Longitudinal observation of psychophysiological data as a novel approach to personalised postural defect rehabilitation

Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 8382 - 15
Hlavní autoři: Romaniszyn-Kania, Patrycja, Pollak, Anita, Kania, Damian, Mitas, Andrzej W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 11.03.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.
AbstractList Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.
Abstract Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups—a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process’s quality, duration, and effectiveness. Physiological features determine the patient’s involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.
Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups-a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process's quality, duration, and effectiveness. Physiological features determine the patient's involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel approach to defining a set of measurable physiological biomarkers and psychological characteristics with identifiable information content and data analysis, enabling the determination of the adaptation period and conditioning the effectiveness of the treatment in personalised rehabilitation. During the rehabilitation, multimodal physiological signals (electrodermal activity, blood volume pulse) and psychological data (anxiety as a state and as a trait, temperament) were recorded on a group of 20 subjects over a period of three months (120 measurement sessions). Preprocessing of the physiological signals and psychological data was performed. A stepwise forward regression method was used to determine a set of successive statistically significant predictors of the model. For each group, a matrix of coefficients for fitting a linear regression of changes in the value of a given predictor in subsequent measurement was determined. Adaptive Boosting was chosen to develop a mathematical model of the patient. The analysis of the results of the psychological tests enabled the participants to be divided into five new, previously undefined subgroups, which were both labels for the classifier. Using the dimensionality reduction method, 8 significant, statistically important features were extracted. AdaBoost classifier allowed the creation of a prediction model for therapy parameters with 84% accuracy, and the Pseudo-Random Number Generator was used to check the validity of it. The AdaBoost algorithm was used again to check the dynamics of changes in regression coefficients for individual groups-a set of psychophysiological characteristics identified as the basis for personalised therapeutic interventions. Each individual requires time to adapt to a new situation, conditioned by their characteristics. An appropriate interdisciplinary approach to professional rehabilitation influences the therapeutic process's quality, duration, and effectiveness. Physiological features determine the patient's involvement in the rehabilitation process, allowing robust personalisation of therapy in a closed feedback loop. The fusion of psychophysiological data and multimodal measurements enables the development of a unique behavioral-physiological profile of the patient undergoing rehabilitation.
ArticleNumber 8382
Author Kania, Damian
Romaniszyn-Kania, Patrycja
Pollak, Anita
Mitas, Andrzej W.
Author_xml – sequence: 1
  givenname: Patrycja
  surname: Romaniszyn-Kania
  fullname: Romaniszyn-Kania, Patrycja
  email: patrycja.romaniszyn-kania@polsl.pl
  organization: Faculty of Biomedical Engineering, Silesian University of Technology
– sequence: 2
  givenname: Anita
  surname: Pollak
  fullname: Pollak, Anita
  organization: Institute of Psychology, University of Silesia in Katowice
– sequence: 3
  givenname: Damian
  surname: Kania
  fullname: Kania, Damian
  organization: Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice
– sequence: 4
  givenname: Andrzej W.
  surname: Mitas
  fullname: Mitas, Andrzej W.
  organization: Faculty of Biomedical Engineering, Silesian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40069355$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFCEYxiemxtbaf8CDIfHiZZTvgZMxjR9NNvGiZwIM7LKZHUZgtmn_eunOVtseygXyvs_zywO8r5uTMY6uad4i-BFBIj5lipgULcSslZhw0d6-aM4wpKzFBOOTB-fT5iLnLayLYUmRfNWcUgi5JIydNderOK5Dmfsw6gFEk13a6xLiCKIHU76xmzhtbnKIQ1wHWyW9LhroDDQY494NQE9TitpuQIlgcinHygnZ9WCKuczpzuG8swUkt9EmDKEc8G-al14P2V0c9_Pm97evvy5_tKuf368uv6xayygpLaJeeMsZlMYbwbznFPVEop4SKK0UGAtvpO9oTwyR3NhaNo566TCnpkfkvLlauH3UWzWlsNPpRkUd1KEQ01rpVIIdnOqo5Nz1wlJnqZFQQsIpYxDWBhNYVtbnhTXNZud668ZS7_cI-rgzho1ax71CSMgOdaISPhwJKf6ZXS5qF7J1w6BHF-esCOo4obgjXZW-fyLdxjnVx11UCGPIcVW9exjpX5b7D64CsQhsijkn55U9_kBNGAaFoLobJ7WMk6rjpA7jpG6rFT-x3tOfNZHFlKt4XLv0P_Yzrr8hl99Q
CitedBy_id crossref_primary_10_3390_app15126840
Cites_doi 10.1007/BF02344719
10.1016/j.bspc.2019.101646
10.1007/s10055-024-00989-y
10.1016/S0079-6123(00)26011-1
10.3389/fphys.2022.960118
10.1109/TIM.2024.3420349
10.3390/s20020479
10.1007/978-3-030-49666-1_13
10.1016/S0025-6196(12)62272-1
10.31254/jmr.2020.6517
10.1109/ACII.2017.8273620
10.1038/s41598-020-72289-9
10.1007/978-1-4899-0643-4_4
10.1016/j.procs.2020.04.213
10.1007/978-3-319-59063-9_55
10.1109/ICACC.2013.97.
10.1145/2960413
10.1109/TIM.2024.3369130
10.3390/s21031018
10.38094/jastt20165
10.1109/ACCESS.2023.3273303
10.1007/s12559-023-10200-0
10.1080/01621459.1977.10479905
10.3390/s23041807
10.2478/bhk-2020-0004
10.1080/10447318.2022.2116530
10.1007/s12124-023-09781-0
10.30849/rip/ijp.v5i3&4.620
10.4184/asj.2016.10.6.1163
10.1186/s12984-024-01501-y
10.1007/s11227-022-05026-w
10.1007/978-3-030-49666-1_16
10.1109/TBME.2015.2474131
10.3390/s20144037
10.1186/1748-7161-2-1
10.1007/978-1-4899-7641-3_9
10.1016/j.compbiomed.2022.105327
10.3390/s23073565
10.1109/TAFFC.2023.3265433
10.1149/10701.12535ecst
10.1016/j.jbi.2017.08.006
10.3390/s20123510
10.1007/978-1-4614-1126-0
10.3390/s20216343
10.1109/SII55687.2023.10039222
10.4135/9780857020994.n20
10.1016/j.knosys.2019.104886
10.1007/s11760-023-02606-y
10.1109/SAMI.2013.6480971
10.1016/j.newideapsych.2019.100755
10.3390/app13116368
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-92368-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_74966ed8c4ec4b909036455007495829
PMC11897178
40069355
10_1038_s41598_025_92368_z
Genre Journal Article
GrantInformation_xml – fundername: Silesian University of Technology statutory financial support
  grantid: BK-290/RIB1/2023; BK-290/RIB1/2023
– fundername: Silesian University of Technology statutory financial support
  grantid: BK-290/RIB1/2023
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c543t-14f8fc6509bfb85ff641d391d4309c98228fb9f74d3b396bc309be4f9e264bd13
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442602500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Nov 04 02:03:36 EST 2025
Thu Sep 04 15:53:02 EDT 2025
Tue Oct 07 07:56:07 EDT 2025
Mon Sep 15 04:48:12 EDT 2025
Tue Nov 18 22:24:37 EST 2025
Sat Nov 29 08:14:36 EST 2025
Wed Mar 12 01:31:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Emotion analysis
Signal preprocessing
AdaBoost
Psychophysiological state analysis
Machine learning
Computer-assisted physiotherapy
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-14f8fc6509bfb85ff641d391d4309c98228fb9f74d3b396bc309be4f9e264bd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/74966ed8c4ec4b909036455007495829
PMID 40069355
PQID 3176122062
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_74966ed8c4ec4b909036455007495829
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11897178
proquest_miscellaneous_3176342737
proquest_journals_3176122062
pubmed_primary_40069355
crossref_citationtrail_10_1038_s41598_025_92368_z
crossref_primary_10_1038_s41598_025_92368_z
springer_journals_10_1038_s41598_025_92368_z
PublicationCentury 2000
PublicationDate 2025-03-11
PublicationDateYYYYMMDD 2025-03-11
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Chen (92368_CR34) 2021; 21
JA Domínguez-Jiménez (92368_CR35) 2020; 55
MN Dar (92368_CR39) 2022; 144
Y Freund (92368_CR50) 1999; 14
M Vaz (92368_CR30) 2023; 13
A Greco (92368_CR48) 2015; 63
92368_CR8
92368_CR46
92368_CR47
92368_CR44
92368_CR45
92368_CR42
92368_CR43
RB Bendel (92368_CR49) 1977; 72
92368_CR51
92368_CR52
92368_CR1
LD Frazier (92368_CR5) 2020; 57
JA Castro-García (92368_CR31) 2023
S Campanella (92368_CR26) 2023; 23
C Tamantini (92368_CR36) 2024; 21
H Wrona-Polańska (92368_CR6) 2003
92368_CR19
H Liu (92368_CR32) 2024
A Bhavan (92368_CR15) 2019; 184
Y Haque (92368_CR41) 2024; 16
E García Pagès (92368_CR40) 2023; 13
92368_CR13
RM Buijs (92368_CR9) 2000; 126
92368_CR12
P Romaniszyn-Kania (92368_CR37) 2020; 20
92368_CR10
92368_CR54
T Kotwicki (92368_CR3) 2007; 2
M Gjoreski (92368_CR21) 2017; 73
G Pinto (92368_CR29) 2020; 20
Y Masuda (92368_CR53) 2024; 58
R Lima (92368_CR56) 2024; 28
92368_CR28
H-R Weiss (92368_CR4) 2016; 10
S Dutta (92368_CR16) 2022; 107
N Nourbakhsh (92368_CR14) 2017; 7
92368_CR22
92368_CR23
P Bota (92368_CR24) 2023
A Moin (92368_CR25) 2023; 79
HF Posada-Quintero (92368_CR11) 2020; 20
T Richter (92368_CR20) 2020; 10
M Benchekroun (92368_CR27) 2023; 23
PS Kumar (92368_CR55) 2024
D Golalizadeh (92368_CR2) 2020; 12
KH Kim (92368_CR18) 2004; 42
92368_CR38
92368_CR33
P Kumar (92368_CR17) 2020; 171
S Syed (92368_CR7) 2020; 6
References_xml – volume: 42
  start-page: 419
  year: 2004
  ident: 92368_CR18
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344719
– volume: 55
  year: 2020
  ident: 92368_CR35
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101646
– volume: 28
  start-page: 107
  year: 2024
  ident: 92368_CR56
  publication-title: Virtual Reality
  doi: 10.1007/s10055-024-00989-y
– volume: 126
  start-page: 117
  year: 2000
  ident: 92368_CR9
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(00)26011-1
– volume: 13
  start-page: 2605
  year: 2023
  ident: 92368_CR40
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.960118
– year: 2024
  ident: 92368_CR55
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3420349
– volume: 20
  start-page: 479
  year: 2020
  ident: 92368_CR11
  publication-title: Sensors
  doi: 10.3390/s20020479
– ident: 92368_CR12
– ident: 92368_CR54
  doi: 10.1007/978-3-030-49666-1_13
– ident: 92368_CR13
  doi: 10.1016/S0025-6196(12)62272-1
– volume: 6
  start-page: 252
  year: 2020
  ident: 92368_CR7
  publication-title: J. Med. Res.
  doi: 10.31254/jmr.2020.6517
– ident: 92368_CR19
  doi: 10.1109/ACII.2017.8273620
– volume: 10
  start-page: 1
  year: 2020
  ident: 92368_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72289-9
– ident: 92368_CR45
  doi: 10.1007/978-1-4899-0643-4_4
– volume: 171
  start-page: 1989
  year: 2020
  ident: 92368_CR17
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.213
– ident: 92368_CR22
  doi: 10.1007/978-3-319-59063-9_55
– ident: 92368_CR33
  doi: 10.1109/ICACC.2013.97.
– volume: 7
  start-page: 1
  year: 2017
  ident: 92368_CR14
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2960413
– year: 2024
  ident: 92368_CR32
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3369130
– volume: 21
  start-page: 1018
  year: 2021
  ident: 92368_CR34
  publication-title: Sensors
  doi: 10.3390/s21031018
– ident: 92368_CR46
  doi: 10.38094/jastt20165
– year: 2023
  ident: 92368_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3273303
– volume: 14
  start-page: 1612
  year: 1999
  ident: 92368_CR50
  publication-title: J.-Japanese Soc. Artif. Intell.
– volume: 16
  start-page: 455
  year: 2024
  ident: 92368_CR41
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-023-10200-0
– volume: 72
  start-page: 46
  year: 1977
  ident: 92368_CR49
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1977.10479905
– volume: 23
  start-page: 1807
  year: 2023
  ident: 92368_CR27
  publication-title: Sensors
  doi: 10.3390/s23041807
– volume: 12
  start-page: 25
  year: 2020
  ident: 92368_CR2
  publication-title: Biomed. Hum. Kinetics
  doi: 10.2478/bhk-2020-0004
– ident: 92368_CR52
  doi: 10.1080/10447318.2022.2116530
– volume: 58
  start-page: 149
  year: 2024
  ident: 92368_CR53
  publication-title: Integr. Psychol. Behav. Sci.
  doi: 10.1007/s12124-023-09781-0
– ident: 92368_CR8
– ident: 92368_CR42
  doi: 10.30849/rip/ijp.v5i3&4.620
– ident: 92368_CR43
– volume: 10
  start-page: 1163
  year: 2016
  ident: 92368_CR4
  publication-title: Asian Spine J.
  doi: 10.4184/asj.2016.10.6.1163
– volume: 21
  start-page: 202
  year: 2024
  ident: 92368_CR36
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-024-01501-y
– volume: 79
  start-page: 9320
  year: 2023
  ident: 92368_CR25
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-05026-w
– ident: 92368_CR44
  doi: 10.1007/978-3-030-49666-1_16
– volume: 63
  start-page: 797
  year: 2015
  ident: 92368_CR48
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2474131
– volume-title: Zdrowie jako funkcja twórczego radzenia sobie ze stresem: Psychologiczne mechanizmy i uwarunkowania zdrowia w zawodzie nauczyciela
  year: 2003
  ident: 92368_CR6
– ident: 92368_CR28
  doi: 10.3390/s20144037
– volume: 2
  start-page: 1
  year: 2007
  ident: 92368_CR3
  publication-title: Scoliosis
  doi: 10.1186/1748-7161-2-1
– ident: 92368_CR51
  doi: 10.1007/978-1-4899-7641-3_9
– volume: 144
  year: 2022
  ident: 92368_CR39
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105327
– volume: 23
  start-page: 3565
  year: 2023
  ident: 92368_CR26
  publication-title: Sensors
  doi: 10.3390/s23073565
– year: 2023
  ident: 92368_CR24
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2023.3265433
– volume: 107
  start-page: 12535
  year: 2022
  ident: 92368_CR16
  publication-title: ECS Trans.
  doi: 10.1149/10701.12535ecst
– volume: 73
  start-page: 159
  year: 2017
  ident: 92368_CR21
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.08.006
– volume: 20
  start-page: 3510
  year: 2020
  ident: 92368_CR29
  publication-title: Sensors
  doi: 10.3390/s20123510
– ident: 92368_CR10
  doi: 10.1007/978-1-4614-1126-0
– volume: 20
  start-page: 6343
  year: 2020
  ident: 92368_CR37
  publication-title: Sensors
  doi: 10.3390/s20216343
– ident: 92368_CR38
  doi: 10.1109/SII55687.2023.10039222
– ident: 92368_CR47
  doi: 10.4135/9780857020994.n20
– volume: 184
  year: 2019
  ident: 92368_CR15
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104886
– ident: 92368_CR23
  doi: 10.1007/s11760-023-02606-y
– ident: 92368_CR1
  doi: 10.1109/SAMI.2013.6480971
– volume: 57
  year: 2020
  ident: 92368_CR5
  publication-title: New Ideas Psychol.
  doi: 10.1016/j.newideapsych.2019.100755
– volume: 13
  start-page: 6368
  year: 2023
  ident: 92368_CR30
  publication-title: Appl. Sci.
  doi: 10.3390/app13116368
SSID ssj0000529419
Score 2.4498088
Snippet Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a novel...
Abstract Postural defects are one of the main diseases reported to be at the top of the list of diseases of civilisation. The present study aimed to develop a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8382
SubjectTerms 639/166/985
692/700/565/491
AdaBoost
Adult
Computer-assisted physiotherapy
Data analysis
Data processing
Emotion analysis
Female
Galvanic Skin Response
Humanities and Social Sciences
Humans
Longitudinal Studies
Machine learning
Male
Mathematical models
Middle Aged
multidisciplinary
Physiology
Posture
Posture - physiology
Precision Medicine - methods
Prediction models
Psychological assessment
Psychophysiological state analysis
Psychophysiology
Rehabilitation
Science
Science (multidisciplinary)
Signal preprocessing
Statistical analysis
Therapeutic applications
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI9ggLQL37DCQEHiBtXaJE2TEwLExGFMOwDaLXppkjFpah6v7w2xvx47_ZjKxy7cqiSVnNiJHdv5mZCXgVlZOp3Kt_sc9G2Ar6rIvRacFXWtWQIw_XpQHx6q42N9NDjcuiGtcjwT00HtYoM-8j3Qc6CMWSHZm-X3HKtGYXR1KKFxndwAy6bEy9cndjT5WDCKJUo9vJUpuNrrQF_hmzJW5WDZSJVfzPRRgu3_m635Z8rkb3HTpI727_zvRO6S24MhSt_2knOPXPPtfXKrL0358wH5cRCxktHGYdUsGu3kvKUx0P7pVnKKjGcnxVRTuujogrbx3J_REaycriNdjhZ_5x1dxi5hfVDnMZWErmZY4Q_Jl_0Pn99_zIciDXlTCb7OSxFUaBCHzwarqhCkKB3XpRO80A2iA6pgdaiF45ZraRtotl4E7cEUs67kj8hWG1u_Qyhc9cCggcYK6wRKqRthA5cVQsDXQtcZKUdWmWagCgtpnJkUSefK9Ow1wF6T2GsuMvJq-mfZ43dcOfodSsA0ErG3U0NcnZhhKxsgRUrvVCM8EKjR0SXxbTjQrivFdEZ2R8ab4UDozCXXM_Ji6oatjPGZRevjph_DBdiTMNPHvbhNlAiElIZ1yIiaCeKM1HlPe_otwYXDFVLDpV1l5PUos5d0_Xstnlw9jadkm-E2wtTGcpdsrVcb_4zcbM7Xp93qedqHvwBszTos
  priority: 102
  providerName: ProQuest
Title Longitudinal observation of psychophysiological data as a novel approach to personalised postural defect rehabilitation
URI https://link.springer.com/article/10.1038/s41598-025-92368-z
https://www.ncbi.nlm.nih.gov/pubmed/40069355
https://www.proquest.com/docview/3176122062
https://www.proquest.com/docview/3176342737
https://pubmed.ncbi.nlm.nih.gov/PMC11897178
https://doaj.org/article/74966ed8c4ec4b909036455007495829
Volume 15
WOSCitedRecordID wos001442602500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI9gA4kXxDeFcQoSb1CtTdImeWRoE0jbqUKAjqfq0iZi0tSernebtr8eO2nLyucLL1GVpJJrO7WT2D8T8soxk6e19uXbbQz21sFTlsRWC84SKTXzAKZfjuV8rhYLXVwr9YUxYQEeODBuXwpwyG2tKmErYTQeK-SYiQumT2eK-dS9ROprm6mA6s20SHWfJZNwtd-BpcJsMpbF4NPkKr6aWCIP2P87L_PXYMmfbky9ITq6R-72HiR9Gyi_T27Y5gG5HWpKXj4kF8ctliDa1ljuirZmPHWlraMh58qfZgw_PYoxonTZ0SVt2nN7RgeUcbpp6Wpw1Ttb01XbeZAOWluMAaHrCcj3I_L56PDTu_dxX10hrjLBN3EqnHIVAugZZ1TmXC7Smuu0FjzRFcL6KWe0k6LmhuvcVNBtrHDagg9l6pQ_JjtN29inhMIeDcQBnRkW-MtzDZJyPM8Qux3EJCOSDpwuq54qrIBxVvorcK7KIJ0SpFN66ZRXEXk9vrMKwBt_nX2AAhxnImi27wBVKntVKv-lShHZG8Rf9iu5K8G_AieQJTmLyMtxGNYgXqwsG9tuwxwuwBGEL30StGWkRCAWNPAhImqiRxNSpyPN6TeP8w17Pw27bRWRN4PK_aDrz7x49j948ZzcYbhWMHIx3SM7m_XWviC3qvPNabeekZtyIX2rZmT34HBefJz5BQjtCSuwldDuFh9Oiq_fAfkSMVA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET23HsA0K8qlbdrnooqLewSWyoVCXLZrdV-6P4jcw4j2p59NYDt8jxRmPveGY8Hn8fwAvHcxWXxtO32xD9rcOnJAqtkYJHaWq4BzD9MkrHY72_b3ZX4Gd_F4bKKnub6A11WReUI19HP4fOmEeKv53-CIk1ik5XewqNVi227ckxbtmaN1sf8f99yfnGp70Pm2HHKhAWiRTzMJZOu4KA43KX68Q5JeNSmLiUIjIFwdlplxuXylLkwqi8wObcSmcsxg55GQv87iW4LNETEmPCDt8dcjp0aiZj093NiYReb9A_0h02noQYSSkdni75P08T8LfY9s8Szd_Oab3727j5v03cLbjRBdrsXbsybsOKre7A1ZZ68-QuHI9qYmpalMQKxup8SE6z2rH2appP-vS-gVEpLZs0bMKq-sgesh6Mnc1rNu13NI0t2bRuPJYJKy2VyrDZEhb6Pfh8IaO-D6tVXdmHwHAriwEbNibEg6iUKWTuhEoI4j6VJg0g7lUjKzqpiCjkMPOVAkJnrTplqE6ZV6fsNIBXw2-mLT7Jub3fk8YNPQlb3DfUs29ZZ6oyFEUpW-pCWhTQUCJP0d13lN0kmpsA1npFyzqD12RnWhbA8-E1mio6f5pUtl60fYTEeBlH-qBV70ESSZDZOA8B6CXFXxJ1-U118N3DoeMW2aRxqgN43a-RM7n-PRePzh_GM7i2ubczykZb4-3HcJ3TEqYyzngNVuezhX0CV4qj-UEze-ptAIOvF712fgE13Jcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCE0S7iZ3EPiBEaVdUXa1WCFBv7iax20pVsmx2W7U_jV_HjPOolkdvPXBbOc5q7MzL45lvAF7bMI2DXLn27cZHe2vxVzTwjRI8HCSJCh2A6fdRMh7LvT01WYOfbS0MpVW2OtEp6rzMKEbeRzuHxjgcxGHfNmkRk63hh9kPnzpI0U1r206jZpFdc3aKx7fq_c4Wfus3YTjc_vrps990GPCzSPCFHwgrbUYgcqlNZWRtLIKcqyAXfKAygraTNlU2ETlPuYrTDIdTI6wy6EekecDxf6_BeoKviB6sb26PJ1-6CA_doYlANZU6Ay77FVpLqmgLIx_9qlj65yvW0DUN-Jun-2fC5m-3ts4YDu_8z9t4F243Ljj7WMvMPVgzxX24UTflPHsAp6OSejgtc-oXxsq0C1uz0rK6aM2Fg1qrwSjJlk0rNmVFeWKOWQvTzhYlm7VnncrkbFZWDuWE5YaSaNh8BSX9IXy7klU_gl5RFuYJMDzkoiuHgxF1SIxjlYnU8jgi8PtEqMSDoGUTnTVUUQuRY-1yCLjUNWtpZC3tWEufe_C2e2dWI5dcOnuTuK-bSajjbqCcH-hGiWkkJY5NLjNhkEBFIb6YquKRdhXJUHmw0TKdblRhpS84zoNX3WNUYnQzNS1MuazncIGeNK70cc3qHSWCwLRxHzyQK0KwQurqk-Lo0AGl4-FZJUEiPXjXyssFXf_ei6eXL-Ml3ESR0aOd8e4zuBWSNFN-Z7ABvcV8aZ7D9exkcVTNXzQKgcH-VQvPLzXSoTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+observation+of+psychophysiological+data+as+a+novel+approach+to+personalised+postural+defect+rehabilitation&rft.jtitle=Scientific+reports&rft.au=Romaniszyn-Kania%2C+Patrycja&rft.au=Pollak%2C+Anita&rft.au=Kania%2C+Damian&rft.au=Mitas%2C+Andrzej+W.&rft.date=2025-03-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-92368-z&rft.externalDocID=10_1038_s41598_025_92368_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon