Data-driven modeling of phase interactions between spontaneous MEG oscillations

Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping Jg. 32; H. 7; S. 1161 - 1178
Hauptverfasser: Hindriks, Rikkert, Bijma, Fetsje, van Dijk, Bob W., Stam, Cornelis J., van der Werf, Ysbrand Y., van Someren, Eus J.W., de Munck, Jan C., van der Vaart, Aad W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Wiley-Liss
John Wiley & Sons, Inc
Schlagworte:
ISSN:1065-9471, 1097-0193, 1097-0193
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase‐interaction dynamics. Methods: We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. Results: The methodology is tested using simulations and is applied to ongoing occipital–frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital–frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. Conclusion: When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. Methods: We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. Results: The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. Conclusion: When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking. Hum Brain Mapp, 2011. ? 2011 Wiley-Liss, Inc.
Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking.
Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. Methods: We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. Results: The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. Conclusion: When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking. Hum Brain Mapp, 2011. © 2011 Wiley-Liss, Inc. [PUBLICATION ABSTRACT]
Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics.OBJECTIVESynchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics.We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived.METHODSWe propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived.The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms.RESULTSThe methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms.When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking.CONCLUSIONWhen the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking.
Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase‐interaction dynamics. Methods: We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. Results: The methodology is tested using simulations and is applied to ongoing occipital–frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital–frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. Conclusion: When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking. Hum Brain Mapp, 2011. © 2011 Wiley‐Liss, Inc.
Author van Someren, Eus J.W.
van Dijk, Bob W.
Stam, Cornelis J.
de Munck, Jan C.
Bijma, Fetsje
van der Vaart, Aad W.
van der Werf, Ysbrand Y.
Hindriks, Rikkert
AuthorAffiliation 2 Department of Medical Physics and Technology, VU University Medical Centre, Amsterdam, The Netherlands
3 Department of Clinical Neurophysiology, VU University Medical Centre, Amsterdam, The Netherlands
4 Department of Sleep and Cognition, Netherlands Institute for Neurosciences (An Institute of the Royal Netherlands Academy of Arts and Sciences), Amsterdam, The Netherlands
1 Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
AuthorAffiliation_xml – name: 2 Department of Medical Physics and Technology, VU University Medical Centre, Amsterdam, The Netherlands
– name: 4 Department of Sleep and Cognition, Netherlands Institute for Neurosciences (An Institute of the Royal Netherlands Academy of Arts and Sciences), Amsterdam, The Netherlands
– name: 1 Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
– name: 3 Department of Clinical Neurophysiology, VU University Medical Centre, Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Rikkert
  surname: Hindriks
  fullname: Hindriks, Rikkert
  email: hindriks@few.vu.nl
  organization: Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
– sequence: 2
  givenname: Fetsje
  surname: Bijma
  fullname: Bijma, Fetsje
  organization: Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
– sequence: 3
  givenname: Bob W.
  surname: van Dijk
  fullname: van Dijk, Bob W.
  organization: Department of Medical Physics and Technology, VU University Medical Centre, Amsterdam, The Netherlands
– sequence: 4
  givenname: Cornelis J.
  surname: Stam
  fullname: Stam, Cornelis J.
  organization: Department of Clinical Neurophysiology, VU University Medical Centre, Amsterdam, The Netherlands
– sequence: 5
  givenname: Ysbrand Y.
  surname: van der Werf
  fullname: van der Werf, Ysbrand Y.
  organization: Department of Clinical Neurophysiology, VU University Medical Centre, Amsterdam, The Netherlands
– sequence: 6
  givenname: Eus J.W.
  surname: van Someren
  fullname: van Someren, Eus J.W.
  organization: Department of Clinical Neurophysiology, VU University Medical Centre, Amsterdam, The Netherlands
– sequence: 7
  givenname: Jan C.
  surname: de Munck
  fullname: de Munck, Jan C.
  organization: Department of Medical Physics and Technology, VU University Medical Centre, Amsterdam, The Netherlands
– sequence: 8
  givenname: Aad W.
  surname: van der Vaart
  fullname: van der Vaart, Aad W.
  organization: Department of Mathematics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24266588$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21225630$$D View this record in MEDLINE/PubMed
BookMark eNp9ksluFDEURS0URAZY8AOoJISARSWeh00kSEI3UposmJaWy-VKO1TbjV2dkL_HPQWIgJUt-9zr-_zePtgJMTgAniJ4iCDER9NmdogRVOoB2CuLqCFSZGe556xWVKBdsJ_zFYQIMYgegV2MMGacwD1wcWoGU7fJX7tQzWLreh8uq9hV86nJrvJhcMnYwceQq8YNN65geR7DYIKLi1xNzkZVzNb3vVlBj8HDzvTZPdmsB-Dzu7NPJ-P6_GL0_uTNeW0ZJaqmkrdSEtGphgjbKGM57RoKHRaYC8owo62SyrTlREGHeCeIwrJjhjPW2I4cgOO173zRzFxrXRiS6fU8-ZlJtzoar_-8CX6qL-O15pIrpXAxeLkxSPH7wuVBz3y2rtSxKkxLgRSnkslCvvoviSASihNEYEGf30Ov4iKF8hEaMSQIowwtn372e_a70NuuFODFBjDZmr5LJliff3EUc87kMtnRmrMp5pxcp60fVn0oJfu-JNPL-dBlPvRqPori9T3F1vRv7Mb9xvfu9t-gHr-dbBX1WuHz4H7cKUz6prkggumvH0b6C4OTUyjH-iP5Cdci13I
CitedBy_id crossref_primary_10_1142_S0217979217502381
crossref_primary_10_1016_j_ynirp_2025_100284
crossref_primary_10_1109_TIM_2025_3588976
crossref_primary_10_1177_03611981241260707
crossref_primary_10_1016_j_neuroimage_2015_03_038
crossref_primary_10_1371_journal_pone_0242715
crossref_primary_10_1016_j_neuroimage_2012_02_042
crossref_primary_10_1016_j_ynirp_2021_100007
crossref_primary_10_1089_brain_2017_0525
crossref_primary_10_1371_journal_pbio_3001234
Cites_doi 10.1017/CBO9780511755743
10.1002/9783527609970.ch7
10.1103/PhysRevE.65.041909
10.1103/PhysRevE.64.045202
10.1002/hbm.10011
10.1002/hbm.10120
10.1016/j.neuroimage.2008.06.009
10.1002/hbm.20316
10.1002/0471221317
10.1016/j.pneurobio.2005.10.003
10.1016/j.clinph.2004.04.029
10.1023/B:JCNS.0000004841.66897.7d
10.1103/PhysRevLett.81.3291
10.1103/PhysRevLett.94.084102
10.1002/hbm.20346
10.1016/S0006-3495(67)86596-2
10.1152/jn.00254.2001
10.1103/PhysRevLett.100.234101
10.1021/ac60214a047
10.1098/rstb.2000.0560
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1016/S0167-2789(00)00043-9
10.1152/jn.00853.2003
10.1016/j.tins.2007.05.006
10.1371/journal.pcbi.1000092
10.1093/acprof:oso/9780195301069.001.0001
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
2015 INIST-CNRS
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21099
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE
Technology Research Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Modeling Phase Interactions in MEG
EISSN 1097-0193
EndPage 1178
ExternalDocumentID PMC6869992
3278338721
21225630
24266588
10_1002_hbm_21099
HBM21099
ark_67375_WNG_V50MD08H_S
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AFFHD
AAYXX
CITATION
O8X
ALIPV
IQODW
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
C45
CGR
CUY
CVF
ECM
EIF
NPM
RWD
RWI
WRC
WUP
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5439-486d8837f9b37cb9ac64fb40e2726745254d989ad0e290e16f73928f5a655bcf3
IEDL.DBID WIN
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291562900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:36:20 EDT 2025
Sun Sep 28 00:53:22 EDT 2025
Wed Oct 01 09:56:18 EDT 2025
Sat Nov 29 14:38:50 EST 2025
Wed Feb 19 01:48:26 EST 2025
Mon Jul 21 09:16:30 EDT 2025
Sat Nov 29 06:33:41 EST 2025
Tue Nov 18 21:13:45 EST 2025
Tue Nov 11 03:09:31 EST 2025
Sun Sep 21 06:19:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Nervous system diseases
Radiodiagnosis
Magnetoencephalography
Interaction
EEG
Electrophysiology
Electroencephalography
Phase locking
oscillatory activity
Synchronization
Modeling
Volume conduction
MEG
functional interaction
Oscillator
Oscillation
coupled oscillators
Language English
License http://doi.wiley.com/10.1002/tdm_license_1
CC BY 4.0
Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5439-486d8837f9b37cb9ac64fb40e2726745254d989ad0e290e16f73928f5a655bcf3
Notes istex:9ED701749415F997CCD7DF89C9B47AB49A12202B
ArticleID:HBM21099
ark:/67375/WNG-V50MD08H-S
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6869992
PMID 21225630
PQID 1517354512
PQPubID 996345
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869992
proquest_miscellaneous_871964858
proquest_miscellaneous_1017963130
proquest_journals_1517354512
pubmed_primary_21225630
pascalfrancis_primary_24266588
crossref_citationtrail_10_1002_hbm_21099
crossref_primary_10_1002_hbm_21099
wiley_primary_10_1002_hbm_21099_HBM21099
istex_primary_ark_67375_WNG_V50MD08H_S
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Breakspear M ( 2002): Nonlinear phase desynchronization in human electroencephalographic data. Hum Brain Mapp 15: 175-198.
Pereda E, Quiroga RQ, Bhattacharya J ( 2005): Nonlinear multivariate analysis of neurophyiological signals. Prog Neurobiol 77: 1-37.
Pikovski A, Rosenblum M, Kurths J ( 2001): Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series 12). Cambridge: Cambridge University Press.
Tass P, Rosenblum MG, Weule J, Kurths J, Pikovski A, Volkmann J, Schnitzler A, Freund HJ ( 1998): Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys Rev Lett 81(15)/3191(4).
Mallat S ( 1998): A Wavelet Tour of Signal Processing. Academic Press.
Friston KJ ( 2000): The labile brain. 1. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond Biol Sci 355: 215-236.
Le Van Quyen M, Bragin A ( 2007): Analysis of dynamic brain oscillations: Methodological advances. Trends in Neurosci 30: 365-373.
Savitsky A, Golay MJE ( 1964): Smoothing and differentiation of data by simplified least squared procedures. Anal Chem 36: 1627-1639.
Meinecke FC, Ziehe A, Kurths J, Muller KR ( 2005): Measuring phase synchronization of superimposed signals. Phys Rev Lett 94: 084102.
Breakspear M ( 2004): A novel method for the topographic analysis of neural activity reveals formation and dissolution of dynamic cell assemblies. J Comput Neurosci 16: 49-68.
Buzsaki G ( 2006): Rhythms of the Brain. Oxford University Press: New York.
Hurtado JM, Rubchinsky LL, Sigvardt KA ( 2004): Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91: 1883-1898.
Freeman WJ, Rogers LJ ( 2002): Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87: 937-945.
Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T, Muller KR ( 2008): Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100: 234101.
Schreiber T, Schmitz A ( 2000): Surrogate time series. Phys D 142: 346-382.
Stam CJ, Nolte G, Daffertshofer A ( 2007): Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28: 1178-1193.
Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R ( 2002): Identification of coupling direction: Application to cardiorespiratory interaction. Phys Rev E 65: 041909.
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M ( 2004): Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophys 115: 2292-2307.
Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K ( 2008): The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8): e1000092. doi:10.1371/journal.pcbi.1000092.
Thatcher RW, North DM, Biver CJ ( 2008): Intelligence and EEG phase reset: A two compartment model of phase shift and lock. Neuroimage 42: 1639-1953.
Rosenblum MG, Pikovski AS ( 2001): Detecting direction of coupling in interacting oscillators. Phys Rev E 64: 045202(R).
Ito J, Nikolaev AR, van Leeuwen C ( 2007): Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 28: 904-913.
Freeman WJ, Burke BC, Holmes MD ( 2003): Aperiodic phase resetting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19: 248-272.
Perkel DH, Gerstein GL, Moore GP ( 1967): Neuronal spike trains and stochastic point processes. Biophys J 7: 391-418.
Hyvarinen A, Karhunen J, Oja E ( 2001): Independent Component Analysis. New York: Wiley.
Lachaux JP, Rodriguez E, Martinerie J, Varela FJ ( 1999): Measuring phase synchrony in brain signals. Hum Brain Mapp 8: 194-208.
2007; 28
1967; 7
2002; 15
2004; 115
2000; 355
2001
2004; 16
2002; 87
2002; 65
1998
2006
1964; 36
2000; 142
1998; 81
2003; 19
2008; 4
2007; 30
2005; 94
2008; 42
1999; 8
2004; 91
2008; 100
2005; 77
2001; 64
Rosenblum (10.1002/hbm.21099-BIB21|cit21) 2002; 65
Le Van Quyen (10.1002/hbm.21099-BIB12|cit12) 2007; 30
Breakspear (10.1002/hbm.21099-BIB2|cit2) 2004; 16
Lachaux (10.1002/hbm.21099-BIB11|cit11) 1999; 8
Freeman (10.1002/hbm.21099-BIB6|cit6) 2003; 19
Hyvarinen (10.1002/hbm.21099-BIB9|cit9) 2001
Thatcher (10.1002/hbm.21099-BIB27|cit27) 2008; 42
Ito (10.1002/hbm.21099-BIB10|cit10) 2007; 28
Pikovski (10.1002/hbm.21099-BIB19|cit19) 2001
Friston (10.1002/hbm.21099-BIB7|cit7) 2000; 355
Rosenblum (10.1002/hbm.21099-BIB22|cit22) 2006
Stam (10.1002/hbm.21099-BIB25|cit25) 2007; 28
Savitsky (10.1002/hbm.21099-BIB23|cit23) 1964; 36
Mallat (10.1002/hbm.21099-BIB13|cit13) 1998
Buzsaki (10.1002/hbm.21099-BIB3|cit3) 2006
Deco (10.1002/hbm.21099-BIB4|cit4) 2008; 4
Rosenblum (10.1002/hbm.21099-BIB20|cit20) 2001; 64
Freeman (10.1002/hbm.21099-BIB5|cit5) 2002; 87
Schreiber (10.1002/hbm.21099-BIB24|cit24) 2000; 142
Nolte (10.1002/hbm.21099-BIB15|cit15) 2004; 115
Tass (10.1002/hbm.21099-BIB26|cit26) 1998; 81
Breakspear (10.1002/hbm.21099-BIB1|cit1) 2002; 15
Meinecke (10.1002/hbm.21099-BIB14|cit14) 2005; 94
Pereda (10.1002/hbm.21099-BIB17|cit17) 2005; 77
Nolte (10.1002/hbm.21099-BIB16|cit16) 2008; 100
Perkel (10.1002/hbm.21099-BIB18|cit18) 1967; 7
Hurtado (10.1002/hbm.21099-BIB8|cit8) 2004; 91
References_xml – reference: Rosenblum MG, Pikovski AS ( 2001): Detecting direction of coupling in interacting oscillators. Phys Rev E 64: 045202(R).
– reference: Savitsky A, Golay MJE ( 1964): Smoothing and differentiation of data by simplified least squared procedures. Anal Chem 36: 1627-1639.
– reference: Le Van Quyen M, Bragin A ( 2007): Analysis of dynamic brain oscillations: Methodological advances. Trends in Neurosci 30: 365-373.
– reference: Buzsaki G ( 2006): Rhythms of the Brain. Oxford University Press: New York.
– reference: Lachaux JP, Rodriguez E, Martinerie J, Varela FJ ( 1999): Measuring phase synchrony in brain signals. Hum Brain Mapp 8: 194-208.
– reference: Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R ( 2002): Identification of coupling direction: Application to cardiorespiratory interaction. Phys Rev E 65: 041909.
– reference: Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K ( 2008): The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8): e1000092. doi:10.1371/journal.pcbi.1000092.
– reference: Freeman WJ, Rogers LJ ( 2002): Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87: 937-945.
– reference: Hyvarinen A, Karhunen J, Oja E ( 2001): Independent Component Analysis. New York: Wiley.
– reference: Pikovski A, Rosenblum M, Kurths J ( 2001): Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series 12). Cambridge: Cambridge University Press.
– reference: Ito J, Nikolaev AR, van Leeuwen C ( 2007): Dynamics of spontaneous transitions between global brain states. Hum Brain Mapp 28: 904-913.
– reference: Thatcher RW, North DM, Biver CJ ( 2008): Intelligence and EEG phase reset: A two compartment model of phase shift and lock. Neuroimage 42: 1639-1953.
– reference: Breakspear M ( 2004): A novel method for the topographic analysis of neural activity reveals formation and dissolution of dynamic cell assemblies. J Comput Neurosci 16: 49-68.
– reference: Hurtado JM, Rubchinsky LL, Sigvardt KA ( 2004): Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91: 1883-1898.
– reference: Meinecke FC, Ziehe A, Kurths J, Muller KR ( 2005): Measuring phase synchronization of superimposed signals. Phys Rev Lett 94: 084102.
– reference: Freeman WJ, Burke BC, Holmes MD ( 2003): Aperiodic phase resetting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19: 248-272.
– reference: Breakspear M ( 2002): Nonlinear phase desynchronization in human electroencephalographic data. Hum Brain Mapp 15: 175-198.
– reference: Stam CJ, Nolte G, Daffertshofer A ( 2007): Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28: 1178-1193.
– reference: Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M ( 2004): Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophys 115: 2292-2307.
– reference: Mallat S ( 1998): A Wavelet Tour of Signal Processing. Academic Press.
– reference: Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T, Muller KR ( 2008): Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100: 234101.
– reference: Perkel DH, Gerstein GL, Moore GP ( 1967): Neuronal spike trains and stochastic point processes. Biophys J 7: 391-418.
– reference: Tass P, Rosenblum MG, Weule J, Kurths J, Pikovski A, Volkmann J, Schnitzler A, Freund HJ ( 1998): Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys Rev Lett 81(15)/3191(4).
– reference: Pereda E, Quiroga RQ, Bhattacharya J ( 2005): Nonlinear multivariate analysis of neurophyiological signals. Prog Neurobiol 77: 1-37.
– reference: Schreiber T, Schmitz A ( 2000): Surrogate time series. Phys D 142: 346-382.
– reference: Friston KJ ( 2000): The labile brain. 1. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond Biol Sci 355: 215-236.
– volume: 355
  start-page: 215
  year: 2000
  end-page: 236
  article-title: The labile brain. 1. Neuronal transients and nonlinear coupling
  publication-title: Philos Trans R Soc Lond Biol Sci
– volume: 142
  start-page: 346
  year: 2000
  end-page: 382
  article-title: Surrogate time series
  publication-title: Phys D
– year: 2001
– volume: 91
  start-page: 1883
  year: 2004
  end-page: 1898
  article-title: Statistical method for detection of phase‐locking episodes in neural oscillations
  publication-title: J Neurophysiol
– volume: 7
  start-page: 391
  year: 1967
  end-page: 418
  article-title: Neuronal spike trains and stochastic point processes
  publication-title: Biophys J
– volume: 28
  start-page: 1178
  year: 2007
  end-page: 1193
  article-title: Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
  publication-title: Hum Brain Mapp
– volume: 19
  start-page: 248
  year: 2003
  end-page: 272
  article-title: Aperiodic phase resetting in scalp EEG of beta‐gamma oscillations by state transitions at alpha‐theta rates
  publication-title: Hum Brain Mapp
– volume: 81
  start-page: (15)
  year: 1998
  end-page: 3191(4)
  article-title: Detection of n:m phase locking from noisy data: Application to magnetoencephalography
  publication-title: Phys Rev Lett
– volume: 15
  start-page: 175
  year: 2002
  end-page: 198
  article-title: Nonlinear phase desynchronization in human electroencephalographic data
  publication-title: Hum Brain Mapp
– volume: 87
  start-page: 937
  year: 2002
  end-page: 945
  article-title: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs
  publication-title: J Neurophysiol
– volume: 28
  start-page: 904
  year: 2007
  end-page: 913
  article-title: Dynamics of spontaneous transitions between global brain states
  publication-title: Hum Brain Mapp
– volume: 64
  start-page: 045202(R)
  year: 2001
  article-title: Detecting direction of coupling in interacting oscillators
  publication-title: Phys Rev E
– volume: 65
  start-page: 041909
  year: 2002
  article-title: Identification of coupling direction: Application to cardiorespiratory interaction
  publication-title: Phys Rev E
– year: 1998
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  article-title: Smoothing and differentiation of data by simplified least squared procedures
  publication-title: Anal Chem
– volume: 115
  start-page: 2292
  year: 2004
  end-page: 2307
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin Neurophys
– volume: 42
  start-page: 1639
  year: 2008
  end-page: 1953
  article-title: Intelligence and EEG phase reset: A two compartment model of phase shift and lock
  publication-title: Neuroimage
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum Brain Mapp
– volume: 100
  start-page: 234101
  year: 2008
  article-title: Robustly estimating the flow direction of information in complex physical systems
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 1
  year: 2005
  end-page: 37
  article-title: Nonlinear multivariate analysis of neurophyiological signals
  publication-title: Prog Neurobiol
– volume: 16
  start-page: 49
  year: 2004
  end-page: 68
  article-title: A novel method for the topographic analysis of neural activity reveals formation and dissolution of dynamic cell assemblies
  publication-title: J Comput Neurosci
– year: 2006
– start-page: 159
  year: 2006
  end-page: 180
– volume: 4
  start-page: e1000092
  issue: 8
  year: 2008
  article-title: The dynamic brain: From spiking neurons to neural masses and cortical fields
  publication-title: PLoS Comput Biol
– volume: 94
  start-page: 084102
  year: 2005
  article-title: Measuring phase synchronization of superimposed signals
  publication-title: Phys Rev Lett
– volume: 30
  start-page: 365
  year: 2007
  end-page: 373
  article-title: Analysis of dynamic brain oscillations: Methodological advances
  publication-title: Trends in Neurosci
– volume-title: Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Nonlinear Science Series 12)
  year: 2001
  ident: 10.1002/hbm.21099-BIB19|cit19
  doi: 10.1017/CBO9780511755743
– start-page: 159
  volume-title: Handbook of Time Series Analysis
  year: 2006
  ident: 10.1002/hbm.21099-BIB22|cit22
  doi: 10.1002/9783527609970.ch7
– volume: 65
  start-page: 041909
  year: 2002
  ident: 10.1002/hbm.21099-BIB21|cit21
  article-title: Identification of coupling direction: Application to cardiorespiratory interaction
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.041909
– volume: 64
  start-page: 045202(R)
  year: 2001
  ident: 10.1002/hbm.21099-BIB20|cit20
  article-title: Detecting direction of coupling in interacting oscillators
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.045202
– volume: 15
  start-page: 175
  year: 2002
  ident: 10.1002/hbm.21099-BIB1|cit1
  article-title: Nonlinear phase desynchronization in human electroencephalographic data
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10011
– volume: 19
  start-page: 248
  year: 2003
  ident: 10.1002/hbm.21099-BIB6|cit6
  article-title: Aperiodic phase resetting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10120
– volume: 42
  start-page: 1639
  year: 2008
  ident: 10.1002/hbm.21099-BIB27|cit27
  article-title: Intelligence and EEG phase reset: A two compartment model of phase shift and lock
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.009
– volume: 28
  start-page: 904
  year: 2007
  ident: 10.1002/hbm.21099-BIB10|cit10
  article-title: Dynamics of spontaneous transitions between global brain states
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20316
– volume-title: Independent Component Analysis
  year: 2001
  ident: 10.1002/hbm.21099-BIB9|cit9
  doi: 10.1002/0471221317
– volume: 77
  start-page: 1
  year: 2005
  ident: 10.1002/hbm.21099-BIB17|cit17
  article-title: Nonlinear multivariate analysis of neurophyiological signals
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2005.10.003
– volume: 115
  start-page: 2292
  year: 2004
  ident: 10.1002/hbm.21099-BIB15|cit15
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin Neurophys
  doi: 10.1016/j.clinph.2004.04.029
– volume: 16
  start-page: 49
  year: 2004
  ident: 10.1002/hbm.21099-BIB2|cit2
  article-title: A novel method for the topographic analysis of neural activity reveals formation and dissolution of dynamic cell assemblies
  publication-title: J Comput Neurosci
  doi: 10.1023/B:JCNS.0000004841.66897.7d
– volume: 81
  start-page: (15)
  year: 1998
  ident: 10.1002/hbm.21099-BIB26|cit26
  article-title: Detection of n:m phase locking from noisy data: Application to magnetoencephalography
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.81.3291
– volume: 94
  start-page: 084102
  year: 2005
  ident: 10.1002/hbm.21099-BIB14|cit14
  article-title: Measuring phase synchronization of superimposed signals
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.084102
– volume: 28
  start-page: 1178
  year: 2007
  ident: 10.1002/hbm.21099-BIB25|cit25
  article-title: Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20346
– volume: 7
  start-page: 391
  year: 1967
  ident: 10.1002/hbm.21099-BIB18|cit18
  article-title: Neuronal spike trains and stochastic point processes
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(67)86596-2
– volume: 87
  start-page: 937
  year: 2002
  ident: 10.1002/hbm.21099-BIB5|cit5
  article-title: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00254.2001
– volume: 100
  start-page: 234101
  year: 2008
  ident: 10.1002/hbm.21099-BIB16|cit16
  article-title: Robustly estimating the flow direction of information in complex physical systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.234101
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1002/hbm.21099-BIB23|cit23
  article-title: Smoothing and differentiation of data by simplified least squared procedures
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– volume: 355
  start-page: 215
  year: 2000
  ident: 10.1002/hbm.21099-BIB7|cit7
  article-title: The labile brain. 1. Neuronal transients and nonlinear coupling
  publication-title: Philos Trans R Soc Lond Biol Sci
  doi: 10.1098/rstb.2000.0560
– volume: 8
  start-page: 194
  year: 1999
  ident: 10.1002/hbm.21099-BIB11|cit11
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 142
  start-page: 346
  year: 2000
  ident: 10.1002/hbm.21099-BIB24|cit24
  article-title: Surrogate time series
  publication-title: Phys D
  doi: 10.1016/S0167-2789(00)00043-9
– volume: 91
  start-page: 1883
  year: 2004
  ident: 10.1002/hbm.21099-BIB8|cit8
  article-title: Statistical method for detection of phase-locking episodes in neural oscillations
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00853.2003
– volume: 30
  start-page: 365
  year: 2007
  ident: 10.1002/hbm.21099-BIB12|cit12
  article-title: Analysis of dynamic brain oscillations: Methodological advances
  publication-title: Trends in Neurosci
  doi: 10.1016/j.tins.2007.05.006
– volume: 4
  start-page: e1000092
  issue: 8
  year: 2008
  ident: 10.1002/hbm.21099-BIB4|cit4
  article-title: The dynamic brain: From spiking neurons to neural masses and cortical fields
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000092
– volume-title: A Wavelet Tour of Signal Processing
  year: 1998
  ident: 10.1002/hbm.21099-BIB13|cit13
– volume-title: Rhythms of the Brain
  year: 2006
  ident: 10.1002/hbm.21099-BIB3|cit3
  doi: 10.1093/acprof:oso/9780195301069.001.0001
SSID ssj0011501
Score 2.047146
Snippet Objective: Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous...
Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1161
SubjectTerms Biological and medical sciences
Brain - physiology
Brain mapping
Conduction
Cortical Synchronization - physiology
coupled oscillators
Data processing
EEG
Frequency dependence
functional interaction
Investigative techniques, diagnostic techniques (general aspects)
Magnetoencephalography
Mathematical models
Medical sciences
MEG
Models, Neurological
Nervous system
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Oscillators
oscillatory activity
phase locking
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rhythms
Synchronization
volume conduction
Title Data-driven modeling of phase interactions between spontaneous MEG oscillations
URI https://api.istex.fr/ark:/67375/WNG-V50MD08H-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21099
https://www.ncbi.nlm.nih.gov/pubmed/21225630
https://www.proquest.com/docview/1517354512
https://www.proquest.com/docview/1017963130
https://www.proquest.com/docview/871964858
https://pubmed.ncbi.nlm.nih.gov/PMC6869992
Volume 32
WOSCitedRecordID wos000291562900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VghAXHi1QQ4kWhKpeTP3chzgV-giHRCAezW21XnuVqq1T2SmCGz-B38gvYXbXcYloJSRuUTwrJ-N5fLMz_hbgpTYIe6lhYZXEBgsUWoQqL_NQGGVsTtJV4g-bYOMxn0zE-xV4vXgXxvND9Btu1jNcvLYOrop255I0dFqcvUpsXwfjb5w5pzx6N-47CAh0XLGFKTYUGIEXrEJRstOvXMpFN61av9nZSNWieow_1-Iq4Pn3_OSfuNYlpoN7__WX7sPdDo-SXW9AD2ClqtdgfbfGWvzsO9kibkLUbb2vwe1R14hfhw97aq5-_fhZNjZaEneeDiZBMjPkfIqJkVgaisa_NNGSbhiM2HFcBKPV7KIlo_1DYok0T7thvIfw-WD_09th2J3OEOo8s-1jTkuO5a0RRcp0IZSmmSmyqEpYQpltl2al4EKV-I2IqhgNArEYN7mieV5okz6C1XpWVxtAEGNwY6FdVFVZZLRQpkwyRYViSaHTNIDtxXOSuqMutydonEpPupxI1Jx0mgvgRS967vk6rhLacg-7l1DNiR1wY7k8Gh_KL3k02ov4UH4MYLBkDf0CB2xyzgPYXJiH7Jy_lQiiWIrINE4CeN5fRre1vRivZOkiIU0RQQRArpHBWlbQjOd4l8fe4C7vH2McpnYxWzLFXsCyhi9fqY-njj2ccopFAf60bWeK12tJDt-M3Icn_y76FO74TXc7z7wJq_PmonoGt_TX-XHbDOAGm_CB89PfU0s_xg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9VAEJ4gGPHFC4hWEVdjCC-Vnl62u4kvKJdDpI1GUN4228vmEKGHtAejb_4Ef6O_xJltT_FESEx8a05n057pXL7ZmZ0BeJkbhL3cxG7pDwwGKDxzdVRErjTakE_KS78dNhGnqTg-lu_n4PX0LEzbH6LfcCPNsPaaFJw2pDcvu4aOsrNXPiV2bsBCyBG503mS_bTPISDUseEWOllXog2e9hXy_M1-6Yw3WiDGfqPqSN0gg0w72eIq6Pl3BeWfyNa6pt27__en7sGdDpKyrVaG7sNcWS3B8laF4fjZd7bObJGo3X1fgltJl4tfhg_beqJ__fhZ1GQwmR2pg36QjQ07H6FvZNSJom7PTTSsqwdjVJGLeLQcXzQs2dlj1EvztKvHewBHuzuHb4duN6DBzaOQMsiCFwIjXCOzIM4zqXMemiz0Sj_2eUwZ07CQQuoCf5FeOUCZQDgmTKR5FGW5CVZgvhpX5SNgCDOEIXTnlWXomVxqU_ih5lLHfpYHgQMb0w-l8q57OQ3ROFVt32VfIeeU5ZwDL3rS87Zlx1VE6_Zr9xS6_kI1bnGkPqd76lPkJdueGKqPDqzNiEO_wGKbSAgHVqfyoTr9bxTiqDhAcDrwHXje30bNpXRMy2RljSEPEEQ4wK6hwXBW8lBE-JSHrcRdPn-AppjT4nhGFnsCahw-e6c6GdkG4lxwjAvw1TasLF7PJTV8k9iLx_9O-gwWh4fJgTrYT989gdvtHjyVN6_C_KS-KJ_Czfzr5KSp16y6_gbiV0MO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlVceLRAA6UYhKpeQrNJ7NgSl8J2uxVsVMSrN8tJbG3VNrtKtghu_AR-I7-EsZNNWdFKSNyizVjJTubxjWc8A_AiNwh7mUl8HfYMBigs8xUtqC-MMtYn5Tpshk0kacqPj8XREryan4Vp-kN0G25WM5y9tgqup4XZvewaOs7OX4Y2sXMDVmKGrs-eJzlMuxwCQh0XbqGT9QXa4HlfoSDc7ZYueKMVy9hvtjpS1cgg00y2uAp6_l1B-Seyda5pcOf__tRduN1CUrLXyNA9WNLlGqzvlRiOn38n28QVibrd9zVYHbW5-HV431cz9evHz6KyBpO4kTroB8nEkOkYfSOxnSiq5txETdp6MGIrchGP6slFTUb7B8T20jxr6_Huw6fB_sc3Q78d0ODnNLYZZM4KjhGuEVmU5JlQOYtNFgc6TEKW2IxpXAguVIG_iED3UCYQjnFDFaM0y030AJbLSak3gCDM4Maiu0DrODC5UKYIY8WESsIsjyIPduYfSuZt93I7RONMNn2XQ4mck45zHjzvSKdNy46riLbd1-4oVHVqa9wSKr-kB_IzDUb9gA_lBw-2FsShW-CwDeXcg825fMhW_2uJOCqJEJz2Qg-edbdRc206pmGydMaQRQgiPCDX0GA4K1jMKT7lYSNxl8_voSlmdnGyIIsdgW0cvninPBm7BuKMM4wL8NV2nCxezyU5fD1yF4_-nfQprB71B_LdYfr2MdxqtuBtdfMmLM-qC_0EbuZfZyd1teW09TfswkKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Modeling+of+Phase+Interactions+Between+Spontaneous+MEG+Oscillations&rft.jtitle=Human+brain+mapping&rft.au=HINDRIKS%2C+Rikkert&rft.au=BIJMA%2C+Fetsje&rft.au=VAN+DIJK%2C+Bob+W&rft.au=STAM%2C+Cornelis+J&rft.date=2011-07-01&rft.pub=Wiley-Liss&rft.issn=1065-9471&rft.volume=32&rft.issue=7&rft.spage=1161&rft.epage=1178&rft_id=info:doi/10.1002%2Fhbm.21099&rft.externalDBID=n%2Fa&rft.externalDocID=24266588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon