Amyloid imaging in mild cognitive impairment subtypes

Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of neurology Ročník 65; číslo 5; s. 557 - 568
Hlavní autoři: Wolk, David A., Price, Julie C., Saxton, Judy A., Snitz, Beth E., James, Jeffrey A., Lopez, Oscar L., Aizenstein, Howard J., Cohen, Ann D., Weissfeld, Lisa A., Mathis, Chester A., Klunk, William E., DeKosky, Steven T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2009
Wiley-Liss
Témata:
ISSN:0364-5134, 1531-8249, 1531-8249
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty‐six patients with MCI (13 single‐domain amnestic‐MCI [a‐MCI], 6 multidomain a‐MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty‐three had clinical follow‐up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan. Results Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered “amyloid‐positive.” All subtypes were associated with a significant proportion of amyloid‐positive patients (6/13 single‐domain a‐MCI, 5/6 multidomain a‐MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a‐MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid‐positive relative to amyloid‐negative a‐MCI patients. Longitudinal follow‐up demonstrated 5 of 13 amyloid‐positive patients, but 0 of 10 amyloid‐negative patients, converted to clinical AD. Further, 3 of 10 amyloid‐negative patients “reverted to normal.” Interpretation These data support the notion that amyloid‐positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease‐specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009;65:557–568
AbstractList We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan. Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal." These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD.
Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan. Results Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered amyloid-positive. All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients reverted to normal. Interpretation These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009; 65:557-568.
We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.OBJECTIVEWe utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan.METHODSTwenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan.Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal."RESULTSUsing cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal."These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD.INTERPRETATIONThese data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD.
Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty‐six patients with MCI (13 single‐domain amnestic‐MCI [a‐MCI], 6 multidomain a‐MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty‐three had clinical follow‐up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan. Results Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered “amyloid‐positive.” All subtypes were associated with a significant proportion of amyloid‐positive patients (6/13 single‐domain a‐MCI, 5/6 multidomain a‐MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a‐MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid‐positive relative to amyloid‐negative a‐MCI patients. Longitudinal follow‐up demonstrated 5 of 13 amyloid‐positive patients, but 0 of 10 amyloid‐negative patients, converted to clinical AD. Further, 3 of 10 amyloid‐negative patients “reverted to normal.” Interpretation These data support the notion that amyloid‐positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease‐specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009;65:557–568
Author Cohen, Ann D.
Saxton, Judy A.
Price, Julie C.
Aizenstein, Howard J.
Wolk, David A.
DeKosky, Steven T.
Snitz, Beth E.
James, Jeffrey A.
Weissfeld, Lisa A.
Klunk, William E.
Lopez, Oscar L.
Mathis, Chester A.
AuthorAffiliation 2 Department of Neurology, University of Pittsburgh, Pittsburgh, PA
4 Department of Radiology, University of Pittsburgh, Pittsburgh, PA
1 Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA
5 Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
AuthorAffiliation_xml – name: 1 Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– name: 2 Department of Neurology, University of Pittsburgh, Pittsburgh, PA
– name: 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
– name: 4 Department of Radiology, University of Pittsburgh, Pittsburgh, PA
– name: 5 Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
Author_xml – sequence: 1
  givenname: David A.
  surname: Wolk
  fullname: Wolk, David A.
  email: david.wolk@uphs.upenn.edu
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 2
  givenname: Julie C.
  surname: Price
  fullname: Price, Julie C.
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA
– sequence: 3
  givenname: Judy A.
  surname: Saxton
  fullname: Saxton, Judy A.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 4
  givenname: Beth E.
  surname: Snitz
  fullname: Snitz, Beth E.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 5
  givenname: Jeffrey A.
  surname: James
  fullname: James, Jeffrey A.
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA
– sequence: 6
  givenname: Oscar L.
  surname: Lopez
  fullname: Lopez, Oscar L.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 7
  givenname: Howard J.
  surname: Aizenstein
  fullname: Aizenstein, Howard J.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 8
  givenname: Ann D.
  surname: Cohen
  fullname: Cohen, Ann D.
  organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
– sequence: 9
  givenname: Lisa A.
  surname: Weissfeld
  fullname: Weissfeld, Lisa A.
  organization: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA
– sequence: 10
  givenname: Chester A.
  surname: Mathis
  fullname: Mathis, Chester A.
  organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA
– sequence: 11
  givenname: William E.
  surname: Klunk
  fullname: Klunk, William E.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
– sequence: 12
  givenname: Steven T.
  surname: DeKosky
  fullname: DeKosky, Steven T.
  organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21557252$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19475670$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS3UiqaFBS-AZgMSi2n9M_aMN0hRRUvVKLAAZWnd8XiCwWMHe1Kat8chaVQQiJUX9zvH595zio588AahFwSfE4zpBXg4p4TL5gmaEM5I2dBKHqEJZqIqOWHVCTpN6SvGWAqCn6ITIquaixpPEJ8OGxdsV9gBltYvC-uLwbqu0GHp7WjvTJ6swMbB-LFI63bcrEx6ho57cMk8379n6PPVu0-X78vZh-uby-ms1LxiTcm6nmppSAuNbDUXRmJKO1aJVnJqpOhM1XccGAFSgWlrpoFQQdpWd5QQxtgZervzXa3bwXQ6Z4jg1CrmtHGjAlj1-8TbL2oZ7hRtaNPUOBu83hvE8H1t0qgGm7RxDrwJ66REzYjgnP0XpJhQzqjI4MvHkQ5ZHk6agVd7AJIG10fw2qYDl3viNeU0cxc7TseQUjS90naE0YbtJtYpgtW2XJXLVb_KzYo3fygOn_-F3bv_sM5s_g2q6Xz6oCh3CptGc39QQPy2vVLN1WJ-rWYfbxdzuhCqYT8BnsfCZQ
CODEN ANNED3
CitedBy_id crossref_primary_10_1212_01_CON_0000429175_29601_97
crossref_primary_10_3233_JAD_201560
crossref_primary_10_1007_s00401_012_1051_z
crossref_primary_10_1371_journal_pone_0035559
crossref_primary_10_1016_j_tins_2011_05_005
crossref_primary_10_1016_j_jalz_2013_09_003
crossref_primary_10_1016_j_neurobiolaging_2012_12_028
crossref_primary_10_1136_postgradmedj_2015_133759
crossref_primary_10_1016_j_neurobiolaging_2011_09_006
crossref_primary_10_1016_j_neuroimage_2010_05_068
crossref_primary_10_1212_WNL_0b013e3182563bbe
crossref_primary_10_1177_0891988710363715
crossref_primary_10_1007_s11910_013_0412_x
crossref_primary_10_1017_S109285291600047X
crossref_primary_10_1159_000338815
crossref_primary_10_1073_pnas_0914141107
crossref_primary_10_1186_1471_2377_11_78
crossref_primary_10_1016_j_nicl_2013_03_014
crossref_primary_10_1093_brain_awq277
crossref_primary_10_1016_j_neurobiolaging_2017_06_027
crossref_primary_10_1007_s11920_014_0490_8
crossref_primary_10_1080_13803395_2021_2023476
crossref_primary_10_1109_JBHI_2023_3306460
crossref_primary_10_1002_gps_2640
crossref_primary_10_1111_ene_13881
crossref_primary_10_1186_s13195_021_00910_8
crossref_primary_10_1038_s41598_018_23676_w
crossref_primary_10_1186_s13195_020_00707_1
crossref_primary_10_3233_JAD_240380
crossref_primary_10_1002_ana_22248
crossref_primary_10_1016_j_nucmedbio_2010_05_001
crossref_primary_10_1002_alz_12184
crossref_primary_10_3233_JAD_190220
crossref_primary_10_3233_JPD_202496
crossref_primary_10_1016_j_neuroimage_2013_06_021
crossref_primary_10_1002_ana_22144
crossref_primary_10_1002_alz_70193
crossref_primary_10_1016_j_jalz_2016_06_2357
crossref_primary_10_1016_j_neurobiolaging_2013_05_009
crossref_primary_10_1016_S1474_4422_11_70077_1
crossref_primary_10_1097_WCO_0b013e32834cd45b
crossref_primary_10_1371_journal_pone_0231868
crossref_primary_10_1016_j_neurobiolaging_2017_05_019
crossref_primary_10_1016_j_neulet_2016_08_045
crossref_primary_10_1016_j_neuroimage_2024_120609
crossref_primary_10_1016_j_neuroimage_2011_11_075
crossref_primary_10_1016_j_exger_2011_04_001
crossref_primary_10_1093_arclin_acx056
crossref_primary_10_1097_WCO_0b013e3283557b36
crossref_primary_10_3233_JAD_170960
crossref_primary_10_3390_ijms231810490
crossref_primary_10_1136_jnnp_2014_308094
crossref_primary_10_1016_j_arr_2016_01_004
crossref_primary_10_1016_j_nicl_2018_08_023
crossref_primary_10_3233_JAD_161223
crossref_primary_10_1016_j_pnmrs_2018_11_001
crossref_primary_10_1111_jnp_12218
crossref_primary_10_1016_j_jalz_2013_01_002
crossref_primary_10_1212_WNL_0000000000008712
crossref_primary_10_1016_j_mednuc_2016_08_001
crossref_primary_10_1038_nrneurol_2013_107
crossref_primary_10_1097_YCO_0b013e328344696b
crossref_primary_10_1212_WNL_0000000000006088
crossref_primary_10_3233_JAD_201087
crossref_primary_10_1016_j_eurger_2010_05_003
crossref_primary_10_1016_j_neurobiolaging_2019_01_017
crossref_primary_10_1093_geronb_gbaf085
crossref_primary_10_1176_appi_focus_11_4_482
crossref_primary_10_1093_brain_awy086
crossref_primary_10_3233_JAD_215497
crossref_primary_10_3233_JAD_160842
crossref_primary_10_1016_j_neuropsychologia_2013_07_017
crossref_primary_10_1002_alz_13503
crossref_primary_10_1016_S1474_4422_10_70223_4
crossref_primary_10_1007_s11065_017_9348_2
crossref_primary_10_1089_brain_2020_0902
crossref_primary_10_1038_mp_2014_9
crossref_primary_10_1177_0733464815589987
crossref_primary_10_1016_j_cpet_2009_12_008
crossref_primary_10_1155_2014_785039
crossref_primary_10_1017_cjn_2019_293
crossref_primary_10_1016_j_cpet_2009_12_003
crossref_primary_10_2147_NDT_S252293
crossref_primary_10_1016_j_neurobiolaging_2013_08_017
crossref_primary_10_3233_JAD_200439
crossref_primary_10_4061_2011_280289
crossref_primary_10_1016_j_jagp_2016_12_021
crossref_primary_10_1007_s00259_015_3208_1
crossref_primary_10_1016_j_neurobiolaging_2015_08_016
crossref_primary_10_2217_ahe_10_80
crossref_primary_10_1093_brain_awv007
crossref_primary_10_1212_WNL_0000000000005549
crossref_primary_10_3390_diagnostics14161780
crossref_primary_10_1093_brain_awq383
crossref_primary_10_1186_s12883_015_0459_1
crossref_primary_10_1016_j_jalz_2010_04_005
crossref_primary_10_1111_cns_12682
crossref_primary_10_1097_RLU_0000000000000934
crossref_primary_10_3988_jcn_2025_0037
crossref_primary_10_1017_cjn_2015_401
crossref_primary_10_3233_JAD_150254
crossref_primary_10_1007_s00259_011_2045_0
crossref_primary_10_1016_j_pneurobio_2019_101690
crossref_primary_10_1212_WNL_0b013e318224afb7
crossref_primary_10_1177_0891988712464822
crossref_primary_10_1177_13872877251374319
crossref_primary_10_1016_j_neuropsychologia_2013_02_014
crossref_primary_10_1093_brain_awu173
crossref_primary_10_1177_1471301214562135
crossref_primary_10_1056_NEJMcp0910237
crossref_primary_10_1002_ana_23797
crossref_primary_10_1111_j_1742_1241_2011_02845_x
crossref_primary_10_1016_j_bbadis_2011_09_016
crossref_primary_10_1038_jcbfm_2012_20
crossref_primary_10_1016_j_tics_2013_08_007
crossref_primary_10_2217_nmt_11_34
crossref_primary_10_1016_j_neuropharm_2010_04_006
crossref_primary_10_1186_alzrt93
crossref_primary_10_1038_jcbfm_2012_29
crossref_primary_10_1016_j_mcn_2018_12_004
crossref_primary_10_1186_alzrt96
crossref_primary_10_1093_brain_awq310
crossref_primary_10_1097_MD_0000000000000150
crossref_primary_10_1016_j_jalz_2011_07_003
crossref_primary_10_1016_j_nicl_2015_05_006
crossref_primary_10_1016_j_jalz_2012_09_014
crossref_primary_10_1002_gps_2122
crossref_primary_10_1111_ene_12398
crossref_primary_10_3233_JAD_190977
crossref_primary_10_3389_fnagi_2016_00236
crossref_primary_10_1212_WNL_0000000000000977
crossref_primary_10_1007_s11910_009_0051_4
crossref_primary_10_1016_j_jagp_2015_06_004
crossref_primary_10_1093_brain_awt145
crossref_primary_10_1016_j_remnie_2013_07_027
crossref_primary_10_3233_JAD_230027
crossref_primary_10_1186_2051_5960_1_76
crossref_primary_10_1007_s00259_015_3228_x
crossref_primary_10_1002_ana_24040
crossref_primary_10_1097_JGP_0b013e31823e2cc7
crossref_primary_10_1007_s12350_018_1295_7
crossref_primary_10_1109_TMI_2024_3525022
crossref_primary_10_1016_j_cger_2011_07_008
crossref_primary_10_1016_j_nbd_2014_05_001
crossref_primary_10_1007_s12603_014_0507_3
crossref_primary_10_1007_s00259_012_2108_x
crossref_primary_10_1186_alzrt70
crossref_primary_10_1523_JNEUROSCI_5077_10_2011
crossref_primary_10_1016_j_etap_2023_104220
crossref_primary_10_1111_j_1468_1331_2012_03859_x
crossref_primary_10_1002_brb3_532
crossref_primary_10_1016_j_jalz_2012_10_007
crossref_primary_10_1007_s11065_014_9266_5
crossref_primary_10_1002_mds_23795
crossref_primary_10_1007_s12603_014_0485_5
crossref_primary_10_1002_gps_2816
crossref_primary_10_1093_cercor_bhac248
crossref_primary_10_2217_nmt_11_73
crossref_primary_10_3233_JAD_170252
crossref_primary_10_1016_j_biopsycho_2021_108208
crossref_primary_10_3233_JAD_160204
crossref_primary_10_1002_adtp_202400008
crossref_primary_10_3389_fnagi_2022_755454
crossref_primary_10_1007_s11604_019_00867_7
crossref_primary_10_1186_alzrt52
crossref_primary_10_1097_HJH_0000000000001250
crossref_primary_10_12779_dnd_2025_24_2_102
crossref_primary_10_1016_j_nrleng_2013_10_006
crossref_primary_10_1212_WNL_0b013e3182231419
crossref_primary_10_1186_s13195_017_0326_y
crossref_primary_10_3390_ijms19123702
crossref_primary_10_1016_j_neuroimage_2010_12_070
crossref_primary_10_3233_JAD_201011
crossref_primary_10_3348_jksr_2022_0084
crossref_primary_10_1111_cns_12391
crossref_primary_10_1038_s41419_024_07249_6
crossref_primary_10_1053_j_semnuclmed_2012_07_001
crossref_primary_10_3390_ijms232314635
crossref_primary_10_1016_j_pscychresns_2023_111705
crossref_primary_10_1016_j_jalz_2014_04_005
crossref_primary_10_1212_WNL_0b013e3182661f74
crossref_primary_10_1126_scitranslmed_3002609
crossref_primary_10_1136_practneurol_2019_002468
crossref_primary_10_3233_JAD_160907
crossref_primary_10_3389_fnagi_2015_00015
crossref_primary_10_1097_MNM_0000000000000569
crossref_primary_10_1016_j_nicl_2019_101941
crossref_primary_10_1016_j_neurobiolaging_2014_03_006
crossref_primary_10_1016_j_mcna_2012_12_017
crossref_primary_10_1111_joim_12482
crossref_primary_10_1016_j_neurobiolaging_2010_06_015
crossref_primary_10_1016_j_cger_2013_07_006
crossref_primary_10_1586_ern_12_131
crossref_primary_10_1007_s00115_010_2951_6
crossref_primary_10_1038_nrneurol_2009_217
crossref_primary_10_1016_j_neuroimage_2020_117482
crossref_primary_10_1186_s40478_020_01099_x
crossref_primary_10_1016_j_neurobiolaging_2013_06_018
crossref_primary_10_1016_j_remnie_2015_09_005
crossref_primary_10_1016_j_nic_2011_11_005
crossref_primary_10_1007_s00401_012_1025_1
crossref_primary_10_1111_ene_12251
crossref_primary_10_1016_j_dadm_2018_02_008
crossref_primary_10_1016_j_dadm_2019_04_011
crossref_primary_10_1038_s41598_021_85165_x
crossref_primary_10_3389_fnagi_2021_669490
crossref_primary_10_3390_app9153156
crossref_primary_10_3233_JAD_180965
crossref_primary_10_1002_ana_22068
Cites_doi 10.1212/01.WNL.0000147469.18313.3B
10.1159/000110800
10.1001/archneur.63.1.38
10.1093/brain/awm336
10.1212/01.wnl.0000228230.26044.a4
10.1038/sj.npp.1300690
10.1002/ana.410270502
10.1212/WNL.52.7.1397
10.1001/archneur.56.3.303
10.1080/13554790490903038
10.1212/01.wnl.0000244749.20056.d4
10.1212/WNL.58.8.1188
10.1001/archneur.57.5.675
10.1001/archneur.58.3.397
10.1016/S1474-4422(04)00710-0
10.1111/j.1365-2796.2004.01388.x
10.1212/WNL.42.3.631
10.1002/ana.20009
10.1016/S1474-4422(06)70355-6
10.1080/13854049608406689
10.1212/01.wnl.0000191298.68045.50
10.1212/01.wnl.0000261919.22630.ea
10.1212/WNL.58.12.1791
10.1212/01.WNL.0000132523.27540.81
10.1212/01.wnl.0000249117.23318.e1
10.1212/WNL.55.12.1854
10.1093/brain/awm213
10.1093/brain/awm238
10.1001/archneur.63.5.665
10.1109/42.906424
10.1212/01.wnl.0000260969.94695.56
10.1016/j.neurobiolaging.2007.03.029
10.1212/WNL.56.1.37
10.1136/jnnp.2004.047720
10.1001/archneur.64.3.416
10.1093/brain/awn016
10.1016/j.neuroimage.2005.05.005
10.1001/archneur.58.10.1654
10.1212/01.WNL.0000034176.07159.F8
10.1001/jama.283.12.1571
10.1016/S0140-6736(06)68542-5
10.1212/01.wnl.0000258542.58725.4c
10.1038/sj.jcbfm.9600146
10.1002/hbm.20216
10.1001/archneur.63.5.674
10.1016/j.neurobiolaging.2003.12.007
10.1002/ana.10069
10.1038/sj.npp.1301655
10.1006/nimg.2001.0978
10.1111/j.1365-2796.2004.01380.x
10.1109/23.873020
10.1159/000026270
10.1002/ana.410300410
10.1212/01.WNL.0000118301.92105.EE
10.1002/ana.10086
10.1523/JNEUROSCI.0730-07.2007
10.1093/brain/awl178
10.1056/NEJMoa054625
10.1212/01.wnl.0000238517.59286.c5
10.1007/BF00308809
10.1016/j.neuroimage.2005.02.018
10.1097/00019442-200411000-00004
10.1016/S0197-4580(96)00170-4
10.1212/01.wnl.0000252358.03285.9d
10.1001/archneur.65.11.1509
10.1212/WNL.39.9.1159
ContentType Journal Article
Copyright Copyright © 2009 American Neurological Association
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 American Neurological Association
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/ana.21598
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 568
ExternalDocumentID PMC2828870
19475670
21557252
10_1002_ana_21598
ANA21598
ark_67375_WNG_LPKWN2W6_8
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Aging
  funderid: K02 AG001039; K02 AG027998; K23 AG028018; R01 AG018402; R01 AG020098; R01 AG020226; R37 AG025516; P01 AG025204; P50 AG005133
– fundername: Dana Foundation
– fundername: Alzheimer's Association
  funderid: TLL‐01‐3381
– fundername: US Department of Energy
  funderid: DE‐FD02‐03 ER63590
– fundername: National Institute of Mental Health
  funderid: R01 MH070729
– fundername: NIA NIH HHS
  grantid: K23 AG 028018
– fundername: NIA NIH HHS
  grantid: R01 AG 020098
– fundername: NIA NIH HHS
  grantid: P50 AG005133
– fundername: NIMH NIH HHS
  grantid: R01 MH 070729
– fundername: NIA NIH HHS
  grantid: K02 AG 027998
– fundername: NIA NIH HHS
  grantid: R01 AG 018402
– fundername: NIA NIH HHS
  grantid: K23 AG028018
– fundername: NIA NIH HHS
  grantid: R01 AG018402
– fundername: NIMH NIH HHS
  grantid: R01 MH070729
– fundername: NIMH NIH HHS
  grantid: K01 MH001976
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5438-3df2c9e1ba89bc56e9022d346b952e96de4fd5a31a14aeb73ca1261bbcd211333
IEDL.DBID DRFUL
ISICitedReferencesCount 280
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266611700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-5134
1531-8249
IngestDate Tue Nov 04 01:45:01 EST 2025
Thu Sep 04 19:30:04 EDT 2025
Fri Sep 05 12:28:17 EDT 2025
Mon Jul 21 05:31:32 EDT 2025
Mon Jul 21 09:17:15 EDT 2025
Sat Nov 29 03:41:14 EST 2025
Tue Nov 18 21:51:27 EST 2025
Sun Sep 21 06:16:18 EDT 2025
Sun Sep 21 06:19:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nervous system diseases
Amyloid
mild cognitive impairment
Cognitive disorder
Subtype
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5438-3df2c9e1ba89bc56e9022d346b952e96de4fd5a31a14aeb73ca1261bbcd211333
Notes istex:11E2050AE940DA2DA72D7BDCB849D9C4D6F88970
US Department of Energy - No. DE-FD02-03 ER63590
Alzheimer's Association - No. TLL-01-3381
National Institute of Mental Health - No. R01 MH070729
National Institute of Aging - No. K02 AG001039; No. K02 AG027998; No. K23 AG028018; No. R01 AG018402; No. R01 AG020098; No. R01 AG020226; No. R37 AG025516; No. P01 AG025204; No. P50 AG005133
ark:/67375/WNG-LPKWN2W6-8
Potential conflict of interest: GE Healthcare holds a license agreement with the University of Pittsburgh based on the technology described in this manuscript. Drs. Klunk and Mathis are co-inventors of PiB and, as such, have a financial interest in this license agreement. GE Healthcare provided no grant support for this study and had no role in the design or interpretation of results or preparation of this manuscript. All other authors have no conflicts of interest with this work and had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
Dana Foundation
ArticleID:ANA21598
Potential conflict of interest: GE Healthcare holds a license agreement with the University of Pittsburgh based on the technology described in this manuscript. Drs. Klunk and Mathis are co‐inventors of PiB and, as such, have a financial interest in this license agreement. GE Healthcare provided no grant support for this study and had no role in the design or interpretation of results or preparation of this manuscript. All other authors have no conflicts of interest with this work and had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19475670
PQID 20125326
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2828870
proquest_miscellaneous_67316553
proquest_miscellaneous_20125326
pubmed_primary_19475670
pascalfrancis_primary_21557252
crossref_citationtrail_10_1002_ana_21598
crossref_primary_10_1002_ana_21598
wiley_primary_10_1002_ana_21598_ANA21598
istex_primary_ark_67375_WNG_LPKWN2W6_8
PublicationCentury 2000
PublicationDate May 2009
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Lopez OL, Kuller LH, Becker JT, et al. Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Arch Neurol 2007; 64: 416-420.
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256: 240-246.
Verhoeff NP, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004; 12: 584-595.
Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer's disease? Lancet Neurol 2004; 3: 246-248.
Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355: 2652-2663.
Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572-580.
Killiany RJ, Hyman BT, Gomez-Isla T, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 1188-1196.
Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27: 6174-6184.
Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972.
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256: 183-194.
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42: 631-639.
de Toledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004; 25: 1197-1203.
Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17: 921-933.
Rountree SD, Waring SC, Chan WC, et al. Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia. Dement Geriatr Cogn Disord 2007; 24: 476-482.
Markesbery WR, Schmitt FA, Kryscio RJ, et al. Neuropathologic substrate of mild cognitive impairment. Arch Neurol 2006; 63: 38-46.
Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839-851.
Fischer P, Jungwirth S, Zehetmayer S, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007; 68: 288-291.
Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56: 303-308.
Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. New York: Oxford University Press, 1998.
Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007; 68: 501-508.
Watson CC. New, faster, image-based scatter correction for 3D-PET. IEEE Trans Nucl Sci 2000; 47: 1587-1594.
Jack CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403.
Saxton J, Ratcliff G, Newman A, et al. Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study. Neuroepidemiology 2000; 19: 312-319.
Carmichael OT, Aizenstein HA, Davis SW, et al. Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage 2005; 27: 979-990.
Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59: 1594-1599.
Mitchell TW, Mufson EJ, Schneider JA, et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 2002; 51: 182-189.
Prohovnik I, Perl DP, Davis KL, et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology 2006; 66: 49-55.
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457-464.
Ivnik RJ, Malec JF, Smith GE, et al. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, STROOP, TMT, and JLO. Clin Neuropsychol 1996; 10: 262-278.
Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J Neurol Neurosurg Psychiatry 2005; 76: 1348-1354.
Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 2006; 67: 1201-1207.
Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 2001; 56: 37-42.
Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet 2006; 367: 1262-1270.
Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
Fleisher AS, Sowell BB, Taylor C, et al. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2007; 68: 1588-1595.
Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57.
Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452.
Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725.
Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005; 46: 1625-1632.
Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006; 129: 2856-2866.
Wu M, Carmichael O, Lopez-Garcia P, et al. Quantitative comparison of AIR, SPM, and the fully deformable model for atlas-based segmentation of functional and structural MR images. Hum Brain Mapp 2006; 27: 747-754.
Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001; 58: 397-405.
Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5: 228-234.
Aggarwal NT, Wilson RS, Beck TL, et al. The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment. Neurocase 2005; 11: 3-7.
Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63: 665-672.
Busse A, Hensel A, Guhne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67: 2176-2185.
Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39: 1159-1165.
Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: 115-121.
Lopez OL, Becker JT, Klunk W, et al. Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I. Neurology 2000; 55: 1854-1862.
Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603-1606.
DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155.
Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-259.
Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008; 131: 1630-1645.
Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression-a structural MRI analysis. Neuropsychopharmacology 2008; 33: 2566-2572.
Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 2000; 283: 1571-1577.
Aizenstein HJ, Nebes RD, Saxton JA, et al. Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly. Arch Neurol 2008; 65: 1509-1517.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273-289.
Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain 2007; 130: 2636-2645.
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319.
Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131: 665-680.
Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29: 1456-1465.
Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005; 30: 1204-1215.
Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain
2004; 63
2002; 58
2002; 59
2002; 15
2004; 62
2000; 47
2002; 51
2004; 25
2004; 3
2008; 33
2005; 26
2005; 27
2005; 25
2006; 63
2000; 19
2004; 256
2006; 67
2000; 57
2006; 66
2008; 29
2006; 27
2000; 55
2007; 130
1999; 56
2005; 30
2000; 283
2005; 76
2008; 65
1999; 52
2007; 64
1992; 42
2001; 56
2006; 129
2001; 58
2007; 68
2007; 24
2006; 367
1989; 39
2007; 27
1996; 17
1991; 30
1998
1991; 82
2006; 5
2003
1996; 10
2005; 46
2001; 20
2006; 355
2004; 55
1990; 27
2004; 12
2008; 131
2005; 11
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
Drzezga A (e_1_2_6_23_2) 2005; 46
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
Lopresti BJ (e_1_2_6_44_2) 2005; 46
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Spreen O (e_1_2_6_59_2) 1998
e_1_2_6_71_2
e_1_2_6_18_2
Saxton JA (e_1_2_6_57_2) 2003
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
Ann Neurol. 2009 Jul;66(1):123
References_xml – reference: Jack CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403.
– reference: Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
– reference: Feldman H, Scheltens P, Scarpini E, et al. Behavioral symptoms in mild cognitive impairment. Neurology 2004; 62: 1199-1201.
– reference: Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5: 228-234.
– reference: Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256: 183-194.
– reference: Fleisher AS, Sowell BB, Taylor C, et al. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2007; 68: 1588-1595.
– reference: Saxton J, Ratcliff G, Newman A, et al. Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study. Neuroepidemiology 2000; 19: 312-319.
– reference: Lopez OL, Becker JT, Klunk W, et al. Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I. Neurology 2000; 55: 1854-1862.
– reference: Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression-a structural MRI analysis. Neuropsychopharmacology 2008; 33: 2566-2572.
– reference: DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457-464.
– reference: Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29: 1456-1465.
– reference: Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131: 665-680.
– reference: Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer's disease? Lancet Neurol 2004; 3: 246-248.
– reference: Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005; 46: 1625-1632.
– reference: Prohovnik I, Perl DP, Davis KL, et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology 2006; 66: 49-55.
– reference: Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355: 2652-2663.
– reference: Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791-1800.
– reference: Mosconi L, Perani D, Sorbi S, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004; 63: 2332-2340.
– reference: Aizenstein HJ, Nebes RD, Saxton JA, et al. Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly. Arch Neurol 2008; 65: 1509-1517.
– reference: Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008; 131: 1630-1645.
– reference: Carmichael OT, Aizenstein HA, Davis SW, et al. Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage 2005; 27: 979-990.
– reference: Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. New York: Oxford University Press, 1998.
– reference: de Toledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004; 25: 1197-1203.
– reference: Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725.
– reference: Tierney MC, Black SE, Szalai JP, et al. Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch Neurol 2001; 58: 1654-1659.
– reference: Watson CC. New, faster, image-based scatter correction for 3D-PET. IEEE Trans Nucl Sci 2000; 47: 1587-1594.
– reference: Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56: 303-308.
– reference: Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17: 921-933.
– reference: DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155.
– reference: Markesbery WR, Schmitt FA, Kryscio RJ, et al. Neuropathologic substrate of mild cognitive impairment. Arch Neurol 2006; 63: 38-46.
– reference: Pike KE, Savage G, Villemagne VL, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 2007; 130: 2837-2844.
– reference: Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319.
– reference: Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet 2006; 367: 1262-1270.
– reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273-289.
– reference: Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839-851.
– reference: Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 2001; 56: 37-42.
– reference: Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59: 1594-1599.
– reference: Rountree SD, Waring SC, Chan WC, et al. Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia. Dement Geriatr Cogn Disord 2007; 24: 476-482.
– reference: Busse A, Hensel A, Guhne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67: 2176-2185.
– reference: Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27: 6174-6184.
– reference: Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42: 631-639.
– reference: Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63: 665-672.
– reference: Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680.
– reference: Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: 115-121.
– reference: Mitchell TW, Mufson EJ, Schneider JA, et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 2002; 51: 182-189.
– reference: Wu M, Carmichael O, Lopez-Garcia P, et al. Quantitative comparison of AIR, SPM, and the fully deformable model for atlas-based segmentation of functional and structural MR images. Hum Brain Mapp 2006; 27: 747-754.
– reference: Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005; 30: 1204-1215.
– reference: Ivnik RJ, Malec JF, Smith GE, et al. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, STROOP, TMT, and JLO. Clin Neuropsychol 1996; 10: 262-278.
– reference: Jicha GA, Parisi JE, Dickson DW, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 2006; 63: 674-681.
– reference: Aggarwal NT, Wilson RS, Beck TL, et al. The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment. Neurocase 2005; 11: 3-7.
– reference: Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603-1606.
– reference: Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain 2007; 130: 2636-2645.
– reference: Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006; 129: 2856-2866.
– reference: Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 2000; 283: 1571-1577.
– reference: Lopez OL, Kuller LH, Becker JT, et al. Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Arch Neurol 2007; 64: 416-420.
– reference: Verhoeff NP, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004; 12: 584-595.
– reference: Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J Neurol Neurosurg Psychiatry 2005; 76: 1348-1354.
– reference: Killiany RJ, Hyman BT, Gomez-Isla T, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 1188-1196.
– reference: Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972.
– reference: Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001; 58: 397-405.
– reference: Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452.
– reference: Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 2006; 67: 1201-1207.
– reference: Fischer P, Jungwirth S, Zehetmayer S, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007; 68: 288-291.
– reference: Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39: 1159-1165.
– reference: Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007; 68: 501-508.
– reference: Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-259.
– reference: Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256: 240-246.
– reference: Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57.
– reference: Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572-580.
– volume: 63
  start-page: 674
  year: 2006
  end-page: 681
  article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia
  publication-title: Arch Neurol
– volume: 58
  start-page: 1791
  year: 2002
  end-page: 1800
  article-title: Phases of A beta‐deposition in the human brain and its relevance for the development of AD
  publication-title: Neurology
– volume: 25
  start-page: 1197
  year: 2004
  end-page: 1203
  article-title: MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD
  publication-title: Neurobiol Aging
– volume: 67
  start-page: 1201
  year: 2006
  end-page: 1207
  article-title: Ten‐year risk of dementia in subjects with mild cognitive impairment
  publication-title: Neurology
– volume: 30
  start-page: 1204
  year: 2005
  end-page: 1215
  article-title: A randomized, double‐blind, study of rofecoxib in patients with mild cognitive impairment
  publication-title: Neuropsychopharmacology
– volume: 56
  start-page: 37
  year: 2001
  end-page: 42
  article-title: Classification criteria for mild cognitive impairment: a population‐based validation study
  publication-title: Neurology
– volume: 283
  start-page: 1571
  year: 2000
  end-page: 1577
  article-title: Correlation between elevated levels of amyloid beta‐peptide in the brain and cognitive decline
  publication-title: Jama
– volume: 67
  start-page: 2176
  year: 2006
  end-page: 2185
  article-title: Mild cognitive impairment: long‐term course of four clinical subtypes
  publication-title: Neurology
– volume: 367
  start-page: 1262
  year: 2006
  end-page: 1270
  article-title: Mild cognitive impairment
  publication-title: Lancet
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging
– start-page: 569
  year: 2003
  end-page: 582
– volume: 27
  start-page: 457
  year: 1990
  end-page: 464
  article-title: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity
  publication-title: Ann Neurol
– volume: 27
  start-page: 979
  year: 2005
  end-page: 990
  article-title: Atlas‐based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 46
  start-page: 1959
  year: 2005
  end-page: 1972
  article-title: Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis
  publication-title: J Nucl Med
– volume: 59
  start-page: 1594
  year: 2002
  end-page: 1599
  article-title: Incidence and outcome of mild cognitive impairment in a population‐based prospective cohort
  publication-title: Neurology
– volume: 55
  start-page: 1854
  year: 2000
  end-page: 1862
  article-title: Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I
  publication-title: Neurology
– volume: 130
  start-page: 2837
  year: 2007
  end-page: 2844
  article-title: Beta‐amyloid imaging and memory in non‐demented individuals: evidence for preclinical Alzheimer's disease
  publication-title: Brain
– volume: 27
  start-page: 747
  year: 2006
  end-page: 754
  article-title: Quantitative comparison of AIR, SPM, and the fully deformable model for atlas‐based segmentation of functional and structural MR images
  publication-title: Hum Brain Mapp
– year: 1998
– volume: 30
  start-page: 572
  year: 1991
  end-page: 580
  article-title: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment
  publication-title: Ann Neurol
– volume: 51
  start-page: 182
  year: 2002
  end-page: 189
  article-title: Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease
  publication-title: Ann Neurol
– volume: 67
  start-page: 446
  year: 2006
  end-page: 452
  article-title: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease
  publication-title: Neurology
– volume: 51
  start-page: 145
  year: 2002
  end-page: 155
  article-title: Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment
  publication-title: Ann Neurol
– volume: 5
  start-page: 228
  year: 2006
  end-page: 234
  article-title: Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow‐up study
  publication-title: Lancet Neurol
– volume: 76
  start-page: 1348
  year: 2005
  end-page: 1354
  article-title: Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease?
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 52
  start-page: 1397
  year: 1999
  end-page: 1403
  article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
– volume: 29
  start-page: 1456
  year: 2008
  end-page: 1465
  article-title: PET imaging of amyloid deposition in patients with mild cognitive impairment
  publication-title: Neurobiol Aging
– volume: 19
  start-page: 312
  year: 2000
  end-page: 319
  article-title: Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study
  publication-title: Neuroepidemiology
– volume: 63
  start-page: 2332
  year: 2004
  end-page: 2340
  article-title: MCI conversion to dementia and the APOE genotype: a prediction study with FDG‐PET
  publication-title: Neurology
– volume: 131
  start-page: 665
  year: 2008
  end-page: 680
  article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment
  publication-title: Brain
– volume: 39
  start-page: 1159
  year: 1989
  end-page: 1165
  article-title: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease
  publication-title: Neurology
– volume: 68
  start-page: 1718
  year: 2007
  end-page: 1725
  article-title: Imaging beta‐amyloid burden in aging and dementia
  publication-title: Neurology
– volume: 24
  start-page: 476
  year: 2007
  end-page: 482
  article-title: Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia
  publication-title: Dement Geriatr Cogn Disord
– volume: 33
  start-page: 2566
  year: 2008
  end-page: 2572
  article-title: Gray matter changes in late life depression–a structural MRI analysis
  publication-title: Neuropsychopharmacology
– volume: 63
  start-page: 665
  year: 2006
  end-page: 672
  article-title: Neuropathologic features of amnestic mild cognitive impairment
  publication-title: Arch Neurol
– volume: 65
  start-page: 1509
  year: 2008
  end-page: 1517
  article-title: Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly
  publication-title: Arch Neurol
– volume: 63
  start-page: 38
  year: 2006
  end-page: 46
  article-title: Neuropathologic substrate of mild cognitive impairment
  publication-title: Arch Neurol
– volume: 355
  start-page: 2652
  year: 2006
  end-page: 2663
  article-title: PET of brain amyloid and tau in mild cognitive impairment
  publication-title: N Engl J Med
– volume: 55
  start-page: 306
  year: 2004
  end-page: 319
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B
  publication-title: Ann Neurol
– volume: 11
  start-page: 3
  year: 2005
  end-page: 7
  article-title: The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment
  publication-title: Neurocase
– volume: 68
  start-page: 1588
  year: 2007
  end-page: 1595
  article-title: Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment
  publication-title: Neurology
– volume: 27
  start-page: 6174
  year: 2007
  end-page: 6184
  article-title: Amyloid deposition begins in the striatum of presenilin‐1 mutation carriers from two unrelated pedigrees
  publication-title: J Neurosci
– volume: 256
  start-page: 183
  year: 2004
  end-page: 194
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J Intern Med
– volume: 58
  start-page: 1654
  year: 2001
  end-page: 1659
  article-title: Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia
  publication-title: Arch Neurol
– volume: 129
  start-page: 2856
  year: 2006
  end-page: 2866
  article-title: Two‐year follow‐up of amyloid deposition in patients with Alzheimer's disease
  publication-title: Brain
– volume: 3
  start-page: 246
  year: 2004
  end-page: 248
  article-title: Amnestic MCI or prodromal Alzheimer's disease?
  publication-title: Lancet Neurol
– volume: 58
  start-page: 1188
  year: 2002
  end-page: 1196
  article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD
  publication-title: Neurology
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 66
  start-page: 49
  year: 2006
  end-page: 55
  article-title: Dissociation of neuropathology from severity of dementia in late‐onset Alzheimer disease
  publication-title: Neurology
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  article-title: Mild cognitive impairment. Clinical characterization and outcome
  publication-title: Arch Neurol
– volume: 17
  start-page: 921
  year: 1996
  end-page: 933
  article-title: Beta‐amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 42
  start-page: 631
  year: 1992
  end-page: 639
  article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease
  publication-title: Neurology
– volume: 131
  start-page: 1630
  year: 2008
  end-page: 1645
  article-title: Post‐mortem correlates of in vivo PiB‐PET amyloid imaging in a typical case of Alzheimer's disease
  publication-title: Brain
– volume: 256
  start-page: 240
  year: 2004
  end-page: 246
  article-title: Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment
  publication-title: J Intern Med
– volume: 68
  start-page: 288
  year: 2007
  end-page: 291
  article-title: Conversion from subtypes of mild cognitive impairment to Alzheimer dementia
  publication-title: Neurology
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: Neuroimage
– volume: 68
  start-page: 501
  year: 2007
  end-page: 508
  article-title: Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study
  publication-title: Neurology
– volume: 130
  start-page: 2636
  year: 2007
  end-page: 2645
  article-title: Focal cortical presentations of Alzheimer's disease
  publication-title: Brain
– volume: 57
  start-page: 675
  year: 2000
  end-page: 680
  article-title: Predicting conversion to Alzheimer disease using standardized clinical information
  publication-title: Arch Neurol
– volume: 10
  start-page: 262
  year: 1996
  end-page: 278
  article-title: Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT‐R Reading, AMNART, STROOP, TMT, and JLO
  publication-title: Clin Neuropsychol
– volume: 47
  start-page: 1587
  year: 2000
  end-page: 1594
  article-title: New, faster, image‐based scatter correction for 3D‐PET
  publication-title: IEEE Trans Nucl Sci
– volume: 62
  start-page: 1199
  year: 2004
  end-page: 1201
  article-title: Behavioral symptoms in mild cognitive impairment
  publication-title: Neurology
– volume: 46
  start-page: 1625
  year: 2005
  end-page: 1632
  article-title: Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F‐FDG PET
  publication-title: J Nucl Med
– volume: 63
  start-page: 115
  year: 2004
  end-page: 121
  article-title: Mild cognitive impairment, amnestic type: an epidemiologic study
  publication-title: Neurology
– volume: 12
  start-page: 584
  year: 2004
  end-page: 595
  article-title: In‐vivo imaging of Alzheimer disease beta‐amyloid with [11C]SB‐13 PET
  publication-title: Am J Geriatr Psychiatry
– volume: 58
  start-page: 397
  year: 2001
  end-page: 405
  article-title: Mild cognitive impairment represents early‐stage Alzheimer disease
  publication-title: Arch Neurol
– volume: 64
  start-page: 416
  year: 2007
  end-page: 420
  article-title: Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study
  publication-title: Arch Neurol
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological staging of Alzheimer‐related changes
  publication-title: Acta Neuropathol
– volume: 68
  start-page: 1603
  year: 2007
  end-page: 1606
  article-title: PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment
  publication-title: Neurology
– volume: 25
  start-page: 1528
  year: 2005
  end-page: 1547
  article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound‐B
  publication-title: J Cereb Blood Flow Metab
– ident: e_1_2_6_24_2
  doi: 10.1212/01.WNL.0000147469.18313.3B
– ident: e_1_2_6_29_2
  doi: 10.1159/000110800
– ident: e_1_2_6_10_2
  doi: 10.1001/archneur.63.1.38
– ident: e_1_2_6_42_2
  doi: 10.1093/brain/awm336
– ident: e_1_2_6_71_2
  doi: 10.1212/01.wnl.0000228230.26044.a4
– ident: e_1_2_6_8_2
  doi: 10.1038/sj.npp.1300690
– ident: e_1_2_6_67_2
  doi: 10.1002/ana.410270502
– ident: e_1_2_6_22_2
  doi: 10.1212/WNL.52.7.1397
– ident: e_1_2_6_5_2
  doi: 10.1001/archneur.56.3.303
– ident: e_1_2_6_26_2
  doi: 10.1080/13554790490903038
– ident: e_1_2_6_68_2
  doi: 10.1212/01.wnl.0000244749.20056.d4
– ident: e_1_2_6_69_2
  doi: 10.1212/WNL.58.8.1188
– ident: e_1_2_6_7_2
  doi: 10.1001/archneur.57.5.675
– ident: e_1_2_6_4_2
  doi: 10.1001/archneur.58.3.397
– ident: e_1_2_6_70_2
  doi: 10.1016/S1474-4422(04)00710-0
– ident: e_1_2_6_2_2
  doi: 10.1111/j.1365-2796.2004.01388.x
– ident: e_1_2_6_66_2
  doi: 10.1212/WNL.42.3.631
– ident: e_1_2_6_31_2
  doi: 10.1002/ana.20009
– ident: e_1_2_6_25_2
  doi: 10.1016/S1474-4422(06)70355-6
– ident: e_1_2_6_60_2
  doi: 10.1080/13854049608406689
– ident: e_1_2_6_63_2
  doi: 10.1212/01.wnl.0000191298.68045.50
– ident: e_1_2_6_40_2
  doi: 10.1212/01.wnl.0000261919.22630.ea
– ident: e_1_2_6_36_2
  doi: 10.1212/WNL.58.12.1791
– ident: e_1_2_6_14_2
  doi: 10.1212/01.WNL.0000132523.27540.81
– ident: e_1_2_6_27_2
  doi: 10.1212/01.wnl.0000249117.23318.e1
– ident: e_1_2_6_45_2
  doi: 10.1212/WNL.55.12.1854
– ident: e_1_2_6_61_2
  doi: 10.1093/brain/awm213
– ident: e_1_2_6_41_2
  doi: 10.1093/brain/awm238
– ident: e_1_2_6_11_2
  doi: 10.1001/archneur.63.5.665
– ident: e_1_2_6_54_2
  doi: 10.1109/42.906424
– ident: e_1_2_6_38_2
  doi: 10.1212/01.wnl.0000260969.94695.56
– volume: 46
  start-page: 1625
  year: 2005
  ident: e_1_2_6_23_2
  article-title: Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F‐FDG PET
  publication-title: J Nucl Med
– ident: e_1_2_6_39_2
  doi: 10.1016/j.neurobiolaging.2007.03.029
– start-page: 569
  volume-title: The handbook of Rey‐Osterrieth complex figure usage: clinical and research applications
  year: 2003
  ident: e_1_2_6_57_2
– ident: e_1_2_6_16_2
  doi: 10.1212/WNL.56.1.37
– ident: e_1_2_6_18_2
  doi: 10.1136/jnnp.2004.047720
– ident: e_1_2_6_30_2
  doi: 10.1001/archneur.64.3.416
– ident: e_1_2_6_34_2
  doi: 10.1093/brain/awn016
– ident: e_1_2_6_52_2
  doi: 10.1016/j.neuroimage.2005.05.005
– ident: e_1_2_6_19_2
  doi: 10.1001/archneur.58.10.1654
– ident: e_1_2_6_15_2
  doi: 10.1212/01.WNL.0000034176.07159.F8
– ident: e_1_2_6_64_2
  doi: 10.1001/jama.283.12.1571
– ident: e_1_2_6_46_2
  doi: 10.1016/S0140-6736(06)68542-5
– ident: e_1_2_6_20_2
  doi: 10.1212/01.wnl.0000258542.58725.4c
– ident: e_1_2_6_43_2
  doi: 10.1038/sj.jcbfm.9600146
– volume: 46
  start-page: 1959
  year: 2005
  ident: e_1_2_6_44_2
  article-title: Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis
  publication-title: J Nucl Med
– ident: e_1_2_6_50_2
  doi: 10.1002/hbm.20216
– ident: e_1_2_6_17_2
  doi: 10.1001/archneur.63.5.674
– ident: e_1_2_6_21_2
  doi: 10.1016/j.neurobiolaging.2003.12.007
– ident: e_1_2_6_9_2
  doi: 10.1002/ana.10069
– ident: e_1_2_6_51_2
  doi: 10.1038/sj.npp.1301655
– volume-title: A compendium of neuropsychological tests: administration, norms, and commentary
  year: 1998
  ident: e_1_2_6_59_2
– ident: e_1_2_6_53_2
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1365-2796.2004.01380.x
– ident: e_1_2_6_55_2
  doi: 10.1109/23.873020
– ident: e_1_2_6_58_2
  doi: 10.1159/000026270
– ident: e_1_2_6_65_2
  doi: 10.1002/ana.410300410
– ident: e_1_2_6_6_2
  doi: 10.1212/01.WNL.0000118301.92105.EE
– ident: e_1_2_6_12_2
  doi: 10.1002/ana.10086
– ident: e_1_2_6_48_2
  doi: 10.1523/JNEUROSCI.0730-07.2007
– ident: e_1_2_6_37_2
  doi: 10.1093/brain/awl178
– ident: e_1_2_6_32_2
  doi: 10.1056/NEJMoa054625
– ident: e_1_2_6_13_2
  doi: 10.1212/01.wnl.0000238517.59286.c5
– ident: e_1_2_6_35_2
  doi: 10.1007/BF00308809
– ident: e_1_2_6_49_2
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_6_33_2
  doi: 10.1097/00019442-200411000-00004
– ident: e_1_2_6_62_2
  doi: 10.1016/S0197-4580(96)00170-4
– ident: e_1_2_6_28_2
  doi: 10.1212/01.wnl.0000252358.03285.9d
– ident: e_1_2_6_47_2
  doi: 10.1001/archneur.65.11.1509
– ident: e_1_2_6_56_2
  doi: 10.1212/WNL.39.9.1159
– reference: - Ann Neurol. 2009 Jul;66(1):123
SSID ssj0009610
Score 2.4603183
Snippet Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild...
We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive...
Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 557
SubjectTerms Aged
Aged, 80 and over
Amyloid - metabolism
Aniline Compounds
Biological and medical sciences
Brain Mapping
Cognition Disorders - classification
Cognition Disorders - diagnostic imaging
Cognition Disorders - pathology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Follow-Up Studies
Hippocampus - diagnostic imaging
Hippocampus - pathology
Humans
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Neurology
Neuropsychological Tests
Positron-Emission Tomography - methods
Psychometrics - methods
Thiazoles
Title Amyloid imaging in mild cognitive impairment subtypes
URI https://api.istex.fr/ark:/67375/WNG-LPKWN2W6-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21598
https://www.ncbi.nlm.nih.gov/pubmed/19475670
https://www.proquest.com/docview/20125326
https://www.proquest.com/docview/67316553
https://pubmed.ncbi.nlm.nih.gov/PMC2828870
Volume 65
WOSCitedRecordID wos000266611700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1531-8249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009610
  issn: 0364-5134
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED9tLUL7wpsRHiVCCO1LWePYcSw-VUBBYkQTYmq_WX5FRKwZalbEn8_ZSVMqNgmJb5F8zuPunHv4_DuAl0YnaTlRybgk3KduSjsWRigUSKIzrS3D4dBsghdFvliI0z14szkL0-JD9Ak3vzLC_9ovcKWb4y1oqKrVa7RXIt-HIUG9pQMYvvsyOzvZYu5mAYzA77SN8Zl0Ayw0Icf95B1zNPSc_eXLI1WDHCrb1hZX-Z5_l1D-6doG2zS7_V9fdQdudS5pPG116C7sufoe3PzcbbrfBzZdYlRf2bhahpZGcVXHy-rcxn3pUezPWlYrn2iMm7X2ad3mAZzN3n99-3HcdVsYG0bxr5fakhjhEq1yoQ3LnEDzblOaacGIE5l1tLRMpYlKqHKap0YlGH5pbSwGkWmaPoRBfVG7RxDnlgrLDFVZqSkGcJqULuE-cmToQVobwdGG6dJ0UOS-I8a5bEGUiUQ2yMCGCF70pD9a_I2riF4FyfUUavXdF6xxJufFB3ly-mlekHkmkXC0I9p-At6GccJIBM83spa4zvzmiardxbqRqLyEoa97PUXmm4AxlkZw2OrG9oUF5Szjkwj4jtb0BB7je3ekrr4FrG8fEed-5lHQmut5IKfFNFw8_nfSJ3DQbo75-s2nMLhcrd0zuGF-XlbNagT7fJGPukX1G2EhJF0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7S3dL0pffhHokppeTFzVqWbAv6srTdpmRjQknYvAldpiZZp6yzpT-_Gtnr7dIECn0zaORjZuQ5NPoG4K1WcVKOZByVJMPUTWkirrl0AolVqpRhbtg3m8iKIj8748db8GF1FqbFh-gTbrgy_P8aFzgmpPfXqKGylu-dweL5LRhSp0ZsAMNP3yan0zXoburRCHCrLXIPpStkoRHZ7ydv2KMhsvYX1kfKxrGobHtbXOd8_l1D-adv643T5P7_fdYDuNc5peG41aKHsGXrR3DnqNt2fwxsPHdxfWXCau6bGoVVHc6rCxP2xUchnrasFphqDJulwsRu8wROJ59PPh5EXb-FSDPq_nuJKYnmNlYy50qz1HJn4E1CU8UZsTw1lpaGySSWMZVWZYmWsQvAlNLGhZFJkjyFQX1Z2-cQ5oZywzSVaamoC-EUKW2cYezInA9pTAB7K64L3YGRY0-MC9HCKBPh2CA8GwJ405P-aBE4riN650XXU8jFOZasZUzMii9ienw4K8gsFY5wZ0O2_QR3G5YRRgLYXQlbuJWG2yeytpfLRjj1Jcx5uzdTpNgGjLEkgGetcqxfmNOMpdkogGxDbXoCRPneHKmr7x7tG2PiHGfuebW5mQdiXIz9xYt_J92F7YOTo6mYfi0OX8LddqsMqzlfweBqsbSv4bb-eVU1i51ubf0G6ognZQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB9qT4pffGvjow0i0i9pL5t9ZMEvh_VUeoZDLNdvy76Cob20XHrin-_uJpfzsAXBb4GdzWMemZnd2d8AvNUqzcqhTJMSMb90U5qEay6dQFJFlTLEDYdmE6wo8rMzPt2C96uzMC0-RL_g5i0j_K-9gdsrUx6tUUNlLQ-dw-L5HRhgwqkzy8Hxt_HpZA26SwMagd9qS9xD8QpZaIiO-skb_mjgWfvL10fKxrGobHtb3BR8_l1D-WdsG5zT-MH_fdZDuN8FpfGo1aJHsGXrx7Dztdt2fwJkNHd5fWXiah6aGsVVHc-rCxP3xUexP21ZLfxSY9wslV_YbZ7C6fjj9w-fk67fQqIJdv-9zJRIc5sqmXOlCbXcOXiTYao4QZZTY3FpiMxSmWJpFcu0TF0CppQ2Lo3MsuwZbNeXtd2FODeYG6KxpKXCLoVTqLQp87kjcTGkMREcrLgudAdG7ntiXIgWRhkJxwYR2BDBm570qkXguInoXRBdTyEX575kjRExKz6JyfRkVqAZFY5wb0O2_QR3G8IQQRHsr4QtnKX57RNZ28tlI5z6IuKi3dspqG8DRkgWwfNWOdYvzDEjlA0jYBtq0xN4lO_Nkbr6EdC-fU6c-5kHQW1u54EYFaNw8eLfSfdhZ3o8FpMvxclLuNfulPlizlewfb1Y2tdwV_-8rprFXmdavwE_GCbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyloid+imaging+in+mild+cognitive+impairment+subtypes&rft.jtitle=Annals+of+neurology&rft.au=Wolk%2C+David+A.&rft.au=Price%2C+Julie+C.&rft.au=Saxton%2C+Judy+A.&rft.au=Snitz%2C+Beth+E.&rft.date=2009-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=65&rft.issue=5&rft.spage=557&rft.epage=568&rft_id=info:doi/10.1002%2Fana.21598&rft.externalDBID=10.1002%252Fana.21598&rft.externalDocID=ANA21598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon