641d391d4309c98228fb9f74d3b396bc309be4f9e264bd13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442602500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Tue Nov 04 02:03:36 EST 2025 Thu Sep 04 15:53:02 EDT 2025 Tue Oct 07 07:56:07 EDT 2025 Mon Sep 15 04:48:12 EDT 2025 Tue Nov 18 22:24:37 EST 2025 Sat Nov 29 08:14:36 EST 2025 Wed Mar 12 01:31:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Emotion analysis Signal preprocessing AdaBoost Psychophysiological state analysis Machine learning Computer-assisted physiotherapy |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-14f8fc6509bfb85ff641d391d4309c98228fb9f74d3b396bc309be4f9e264bd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/74966ed8c4ec4b909036455007495829 |
| PMID | 40069355 |
| PQID | 3176122062 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_74966ed8c4ec4b909036455007495829 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11897178 proquest_miscellaneous_3176342737 proquest_journals_3176122062 pubmed_primary_40069355 crossref_citationtrail_10_1038_s41598_025_92368_z crossref_primary_10_1038_s41598_025_92368_z springer_journals_10_1038_s41598_025_92368_z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-11 |
| PublicationDateYYYYMMDD | 2025-03-11 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | S Chen (92368_CR34) 2021; 21 JA Domínguez-Jiménez (92368_CR35) 2020; 55 MN Dar (92368_CR39) 2022; 144 Y Freund (92368_CR50) 1999; 14 M Vaz (92368_CR30) 2023; 13 A Greco (92368_CR48) 2015; 63 92368_CR8 92368_CR46 92368_CR47 92368_CR44 92368_CR45 92368_CR42 92368_CR43 RB Bendel (92368_CR49) 1977; 72 92368_CR51 92368_CR52 92368_CR1 LD Frazier (92368_CR5) 2020; 57 JA Castro-García (92368_CR31) 2023 S Campanella (92368_CR26) 2023; 23 C Tamantini (92368_CR36) 2024; 21 H Wrona-Polańska (92368_CR6) 2003 92368_CR19 H Liu (92368_CR32) 2024 A Bhavan (92368_CR15) 2019; 184 Y Haque (92368_CR41) 2024; 16 E García Pagès (92368_CR40) 2023; 13 92368_CR13 RM Buijs (92368_CR9) 2000; 126 92368_CR12 P Romaniszyn-Kania (92368_CR37) 2020; 20 92368_CR10 92368_CR54 T Kotwicki (92368_CR3) 2007; 2 M Gjoreski (92368_CR21) 2017; 73 G Pinto (92368_CR29) 2020; 20 Y Masuda (92368_CR53) 2024; 58 R Lima (92368_CR56) 2024; 28 92368_CR28 H-R Weiss (92368_CR4) 2016; 10 S Dutta (92368_CR16) 2022; 107 N Nourbakhsh (92368_CR14) 2017; 7 92368_CR22 92368_CR23 P Bota (92368_CR24) 2023 A Moin (92368_CR25) 2023; 79 HF Posada-Quintero (92368_CR11) 2020; 20 T Richter (92368_CR20) 2020; 10 M Benchekroun (92368_CR27) 2023; 23 PS Kumar (92368_CR55) 2024 D Golalizadeh (92368_CR2) 2020; 12 KH Kim (92368_CR18) 2004; 42 92368_CR38 92368_CR33 P Kumar (92368_CR17) 2020; 171 S Syed (92368_CR7) 2020; 6 |
| References_xml | – volume: 42 start-page: 419 year: 2004 ident: 92368_CR18 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344719 – volume: 55 year: 2020 ident: 92368_CR35 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101646 – volume: 28 start-page: 107 year: 2024 ident: 92368_CR56 publication-title: Virtual Reality doi: 10.1007/s10055-024-00989-y – volume: 126 start-page: 117 year: 2000 ident: 92368_CR9 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(00)26011-1 – volume: 13 start-page: 2605 year: 2023 ident: 92368_CR40 publication-title: Front. Physiol. doi: 10.3389/fphys.2022.960118 – year: 2024 ident: 92368_CR55 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3420349 – volume: 20 start-page: 479 year: 2020 ident: 92368_CR11 publication-title: Sensors doi: 10.3390/s20020479 – ident: 92368_CR12 – ident: 92368_CR54 doi: 10.1007/978-3-030-49666-1_13 – ident: 92368_CR13 doi: 10.1016/S0025-6196(12)62272-1 – volume: 6 start-page: 252 year: 2020 ident: 92368_CR7 publication-title: J. Med. Res. doi: 10.31254/jmr.2020.6517 – ident: 92368_CR19 doi: 10.1109/ACII.2017.8273620 – volume: 10 start-page: 1 year: 2020 ident: 92368_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-020-72289-9 – ident: 92368_CR45 doi: 10.1007/978-1-4899-0643-4_4 – volume: 171 start-page: 1989 year: 2020 ident: 92368_CR17 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.04.213 – ident: 92368_CR22 doi: 10.1007/978-3-319-59063-9_55 – ident: 92368_CR33 doi: 10.1109/ICACC.2013.97. – volume: 7 start-page: 1 year: 2017 ident: 92368_CR14 publication-title: ACM Trans. Interact. Intell. Syst. doi: 10.1145/2960413 – year: 2024 ident: 92368_CR32 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3369130 – volume: 21 start-page: 1018 year: 2021 ident: 92368_CR34 publication-title: Sensors doi: 10.3390/s21031018 – ident: 92368_CR46 doi: 10.38094/jastt20165 – year: 2023 ident: 92368_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3273303 – volume: 14 start-page: 1612 year: 1999 ident: 92368_CR50 publication-title: J.-Japanese Soc. Artif. Intell. – volume: 16 start-page: 455 year: 2024 ident: 92368_CR41 publication-title: Cognit. Comput. doi: 10.1007/s12559-023-10200-0 – volume: 72 start-page: 46 year: 1977 ident: 92368_CR49 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1977.10479905 – volume: 23 start-page: 1807 year: 2023 ident: 92368_CR27 publication-title: Sensors doi: 10.3390/s23041807 – volume: 12 start-page: 25 year: 2020 ident: 92368_CR2 publication-title: Biomed. Hum. Kinetics doi: 10.2478/bhk-2020-0004 – ident: 92368_CR52 doi: 10.1080/10447318.2022.2116530 – volume: 58 start-page: 149 year: 2024 ident: 92368_CR53 publication-title: Integr. Psychol. Behav. Sci. doi: 10.1007/s12124-023-09781-0 – ident: 92368_CR8 – ident: 92368_CR42 doi: 10.30849/rip/ijp.v5i3&4.620 – ident: 92368_CR43 – volume: 10 start-page: 1163 year: 2016 ident: 92368_CR4 publication-title: Asian Spine J. doi: 10.4184/asj.2016.10.6.1163 – volume: 21 start-page: 202 year: 2024 ident: 92368_CR36 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-024-01501-y – volume: 79 start-page: 9320 year: 2023 ident: 92368_CR25 publication-title: J. Supercomput. doi: 10.1007/s11227-022-05026-w – ident: 92368_CR44 doi: 10.1007/978-3-030-49666-1_16 – volume: 63 start-page: 797 year: 2015 ident: 92368_CR48 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2474131 – volume-title: Zdrowie jako funkcja twórczego radzenia sobie ze stresem: Psychologiczne mechanizmy i uwarunkowania zdrowia w zawodzie nauczyciela year: 2003 ident: 92368_CR6 – ident: 92368_CR28 doi: 10.3390/s20144037 – volume: 2 start-page: 1 year: 2007 ident: 92368_CR3 publication-title: Scoliosis doi: 10.1186/1748-7161-2-1 – ident: 92368_CR51 doi: 10.1007/978-1-4899-7641-3_9 – volume: 144 year: 2022 ident: 92368_CR39 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105327 – volume: 23 start-page: 3565 year: 2023 ident: 92368_CR26 publication-title: Sensors doi: 10.3390/s23073565 – year: 2023 ident: 92368_CR24 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2023.3265433 – volume: 107 start-page: 12535 year: 2022 ident: 92368_CR16 publication-title: ECS Trans. doi: 10.1149/10701.12535ecst – volume: 73 start-page: 159 year: 2017 ident: 92368_CR21 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2017.08.006 – volume: 20 start-page: 3510 year: 2020 ident: 92368_CR29 publication-title: Sensors doi: 10.3390/s20123510 – ident: 92368_CR10 doi: 10.1007/978-1-4614-1126-0 – volume: 20 start-page: 6343 year: 2020 ident: 92368_CR37 publication-title: Sensors doi: 10.3390/s20216343 – ident: 92368_CR38 doi: 10.1109/SII55687.2023.10039222 – ident: 92368_CR47 doi: 10.4135/9780857020994.n20 – volume: 184 year: 2019 ident: 92368_CR15 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104886 – ident: 92368_CR23 doi: 10.1007/s11760-023-02606-y – ident: 92368_CR1 doi: 10.1109/SAMI.2013.6480971 – volume: 57 year: 2020 ident: 92368_CR5 publication-title: New Ideas Psychol. doi: 10.1016/j.newideapsych.2019.100755 – volume: 13 start-page: 6368 year: 2023 ident: 92368_CR30 publication-title: Appl. Sci. doi: 10.3390/app13116368 |
| SSID | ssj0000529419 |
| Score | 2.4498088 |
| Snippet | Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel... Abstract Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8382 |
| SubjectTerms | 639/166/985 692/700/565/491 AdaBoost Adult Computer-assisted physiotherapy Data analysis Data processing Emotion analysis Female Galvanic Skin Response Humanities and Social Sciences Humans Longitudinal Studies Machine learning Male Mathematical models Middle Aged multidisciplinary Physiology Posture Posture - physiology Precision Medicine - methods Prediction models Psychological assessment Psychophysiological state analysis Psychophysiology Rehabilitation Science Science (multidisciplinary) Signal preprocessing Statistical analysis Therapeutic applications |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI9ggLQL37DCQEHiBtXaJE2TEwLExGFMOwDaLXppkjFpah6v7w2xvx47_ZjKxy7cqiSVnNiJHdv5mZCXgVlZOp3Kt_sc9G2Ar6rIvRacFXWtWQIw_XpQHx6q42N9NDjcuiGtcjwT00HtYoM-8j3Qc6CMWSHZm-X3HKtGYXR1KKFxndwAy6bEy9cndjT5WDCKJUo9vJUpuNrrQF_hmzJW5WDZSJVfzPRRgu3_m635Z8rkb3HTpI727_zvRO6S24MhSt_2knOPXPPtfXKrL0358wH5cRCxktHGYdUsGu3kvKUx0P7pVnKKjGcnxVRTuujogrbx3J_REaycriNdjhZ_5x1dxi5hfVDnMZWErmZY4Q_Jl_0Pn99_zIciDXlTCb7OSxFUaBCHzwarqhCkKB3XpRO80A2iA6pgdaiF45ZraRtotl4E7cEUs67kj8hWG1u_Qyhc9cCggcYK6wRKqRthA5cVQsDXQtcZKUdWmWagCgtpnJkUSefK9Ow1wF6T2GsuMvJq-mfZ43dcOfodSsA0ErG3U0NcnZhhKxsgRUrvVCM8EKjR0SXxbTjQrivFdEZ2R8ab4UDozCXXM_Ji6oatjPGZRevjph_DBdiTMNPHvbhNlAiElIZ1yIiaCeKM1HlPe_otwYXDFVLDpV1l5PUos5d0_Xstnlw9jadkm-E2wtTGcpdsrVcb_4zcbM7Xp93qedqHvwBszTos priority: 102 providerName: ProQuest |
| Title | Longitudinal observation of psychophysiological data as a novel approach to personalised postural defect rehabilitation |
| URI | https://link.springer.com/article/10.1038/s41598-025-92368-z https://www.ncbi.nlm.nih.gov/pubmed/40069355 https://www.proquest.com/docview/3176122062 https://www.proquest.com/docview/3176342737 https://pubmed.ncbi.nlm.nih.gov/PMC11897178 https://doaj.org/article/74966ed8c4ec4b909036455007495829 |
| Volume | 15 |
| WOSCitedRecordID | wos001442602500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI9gA4kXxDeFcQoSb1CtTdImeWRoE0jbqUKAjqfq0iZi0tSernebtr8eO2nLyucLL1GVpJJrO7WT2D8T8soxk6e19uXbbQz21sFTlsRWC84SKTXzAKZfjuV8rhYLXVwr9YUxYQEeODBuXwpwyG2tKmErYTQeK-SYiQumT2eK-dS9ROprm6mA6s20SHWfJZNwtd-BpcJsMpbF4NPkKr6aWCIP2P87L_PXYMmfbky9ITq6R-72HiR9Gyi_T27Y5gG5HWpKXj4kF8ctliDa1ljuirZmPHWlraMh58qfZgw_PYoxonTZ0SVt2nN7RgeUcbpp6Wpw1Ttb01XbeZAOWluMAaHrCcj3I_L56PDTu_dxX10hrjLBN3EqnHIVAugZZ1TmXC7Smuu0FjzRFcL6KWe0k6LmhuvcVNBtrHDagg9l6pQ_JjtN29inhMIeDcQBnRkW-MtzDZJyPM8Qux3EJCOSDpwuq54qrIBxVvorcK7KIJ0SpFN66ZRXEXk9vrMKwBt_nX2AAhxnImi27wBVKntVKv-lShHZG8Rf9iu5K8G_AieQJTmLyMtxGNYgXqwsG9tuwxwuwBGEL30StGWkRCAWNPAhImqiRxNSpyPN6TeP8w17Pw27bRWRN4PK_aDrz7x49j948ZzcYbhWMHIx3SM7m_XWviC3qvPNabeekZtyIX2rZmT34HBefJz5BQjtCSuwldDuFh9Oiq_fAfkSMVA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET23HsA0K8qlbdrnooqLewSWyoVCXLZrdV-6P4jcw4j2p59NYDt8jxRmPveGY8Hn8fwAvHcxWXxtO32xD9rcOnJAqtkYJHaWq4BzD9MkrHY72_b3ZX4Gd_F4bKKnub6A11WReUI19HP4fOmEeKv53-CIk1ik5XewqNVi227ckxbtmaN1sf8f99yfnGp70Pm2HHKhAWiRTzMJZOu4KA43KX68Q5JeNSmLiUIjIFwdlplxuXylLkwqi8wObcSmcsxg55GQv87iW4LNETEmPCDt8dcjp0aiZj093NiYReb9A_0h02noQYSSkdni75P08T8LfY9s8Szd_Oab3727j5v03cLbjRBdrsXbsybsOKre7A1ZZ68-QuHI9qYmpalMQKxup8SE6z2rH2appP-vS-gVEpLZs0bMKq-sgesh6Mnc1rNu13NI0t2bRuPJYJKy2VyrDZEhb6Pfh8IaO-D6tVXdmHwHAriwEbNibEg6iUKWTuhEoI4j6VJg0g7lUjKzqpiCjkMPOVAkJnrTplqE6ZV6fsNIBXw2-mLT7Jub3fk8YNPQlb3DfUs29ZZ6oyFEUpW-pCWhTQUCJP0d13lN0kmpsA1npFyzqD12RnWhbA8-E1mio6f5pUtl60fYTEeBlH-qBV70ESSZDZOA8B6CXFXxJ1-U118N3DoeMW2aRxqgN43a-RM7n-PRePzh_GM7i2ubczykZb4-3HcJ3TEqYyzngNVuezhX0CV4qj-UEze-ptAIOvF712fgE13Jcg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCE0S7iZ3EPiBEaVdUXa1WCFBv7iax20pVsmx2W7U_jV_HjPOolkdvPXBbOc5q7MzL45lvAF7bMI2DXLn27cZHe2vxVzTwjRI8HCSJCh2A6fdRMh7LvT01WYOfbS0MpVW2OtEp6rzMKEbeRzuHxjgcxGHfNmkRk63hh9kPnzpI0U1r206jZpFdc3aKx7fq_c4Wfus3YTjc_vrps990GPCzSPCFHwgrbUYgcqlNZWRtLIKcqyAXfKAygraTNlU2ETlPuYrTDIdTI6wy6EekecDxf6_BeoKviB6sb26PJ1-6CA_doYlANZU6Ay77FVpLqmgLIx_9qlj65yvW0DUN-Jun-2fC5m-3ts4YDu_8z9t4F243Ljj7WMvMPVgzxX24UTflPHsAp6OSejgtc-oXxsq0C1uz0rK6aM2Fg1qrwSjJlk0rNmVFeWKOWQvTzhYlm7VnncrkbFZWDuWE5YaSaNh8BSX9IXy7klU_gl5RFuYJMDzkoiuHgxF1SIxjlYnU8jgi8PtEqMSDoGUTnTVUUQuRY-1yCLjUNWtpZC3tWEufe_C2e2dWI5dcOnuTuK-bSajjbqCcH-hGiWkkJY5NLjNhkEBFIb6YquKRdhXJUHmw0TKdblRhpS84zoNX3WNUYnQzNS1MuazncIGeNK70cc3qHSWCwLRxHzyQK0KwQurqk-Lo0AGl4-FZJUEiPXjXyssFXf_ei6eXL-Ml3ESR0aOd8e4zuBWSNFN-Z7ABvcV8aZ7D9exkcVTNXzQKgcH-VQvPLzXSoTo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+observation+of+psychophysiological+data+as+a+novel+approach+to+personalised+postural+defect+rehabilitation&rft.jtitle=Scientific+reports&rft.au=Romaniszyn-Kania%2C+Patrycja&rft.au=Pollak%2C+Anita&rft.au=Kania%2C+Damian&rft.au=Mitas%2C+Andrzej+W.&rft.date=2025-03-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-92368-z&rft.externalDocID=10_1038_s41598_025_92368_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |