Amyloid imaging in mild cognitive impairment subtypes
Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods T...
Gespeichert in:
| Veröffentlicht in: | Annals of neurology Jg. 65; H. 5; S. 557 - 568 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2009
Wiley-Liss |
| Schlagworte: | |
| ISSN: | 0364-5134, 1531-8249, 1531-8249 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Objective
We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.
Methods
Twenty‐six patients with MCI (13 single‐domain amnestic‐MCI [a‐MCI], 6 multidomain a‐MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty‐three had clinical follow‐up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan.
Results
Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered “amyloid‐positive.” All subtypes were associated with a significant proportion of amyloid‐positive patients (6/13 single‐domain a‐MCI, 5/6 multidomain a‐MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a‐MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid‐positive relative to amyloid‐negative a‐MCI patients. Longitudinal follow‐up demonstrated 5 of 13 amyloid‐positive patients, but 0 of 10 amyloid‐negative patients, converted to clinical AD. Further, 3 of 10 amyloid‐negative patients “reverted to normal.”
Interpretation
These data support the notion that amyloid‐positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease‐specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009;65:557–568 |
|---|---|
| AbstractList | We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.
Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan.
Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal."
These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan. Results Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered amyloid-positive. All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients reverted to normal. Interpretation These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009; 65:557-568. We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.OBJECTIVEWe utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome.Twenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan.METHODSTwenty-six patients with MCI (13 single-domain amnestic-MCI [a-MCI], 6 multidomain a-MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty-three had clinical follow-up (21.2 +/- 16.0 [standard deviation] months) subsequent to their PiB scan.Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal."RESULTSUsing cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered "amyloid-positive." All subtypes were associated with a significant proportion of amyloid-positive patients (6/13 single-domain a-MCI, 5/6 multidomain a-MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a-MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid-positive relative to amyloid-negative a-MCI patients. Longitudinal follow-up demonstrated 5 of 13 amyloid-positive patients, but 0 of 10 amyloid-negative patients, converted to clinical AD. Further, 3 of 10 amyloid-negative patients "reverted to normal."These data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD.INTERPRETATIONThese data support the notion that amyloid-positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease-specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive impairment (MCI) subtypes and to relate increased PiB binding to other markers of early AD and longitudinal outcome. Methods Twenty‐six patients with MCI (13 single‐domain amnestic‐MCI [a‐MCI], 6 multidomain a‐MCI, and 7 nonamnestic MCI) underwent PiB imaging. Twenty‐three had clinical follow‐up (21.2 ± 16.0 [standard deviation] months) subsequent to their PiB scan. Results Using cutoffs established from a control cohort, we found that 14 (54%) patients had increased levels of PiB retention and were considered “amyloid‐positive.” All subtypes were associated with a significant proportion of amyloid‐positive patients (6/13 single‐domain a‐MCI, 5/6 multidomain a‐MCI, 3/7 nonamnestic MCI). There were no obvious differences in the distribution of PiB retention in the nonamnestic MCI group. Predictors of conversion to clinical AD in a‐MCI, including poorer episodic memory, and medial temporal atrophy, were found in the amyloid‐positive relative to amyloid‐negative a‐MCI patients. Longitudinal follow‐up demonstrated 5 of 13 amyloid‐positive patients, but 0 of 10 amyloid‐negative patients, converted to clinical AD. Further, 3 of 10 amyloid‐negative patients “reverted to normal.” Interpretation These data support the notion that amyloid‐positive patients are likely to have early AD, and that the use of amyloid imaging may have an important role in determining which patients are likely to benefit from disease‐specific therapies. In addition, our data are consistent with longitudinal studies that suggest a significant percentage of all MCI subtypes will develop AD. Ann Neurol 2009;65:557–568 |
| Author | Cohen, Ann D. Saxton, Judy A. Price, Julie C. Aizenstein, Howard J. Wolk, David A. DeKosky, Steven T. Snitz, Beth E. James, Jeffrey A. Weissfeld, Lisa A. Klunk, William E. Lopez, Oscar L. Mathis, Chester A. |
| AuthorAffiliation | 2 Department of Neurology, University of Pittsburgh, Pittsburgh, PA 4 Department of Radiology, University of Pittsburgh, Pittsburgh, PA 1 Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA 5 Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA |
| AuthorAffiliation_xml | – name: 1 Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA – name: 2 Department of Neurology, University of Pittsburgh, Pittsburgh, PA – name: 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA – name: 4 Department of Radiology, University of Pittsburgh, Pittsburgh, PA – name: 5 Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA |
| Author_xml | – sequence: 1 givenname: David A. surname: Wolk fullname: Wolk, David A. email: david.wolk@uphs.upenn.edu organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 2 givenname: Julie C. surname: Price fullname: Price, Julie C. organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA – sequence: 3 givenname: Judy A. surname: Saxton fullname: Saxton, Judy A. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 4 givenname: Beth E. surname: Snitz fullname: Snitz, Beth E. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 5 givenname: Jeffrey A. surname: James fullname: James, Jeffrey A. organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA – sequence: 6 givenname: Oscar L. surname: Lopez fullname: Lopez, Oscar L. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 7 givenname: Howard J. surname: Aizenstein fullname: Aizenstein, Howard J. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 8 givenname: Ann D. surname: Cohen fullname: Cohen, Ann D. organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA – sequence: 9 givenname: Lisa A. surname: Weissfeld fullname: Weissfeld, Lisa A. organization: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA – sequence: 10 givenname: Chester A. surname: Mathis fullname: Mathis, Chester A. organization: Department of Radiology, University of Pittsburgh, Pittsburgh, PA – sequence: 11 givenname: William E. surname: Klunk fullname: Klunk, William E. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA – sequence: 12 givenname: Steven T. surname: DeKosky fullname: DeKosky, Steven T. organization: Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21557252$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19475670$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS3UiqaFBS-AZgMSi2n9M_aMN0hRRUvVKLAAZWnd8XiCwWMHe1Kat8chaVQQiJUX9zvH595zio588AahFwSfE4zpBXg4p4TL5gmaEM5I2dBKHqEJZqIqOWHVCTpN6SvGWAqCn6ITIquaixpPEJ8OGxdsV9gBltYvC-uLwbqu0GHp7WjvTJ6swMbB-LFI63bcrEx6ho57cMk8379n6PPVu0-X78vZh-uby-ms1LxiTcm6nmppSAuNbDUXRmJKO1aJVnJqpOhM1XccGAFSgWlrpoFQQdpWd5QQxtgZervzXa3bwXQ6Z4jg1CrmtHGjAlj1-8TbL2oZ7hRtaNPUOBu83hvE8H1t0qgGm7RxDrwJ66REzYjgnP0XpJhQzqjI4MvHkQ5ZHk6agVd7AJIG10fw2qYDl3viNeU0cxc7TseQUjS90naE0YbtJtYpgtW2XJXLVb_KzYo3fygOn_-F3bv_sM5s_g2q6Xz6oCh3CptGc39QQPy2vVLN1WJ-rWYfbxdzuhCqYT8BnsfCZQ |
| CODEN | ANNED3 |
| CitedBy_id | crossref_primary_10_1212_01_CON_0000429175_29601_97 crossref_primary_10_3233_JAD_201560 crossref_primary_10_1007_s00401_012_1051_z crossref_primary_10_1371_journal_pone_0035559 crossref_primary_10_1016_j_tins_2011_05_005 crossref_primary_10_1016_j_jalz_2013_09_003 crossref_primary_10_1016_j_neurobiolaging_2012_12_028 crossref_primary_10_1136_postgradmedj_2015_133759 crossref_primary_10_1016_j_neurobiolaging_2011_09_006 crossref_primary_10_1016_j_neuroimage_2010_05_068 crossref_primary_10_1212_WNL_0b013e3182563bbe crossref_primary_10_1177_0891988710363715 crossref_primary_10_1007_s11910_013_0412_x crossref_primary_10_1017_S109285291600047X crossref_primary_10_1159_000338815 crossref_primary_10_1073_pnas_0914141107 crossref_primary_10_1186_1471_2377_11_78 crossref_primary_10_1016_j_nicl_2013_03_014 crossref_primary_10_1093_brain_awq277 crossref_primary_10_1016_j_neurobiolaging_2017_06_027 crossref_primary_10_1007_s11920_014_0490_8 crossref_primary_10_1080_13803395_2021_2023476 crossref_primary_10_1109_JBHI_2023_3306460 crossref_primary_10_1002_gps_2640 crossref_primary_10_1111_ene_13881 crossref_primary_10_1186_s13195_021_00910_8 crossref_primary_10_1038_s41598_018_23676_w crossref_primary_10_1186_s13195_020_00707_1 crossref_primary_10_3233_JAD_240380 crossref_primary_10_1002_ana_22248 crossref_primary_10_1016_j_nucmedbio_2010_05_001 crossref_primary_10_1002_alz_12184 crossref_primary_10_3233_JAD_190220 crossref_primary_10_3233_JPD_202496 crossref_primary_10_1016_j_neuroimage_2013_06_021 crossref_primary_10_1002_ana_22144 crossref_primary_10_1002_alz_70193 crossref_primary_10_1016_j_jalz_2016_06_2357 crossref_primary_10_1016_j_neurobiolaging_2013_05_009 crossref_primary_10_1016_S1474_4422_11_70077_1 crossref_primary_10_1097_WCO_0b013e32834cd45b crossref_primary_10_1371_journal_pone_0231868 crossref_primary_10_1016_j_neurobiolaging_2017_05_019 crossref_primary_10_1016_j_neulet_2016_08_045 crossref_primary_10_1016_j_neuroimage_2024_120609 crossref_primary_10_1016_j_neuroimage_2011_11_075 crossref_primary_10_1016_j_exger_2011_04_001 crossref_primary_10_1093_arclin_acx056 crossref_primary_10_1097_WCO_0b013e3283557b36 crossref_primary_10_3233_JAD_170960 crossref_primary_10_3390_ijms231810490 crossref_primary_10_1136_jnnp_2014_308094 crossref_primary_10_1016_j_arr_2016_01_004 crossref_primary_10_1016_j_nicl_2018_08_023 crossref_primary_10_3233_JAD_161223 crossref_primary_10_1016_j_pnmrs_2018_11_001 crossref_primary_10_1111_jnp_12218 crossref_primary_10_1016_j_jalz_2013_01_002 crossref_primary_10_1212_WNL_0000000000008712 crossref_primary_10_1016_j_mednuc_2016_08_001 crossref_primary_10_1038_nrneurol_2013_107 crossref_primary_10_1097_YCO_0b013e328344696b crossref_primary_10_1212_WNL_0000000000006088 crossref_primary_10_3233_JAD_201087 crossref_primary_10_1016_j_eurger_2010_05_003 crossref_primary_10_1016_j_neurobiolaging_2019_01_017 crossref_primary_10_1093_geronb_gbaf085 crossref_primary_10_1176_appi_focus_11_4_482 crossref_primary_10_1093_brain_awy086 crossref_primary_10_3233_JAD_215497 crossref_primary_10_3233_JAD_160842 crossref_primary_10_1016_j_neuropsychologia_2013_07_017 crossref_primary_10_1002_alz_13503 crossref_primary_10_1016_S1474_4422_10_70223_4 crossref_primary_10_1007_s11065_017_9348_2 crossref_primary_10_1089_brain_2020_0902 crossref_primary_10_1038_mp_2014_9 crossref_primary_10_1177_0733464815589987 crossref_primary_10_1016_j_cpet_2009_12_008 crossref_primary_10_1155_2014_785039 crossref_primary_10_1017_cjn_2019_293 crossref_primary_10_1016_j_cpet_2009_12_003 crossref_primary_10_2147_NDT_S252293 crossref_primary_10_1016_j_neurobiolaging_2013_08_017 crossref_primary_10_3233_JAD_200439 crossref_primary_10_4061_2011_280289 crossref_primary_10_1016_j_jagp_2016_12_021 crossref_primary_10_1007_s00259_015_3208_1 crossref_primary_10_1016_j_neurobiolaging_2015_08_016 crossref_primary_10_2217_ahe_10_80 crossref_primary_10_1093_brain_awv007 crossref_primary_10_1212_WNL_0000000000005549 crossref_primary_10_3390_diagnostics14161780 crossref_primary_10_1093_brain_awq383 crossref_primary_10_1186_s12883_015_0459_1 crossref_primary_10_1016_j_jalz_2010_04_005 crossref_primary_10_1111_cns_12682 crossref_primary_10_1097_RLU_0000000000000934 crossref_primary_10_3988_jcn_2025_0037 crossref_primary_10_1017_cjn_2015_401 crossref_primary_10_3233_JAD_150254 crossref_primary_10_1007_s00259_011_2045_0 crossref_primary_10_1016_j_pneurobio_2019_101690 crossref_primary_10_1212_WNL_0b013e318224afb7 crossref_primary_10_1177_0891988712464822 crossref_primary_10_1177_13872877251374319 crossref_primary_10_1016_j_neuropsychologia_2013_02_014 crossref_primary_10_1093_brain_awu173 crossref_primary_10_1177_1471301214562135 crossref_primary_10_1056_NEJMcp0910237 crossref_primary_10_1002_ana_23797 crossref_primary_10_1111_j_1742_1241_2011_02845_x crossref_primary_10_1016_j_bbadis_2011_09_016 crossref_primary_10_1038_jcbfm_2012_20 crossref_primary_10_1016_j_tics_2013_08_007 crossref_primary_10_2217_nmt_11_34 crossref_primary_10_1016_j_neuropharm_2010_04_006 crossref_primary_10_1186_alzrt93 crossref_primary_10_1038_jcbfm_2012_29 crossref_primary_10_1016_j_mcn_2018_12_004 crossref_primary_10_1186_alzrt96 crossref_primary_10_1093_brain_awq310 crossref_primary_10_1097_MD_0000000000000150 crossref_primary_10_1016_j_jalz_2011_07_003 crossref_primary_10_1016_j_nicl_2015_05_006 crossref_primary_10_1016_j_jalz_2012_09_014 crossref_primary_10_1002_gps_2122 crossref_primary_10_1111_ene_12398 crossref_primary_10_3233_JAD_190977 crossref_primary_10_3389_fnagi_2016_00236 crossref_primary_10_1212_WNL_0000000000000977 crossref_primary_10_1007_s11910_009_0051_4 crossref_primary_10_1016_j_jagp_2015_06_004 crossref_primary_10_1093_brain_awt145 crossref_primary_10_1016_j_remnie_2013_07_027 crossref_primary_10_3233_JAD_230027 crossref_primary_10_1186_2051_5960_1_76 crossref_primary_10_1007_s00259_015_3228_x crossref_primary_10_1002_ana_24040 crossref_primary_10_1097_JGP_0b013e31823e2cc7 crossref_primary_10_1007_s12350_018_1295_7 crossref_primary_10_1109_TMI_2024_3525022 crossref_primary_10_1016_j_cger_2011_07_008 crossref_primary_10_1016_j_nbd_2014_05_001 crossref_primary_10_1007_s12603_014_0507_3 crossref_primary_10_1007_s00259_012_2108_x crossref_primary_10_1186_alzrt70 crossref_primary_10_1523_JNEUROSCI_5077_10_2011 crossref_primary_10_1016_j_etap_2023_104220 crossref_primary_10_1111_j_1468_1331_2012_03859_x crossref_primary_10_1002_brb3_532 crossref_primary_10_1016_j_jalz_2012_10_007 crossref_primary_10_1007_s11065_014_9266_5 crossref_primary_10_1002_mds_23795 crossref_primary_10_1007_s12603_014_0485_5 crossref_primary_10_1002_gps_2816 crossref_primary_10_1093_cercor_bhac248 crossref_primary_10_2217_nmt_11_73 crossref_primary_10_3233_JAD_170252 crossref_primary_10_1016_j_biopsycho_2021_108208 crossref_primary_10_3233_JAD_160204 crossref_primary_10_1002_adtp_202400008 crossref_primary_10_3389_fnagi_2022_755454 crossref_primary_10_1007_s11604_019_00867_7 crossref_primary_10_1186_alzrt52 crossref_primary_10_1097_HJH_0000000000001250 crossref_primary_10_12779_dnd_2025_24_2_102 crossref_primary_10_1016_j_nrleng_2013_10_006 crossref_primary_10_1212_WNL_0b013e3182231419 crossref_primary_10_1186_s13195_017_0326_y crossref_primary_10_3390_ijms19123702 crossref_primary_10_1016_j_neuroimage_2010_12_070 crossref_primary_10_3233_JAD_201011 crossref_primary_10_3348_jksr_2022_0084 crossref_primary_10_1111_cns_12391 crossref_primary_10_1038_s41419_024_07249_6 crossref_primary_10_1053_j_semnuclmed_2012_07_001 crossref_primary_10_3390_ijms232314635 crossref_primary_10_1016_j_pscychresns_2023_111705 crossref_primary_10_1016_j_jalz_2014_04_005 crossref_primary_10_1212_WNL_0b013e3182661f74 crossref_primary_10_1126_scitranslmed_3002609 crossref_primary_10_1136_practneurol_2019_002468 crossref_primary_10_3233_JAD_160907 crossref_primary_10_3389_fnagi_2015_00015 crossref_primary_10_1097_MNM_0000000000000569 crossref_primary_10_1016_j_nicl_2019_101941 crossref_primary_10_1016_j_neurobiolaging_2014_03_006 crossref_primary_10_1016_j_mcna_2012_12_017 crossref_primary_10_1111_joim_12482 crossref_primary_10_1016_j_neurobiolaging_2010_06_015 crossref_primary_10_1016_j_cger_2013_07_006 crossref_primary_10_1586_ern_12_131 crossref_primary_10_1007_s00115_010_2951_6 crossref_primary_10_1038_nrneurol_2009_217 crossref_primary_10_1016_j_neuroimage_2020_117482 crossref_primary_10_1186_s40478_020_01099_x crossref_primary_10_1016_j_neurobiolaging_2013_06_018 crossref_primary_10_1016_j_remnie_2015_09_005 crossref_primary_10_1016_j_nic_2011_11_005 crossref_primary_10_1007_s00401_012_1025_1 crossref_primary_10_1111_ene_12251 crossref_primary_10_1016_j_dadm_2018_02_008 crossref_primary_10_1016_j_dadm_2019_04_011 crossref_primary_10_1038_s41598_021_85165_x crossref_primary_10_3389_fnagi_2021_669490 crossref_primary_10_3390_app9153156 crossref_primary_10_3233_JAD_180965 crossref_primary_10_1002_ana_22068 |
| Cites_doi | 10.1212/01.WNL.0000147469.18313.3B 10.1159/000110800 10.1001/archneur.63.1.38 10.1093/brain/awm336 10.1212/01.wnl.0000228230.26044.a4 10.1038/sj.npp.1300690 10.1002/ana.410270502 10.1212/WNL.52.7.1397 10.1001/archneur.56.3.303 10.1080/13554790490903038 10.1212/01.wnl.0000244749.20056.d4 10.1212/WNL.58.8.1188 10.1001/archneur.57.5.675 10.1001/archneur.58.3.397 10.1016/S1474-4422(04)00710-0 10.1111/j.1365-2796.2004.01388.x 10.1212/WNL.42.3.631 10.1002/ana.20009 10.1016/S1474-4422(06)70355-6 10.1080/13854049608406689 10.1212/01.wnl.0000191298.68045.50 10.1212/01.wnl.0000261919.22630.ea 10.1212/WNL.58.12.1791 10.1212/01.WNL.0000132523.27540.81 10.1212/01.wnl.0000249117.23318.e1 10.1212/WNL.55.12.1854 10.1093/brain/awm213 10.1093/brain/awm238 10.1001/archneur.63.5.665 10.1109/42.906424 10.1212/01.wnl.0000260969.94695.56 10.1016/j.neurobiolaging.2007.03.029 10.1212/WNL.56.1.37 10.1136/jnnp.2004.047720 10.1001/archneur.64.3.416 10.1093/brain/awn016 10.1016/j.neuroimage.2005.05.005 10.1001/archneur.58.10.1654 10.1212/01.WNL.0000034176.07159.F8 10.1001/jama.283.12.1571 10.1016/S0140-6736(06)68542-5 10.1212/01.wnl.0000258542.58725.4c 10.1038/sj.jcbfm.9600146 10.1002/hbm.20216 10.1001/archneur.63.5.674 10.1016/j.neurobiolaging.2003.12.007 10.1002/ana.10069 10.1038/sj.npp.1301655 10.1006/nimg.2001.0978 10.1111/j.1365-2796.2004.01380.x 10.1109/23.873020 10.1159/000026270 10.1002/ana.410300410 10.1212/01.WNL.0000118301.92105.EE 10.1002/ana.10086 10.1523/JNEUROSCI.0730-07.2007 10.1093/brain/awl178 10.1056/NEJMoa054625 10.1212/01.wnl.0000238517.59286.c5 10.1007/BF00308809 10.1016/j.neuroimage.2005.02.018 10.1097/00019442-200411000-00004 10.1016/S0197-4580(96)00170-4 10.1212/01.wnl.0000252358.03285.9d 10.1001/archneur.65.11.1509 10.1212/WNL.39.9.1159 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 American Neurological Association 2009 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2009 American Neurological Association – notice: 2009 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
| DOI | 10.1002/ana.21598 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-8249 |
| EndPage | 568 |
| ExternalDocumentID | PMC2828870 19475670 21557252 10_1002_ana_21598 ANA21598 ark_67375_WNG_LPKWN2W6_8 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Aging funderid: K02 AG001039; K02 AG027998; K23 AG028018; R01 AG018402; R01 AG020098; R01 AG020226; R37 AG025516; P01 AG025204; P50 AG005133 – fundername: Dana Foundation – fundername: Alzheimer's Association funderid: TLL‐01‐3381 – fundername: US Department of Energy funderid: DE‐FD02‐03 ER63590 – fundername: National Institute of Mental Health funderid: R01 MH070729 – fundername: NIA NIH HHS grantid: K23 AG 028018 – fundername: NIA NIH HHS grantid: R01 AG 020098 – fundername: NIA NIH HHS grantid: P50 AG005133 – fundername: NIMH NIH HHS grantid: R01 MH 070729 – fundername: NIA NIH HHS grantid: K02 AG 027998 – fundername: NIA NIH HHS grantid: R01 AG 018402 – fundername: NIA NIH HHS grantid: K23 AG028018 – fundername: NIA NIH HHS grantid: R01 AG018402 – fundername: NIMH NIH HHS grantid: R01 MH070729 – fundername: NIMH NIH HHS grantid: K01 MH001976 |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAYXX CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
| ID | FETCH-LOGICAL-c5438-3df2c9e1ba89bc56e9022d346b952e96de4fd5a31a14aeb73ca1261bbcd211333 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 280 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266611700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-5134 1531-8249 |
| IngestDate | Tue Nov 04 01:45:01 EST 2025 Thu Sep 04 19:30:04 EDT 2025 Fri Sep 05 12:28:17 EDT 2025 Mon Jul 21 05:31:32 EDT 2025 Mon Jul 21 09:17:15 EDT 2025 Sat Nov 29 03:41:14 EST 2025 Tue Nov 18 21:51:27 EST 2025 Sun Sep 21 06:16:18 EDT 2025 Sun Sep 21 06:19:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Nervous system diseases Amyloid mild cognitive impairment Cognitive disorder Subtype |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5438-3df2c9e1ba89bc56e9022d346b952e96de4fd5a31a14aeb73ca1261bbcd211333 |
| Notes | istex:11E2050AE940DA2DA72D7BDCB849D9C4D6F88970 US Department of Energy - No. DE-FD02-03 ER63590 Alzheimer's Association - No. TLL-01-3381 National Institute of Mental Health - No. R01 MH070729 National Institute of Aging - No. K02 AG001039; No. K02 AG027998; No. K23 AG028018; No. R01 AG018402; No. R01 AG020098; No. R01 AG020226; No. R37 AG025516; No. P01 AG025204; No. P50 AG005133 ark:/67375/WNG-LPKWN2W6-8 Potential conflict of interest: GE Healthcare holds a license agreement with the University of Pittsburgh based on the technology described in this manuscript. Drs. Klunk and Mathis are co-inventors of PiB and, as such, have a financial interest in this license agreement. GE Healthcare provided no grant support for this study and had no role in the design or interpretation of results or preparation of this manuscript. All other authors have no conflicts of interest with this work and had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Dana Foundation ArticleID:ANA21598 Potential conflict of interest: GE Healthcare holds a license agreement with the University of Pittsburgh based on the technology described in this manuscript. Drs. Klunk and Mathis are co‐inventors of PiB and, as such, have a financial interest in this license agreement. GE Healthcare provided no grant support for this study and had no role in the design or interpretation of results or preparation of this manuscript. All other authors have no conflicts of interest with this work and had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19475670 |
| PQID | 20125326 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2828870 proquest_miscellaneous_67316553 proquest_miscellaneous_20125326 pubmed_primary_19475670 pascalfrancis_primary_21557252 crossref_citationtrail_10_1002_ana_21598 crossref_primary_10_1002_ana_21598 wiley_primary_10_1002_ana_21598_ANA21598 istex_primary_ark_67375_WNG_LPKWN2W6_8 |
| PublicationCentury | 2000 |
| PublicationDate | May 2009 |
| PublicationDateYYYYMMDD | 2009-05-01 |
| PublicationDate_xml | – month: 05 year: 2009 text: May 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
| PublicationTitle | Annals of neurology |
| PublicationTitleAlternate | Ann Neurol |
| PublicationYear | 2009 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
| References | Lopez OL, Kuller LH, Becker JT, et al. Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Arch Neurol 2007; 64: 416-420. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256: 240-246. Verhoeff NP, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004; 12: 584-595. Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer's disease? Lancet Neurol 2004; 3: 246-248. Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355: 2652-2663. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572-580. Killiany RJ, Hyman BT, Gomez-Isla T, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 1188-1196. Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27: 6174-6184. Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256: 183-194. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42: 631-639. de Toledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004; 25: 1197-1203. Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17: 921-933. Rountree SD, Waring SC, Chan WC, et al. Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia. Dement Geriatr Cogn Disord 2007; 24: 476-482. Markesbery WR, Schmitt FA, Kryscio RJ, et al. Neuropathologic substrate of mild cognitive impairment. Arch Neurol 2006; 63: 38-46. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839-851. Fischer P, Jungwirth S, Zehetmayer S, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007; 68: 288-291. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56: 303-308. Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. New York: Oxford University Press, 1998. Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007; 68: 501-508. Watson CC. New, faster, image-based scatter correction for 3D-PET. IEEE Trans Nucl Sci 2000; 47: 1587-1594. Jack CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403. Saxton J, Ratcliff G, Newman A, et al. Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study. Neuroepidemiology 2000; 19: 312-319. Carmichael OT, Aizenstein HA, Davis SW, et al. Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage 2005; 27: 979-990. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59: 1594-1599. Mitchell TW, Mufson EJ, Schneider JA, et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 2002; 51: 182-189. Prohovnik I, Perl DP, Davis KL, et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology 2006; 66: 49-55. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457-464. Ivnik RJ, Malec JF, Smith GE, et al. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, STROOP, TMT, and JLO. Clin Neuropsychol 1996; 10: 262-278. Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J Neurol Neurosurg Psychiatry 2005; 76: 1348-1354. Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 2006; 67: 1201-1207. Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 2001; 56: 37-42. Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet 2006; 367: 1262-1270. Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547. Fleisher AS, Sowell BB, Taylor C, et al. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2007; 68: 1588-1595. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57. Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452. Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725. Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005; 46: 1625-1632. Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006; 129: 2856-2866. Wu M, Carmichael O, Lopez-Garcia P, et al. Quantitative comparison of AIR, SPM, and the fully deformable model for atlas-based segmentation of functional and structural MR images. Hum Brain Mapp 2006; 27: 747-754. Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001; 58: 397-405. Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5: 228-234. Aggarwal NT, Wilson RS, Beck TL, et al. The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment. Neurocase 2005; 11: 3-7. Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63: 665-672. Busse A, Hensel A, Guhne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67: 2176-2185. Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39: 1159-1165. Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: 115-121. Lopez OL, Becker JT, Klunk W, et al. Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I. Neurology 2000; 55: 1854-1862. Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603-1606. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-259. Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008; 131: 1630-1645. Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression-a structural MRI analysis. Neuropsychopharmacology 2008; 33: 2566-2572. Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 2000; 283: 1571-1577. Aizenstein HJ, Nebes RD, Saxton JA, et al. Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly. Arch Neurol 2008; 65: 1509-1517. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273-289. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain 2007; 130: 2636-2645. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319. Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131: 665-680. Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29: 1456-1465. Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005; 30: 1204-1215. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain 2004; 63 2002; 58 2002; 59 2002; 15 2004; 62 2000; 47 2002; 51 2004; 25 2004; 3 2008; 33 2005; 26 2005; 27 2005; 25 2006; 63 2000; 19 2004; 256 2006; 67 2000; 57 2006; 66 2008; 29 2006; 27 2000; 55 2007; 130 1999; 56 2005; 30 2000; 283 2005; 76 2008; 65 1999; 52 2007; 64 1992; 42 2001; 56 2006; 129 2001; 58 2007; 68 2007; 24 2006; 367 1989; 39 2007; 27 1996; 17 1991; 30 1998 1991; 82 2006; 5 2003 1996; 10 2005; 46 2001; 20 2006; 355 2004; 55 1990; 27 2004; 12 2008; 131 2005; 11 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 Drzezga A (e_1_2_6_23_2) 2005; 46 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 Lopresti BJ (e_1_2_6_44_2) 2005; 46 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Spreen O (e_1_2_6_59_2) 1998 e_1_2_6_71_2 e_1_2_6_18_2 Saxton JA (e_1_2_6_57_2) 2003 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 Ann Neurol. 2009 Jul;66(1):123 |
| References_xml | – reference: Jack CR, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999; 52: 1397-1403. – reference: Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547. – reference: Feldman H, Scheltens P, Scarpini E, et al. Behavioral symptoms in mild cognitive impairment. Neurology 2004; 62: 1199-1201. – reference: Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5: 228-234. – reference: Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256: 183-194. – reference: Fleisher AS, Sowell BB, Taylor C, et al. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2007; 68: 1588-1595. – reference: Saxton J, Ratcliff G, Newman A, et al. Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study. Neuroepidemiology 2000; 19: 312-319. – reference: Lopez OL, Becker JT, Klunk W, et al. Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I. Neurology 2000; 55: 1854-1862. – reference: Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression-a structural MRI analysis. Neuropsychopharmacology 2008; 33: 2566-2572. – reference: DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457-464. – reference: Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29: 1456-1465. – reference: Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131: 665-680. – reference: Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer's disease? Lancet Neurol 2004; 3: 246-248. – reference: Drzezga A, Grimmer T, Riemenschneider M, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005; 46: 1625-1632. – reference: Prohovnik I, Perl DP, Davis KL, et al. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology 2006; 66: 49-55. – reference: Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355: 2652-2663. – reference: Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791-1800. – reference: Mosconi L, Perani D, Sorbi S, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004; 63: 2332-2340. – reference: Aizenstein HJ, Nebes RD, Saxton JA, et al. Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly. Arch Neurol 2008; 65: 1509-1517. – reference: Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 2008; 131: 1630-1645. – reference: Carmichael OT, Aizenstein HA, Davis SW, et al. Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. Neuroimage 2005; 27: 979-990. – reference: Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. New York: Oxford University Press, 1998. – reference: de Toledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004; 25: 1197-1203. – reference: Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725. – reference: Tierney MC, Black SE, Szalai JP, et al. Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch Neurol 2001; 58: 1654-1659. – reference: Watson CC. New, faster, image-based scatter correction for 3D-PET. IEEE Trans Nucl Sci 2000; 47: 1587-1594. – reference: Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56: 303-308. – reference: Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease. Neurobiol Aging 1996; 17: 921-933. – reference: DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002; 51: 145-155. – reference: Markesbery WR, Schmitt FA, Kryscio RJ, et al. Neuropathologic substrate of mild cognitive impairment. Arch Neurol 2006; 63: 38-46. – reference: Pike KE, Savage G, Villemagne VL, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 2007; 130: 2837-2844. – reference: Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-319. – reference: Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet 2006; 367: 1262-1270. – reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273-289. – reference: Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26: 839-851. – reference: Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 2001; 56: 37-42. – reference: Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002; 59: 1594-1599. – reference: Rountree SD, Waring SC, Chan WC, et al. Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia. Dement Geriatr Cogn Disord 2007; 24: 476-482. – reference: Busse A, Hensel A, Guhne U, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 2006; 67: 2176-2185. – reference: Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27: 6174-6184. – reference: Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 1992; 42: 631-639. – reference: Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63: 665-672. – reference: Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol 2000; 57: 675-680. – reference: Ganguli M, Dodge HH, Shen C, DeKosky ST. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: 115-121. – reference: Mitchell TW, Mufson EJ, Schneider JA, et al. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 2002; 51: 182-189. – reference: Wu M, Carmichael O, Lopez-Garcia P, et al. Quantitative comparison of AIR, SPM, and the fully deformable model for atlas-based segmentation of functional and structural MR images. Hum Brain Mapp 2006; 27: 747-754. – reference: Thal LJ, Ferris SH, Kirby L, et al. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 2005; 30: 1204-1215. – reference: Ivnik RJ, Malec JF, Smith GE, et al. Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, STROOP, TMT, and JLO. Clin Neuropsychol 1996; 10: 262-278. – reference: Jicha GA, Parisi JE, Dickson DW, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 2006; 63: 674-681. – reference: Aggarwal NT, Wilson RS, Beck TL, et al. The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment. Neurocase 2005; 11: 3-7. – reference: Kemppainen NM, Aalto S, Wilson IA, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603-1606. – reference: Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain 2007; 130: 2636-2645. – reference: Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006; 129: 2856-2866. – reference: Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 2000; 283: 1571-1577. – reference: Lopez OL, Kuller LH, Becker JT, et al. Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study. Arch Neurol 2007; 64: 416-420. – reference: Verhoeff NP, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004; 12: 584-595. – reference: Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J Neurol Neurosurg Psychiatry 2005; 76: 1348-1354. – reference: Killiany RJ, Hyman BT, Gomez-Isla T, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002; 58: 1188-1196. – reference: Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972. – reference: Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001; 58: 397-405. – reference: Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452. – reference: Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 2006; 67: 1201-1207. – reference: Fischer P, Jungwirth S, Zehetmayer S, et al. Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology 2007; 68: 288-291. – reference: Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39: 1159-1165. – reference: Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007; 68: 501-508. – reference: Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239-259. – reference: Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256: 240-246. – reference: Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57. – reference: Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572-580. – volume: 63 start-page: 674 year: 2006 end-page: 681 article-title: Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia publication-title: Arch Neurol – volume: 58 start-page: 1791 year: 2002 end-page: 1800 article-title: Phases of A beta‐deposition in the human brain and its relevance for the development of AD publication-title: Neurology – volume: 25 start-page: 1197 year: 2004 end-page: 1203 article-title: MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD publication-title: Neurobiol Aging – volume: 67 start-page: 1201 year: 2006 end-page: 1207 article-title: Ten‐year risk of dementia in subjects with mild cognitive impairment publication-title: Neurology – volume: 30 start-page: 1204 year: 2005 end-page: 1215 article-title: A randomized, double‐blind, study of rofecoxib in patients with mild cognitive impairment publication-title: Neuropsychopharmacology – volume: 56 start-page: 37 year: 2001 end-page: 42 article-title: Classification criteria for mild cognitive impairment: a population‐based validation study publication-title: Neurology – volume: 283 start-page: 1571 year: 2000 end-page: 1577 article-title: Correlation between elevated levels of amyloid beta‐peptide in the brain and cognitive decline publication-title: Jama – volume: 67 start-page: 2176 year: 2006 end-page: 2185 article-title: Mild cognitive impairment: long‐term course of four clinical subtypes publication-title: Neurology – volume: 367 start-page: 1262 year: 2006 end-page: 1270 article-title: Mild cognitive impairment publication-title: Lancet – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging – start-page: 569 year: 2003 end-page: 582 – volume: 27 start-page: 457 year: 1990 end-page: 464 article-title: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity publication-title: Ann Neurol – volume: 27 start-page: 979 year: 2005 end-page: 990 article-title: Atlas‐based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 46 start-page: 1959 year: 2005 end-page: 1972 article-title: Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis publication-title: J Nucl Med – volume: 59 start-page: 1594 year: 2002 end-page: 1599 article-title: Incidence and outcome of mild cognitive impairment in a population‐based prospective cohort publication-title: Neurology – volume: 55 start-page: 1854 year: 2000 end-page: 1862 article-title: Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I publication-title: Neurology – volume: 130 start-page: 2837 year: 2007 end-page: 2844 article-title: Beta‐amyloid imaging and memory in non‐demented individuals: evidence for preclinical Alzheimer's disease publication-title: Brain – volume: 27 start-page: 747 year: 2006 end-page: 754 article-title: Quantitative comparison of AIR, SPM, and the fully deformable model for atlas‐based segmentation of functional and structural MR images publication-title: Hum Brain Mapp – year: 1998 – volume: 30 start-page: 572 year: 1991 end-page: 580 article-title: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment publication-title: Ann Neurol – volume: 51 start-page: 182 year: 2002 end-page: 189 article-title: Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease publication-title: Ann Neurol – volume: 67 start-page: 446 year: 2006 end-page: 452 article-title: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease publication-title: Neurology – volume: 51 start-page: 145 year: 2002 end-page: 155 article-title: Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment publication-title: Ann Neurol – volume: 5 start-page: 228 year: 2006 end-page: 234 article-title: Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow‐up study publication-title: Lancet Neurol – volume: 76 start-page: 1348 year: 2005 end-page: 1354 article-title: Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? publication-title: J Neurol Neurosurg Psychiatry – volume: 52 start-page: 1397 year: 1999 end-page: 1403 article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment publication-title: Neurology – volume: 29 start-page: 1456 year: 2008 end-page: 1465 article-title: PET imaging of amyloid deposition in patients with mild cognitive impairment publication-title: Neurobiol Aging – volume: 19 start-page: 312 year: 2000 end-page: 319 article-title: Cognitive test performance and presence of subclinical cardiovascular disease in the Cardiovascular Health Study publication-title: Neuroepidemiology – volume: 63 start-page: 2332 year: 2004 end-page: 2340 article-title: MCI conversion to dementia and the APOE genotype: a prediction study with FDG‐PET publication-title: Neurology – volume: 131 start-page: 665 year: 2008 end-page: 680 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain – volume: 39 start-page: 1159 year: 1989 end-page: 1165 article-title: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease publication-title: Neurology – volume: 68 start-page: 1718 year: 2007 end-page: 1725 article-title: Imaging beta‐amyloid burden in aging and dementia publication-title: Neurology – volume: 24 start-page: 476 year: 2007 end-page: 482 article-title: Importance of subtle amnestic and nonamnestic deficits in mild cognitive impairment: prognosis and conversion to dementia publication-title: Dement Geriatr Cogn Disord – volume: 33 start-page: 2566 year: 2008 end-page: 2572 article-title: Gray matter changes in late life depression–a structural MRI analysis publication-title: Neuropsychopharmacology – volume: 63 start-page: 665 year: 2006 end-page: 672 article-title: Neuropathologic features of amnestic mild cognitive impairment publication-title: Arch Neurol – volume: 65 start-page: 1509 year: 2008 end-page: 1517 article-title: Amyloid deposition is frequent and often not associated with significant cognitive impairment in the elderly publication-title: Arch Neurol – volume: 63 start-page: 38 year: 2006 end-page: 46 article-title: Neuropathologic substrate of mild cognitive impairment publication-title: Arch Neurol – volume: 355 start-page: 2652 year: 2006 end-page: 2663 article-title: PET of brain amyloid and tau in mild cognitive impairment publication-title: N Engl J Med – volume: 55 start-page: 306 year: 2004 end-page: 319 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B publication-title: Ann Neurol – volume: 11 start-page: 3 year: 2005 end-page: 7 article-title: The apolipoprotein E epsilon4 allele and incident Alzheimer's disease in persons with mild cognitive impairment publication-title: Neurocase – volume: 68 start-page: 1588 year: 2007 end-page: 1595 article-title: Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment publication-title: Neurology – volume: 27 start-page: 6174 year: 2007 end-page: 6184 article-title: Amyloid deposition begins in the striatum of presenilin‐1 mutation carriers from two unrelated pedigrees publication-title: J Neurosci – volume: 256 start-page: 183 year: 2004 end-page: 194 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J Intern Med – volume: 58 start-page: 1654 year: 2001 end-page: 1659 article-title: Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia publication-title: Arch Neurol – volume: 129 start-page: 2856 year: 2006 end-page: 2866 article-title: Two‐year follow‐up of amyloid deposition in patients with Alzheimer's disease publication-title: Brain – volume: 3 start-page: 246 year: 2004 end-page: 248 article-title: Amnestic MCI or prodromal Alzheimer's disease? publication-title: Lancet Neurol – volume: 58 start-page: 1188 year: 2002 end-page: 1196 article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD publication-title: Neurology – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 66 start-page: 49 year: 2006 end-page: 55 article-title: Dissociation of neuropathology from severity of dementia in late‐onset Alzheimer disease publication-title: Neurology – volume: 56 start-page: 303 year: 1999 end-page: 308 article-title: Mild cognitive impairment. Clinical characterization and outcome publication-title: Arch Neurol – volume: 17 start-page: 921 year: 1996 end-page: 933 article-title: Beta‐amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease publication-title: Neurobiol Aging – volume: 42 start-page: 631 year: 1992 end-page: 639 article-title: Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease publication-title: Neurology – volume: 131 start-page: 1630 year: 2008 end-page: 1645 article-title: Post‐mortem correlates of in vivo PiB‐PET amyloid imaging in a typical case of Alzheimer's disease publication-title: Brain – volume: 256 start-page: 240 year: 2004 end-page: 246 article-title: Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment publication-title: J Intern Med – volume: 68 start-page: 288 year: 2007 end-page: 291 article-title: Conversion from subtypes of mild cognitive impairment to Alzheimer dementia publication-title: Neurology – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – volume: 68 start-page: 501 year: 2007 end-page: 508 article-title: Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study publication-title: Neurology – volume: 130 start-page: 2636 year: 2007 end-page: 2645 article-title: Focal cortical presentations of Alzheimer's disease publication-title: Brain – volume: 57 start-page: 675 year: 2000 end-page: 680 article-title: Predicting conversion to Alzheimer disease using standardized clinical information publication-title: Arch Neurol – volume: 10 start-page: 262 year: 1996 end-page: 278 article-title: Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT‐R Reading, AMNART, STROOP, TMT, and JLO publication-title: Clin Neuropsychol – volume: 47 start-page: 1587 year: 2000 end-page: 1594 article-title: New, faster, image‐based scatter correction for 3D‐PET publication-title: IEEE Trans Nucl Sci – volume: 62 start-page: 1199 year: 2004 end-page: 1201 article-title: Behavioral symptoms in mild cognitive impairment publication-title: Neurology – volume: 46 start-page: 1625 year: 2005 end-page: 1632 article-title: Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F‐FDG PET publication-title: J Nucl Med – volume: 63 start-page: 115 year: 2004 end-page: 121 article-title: Mild cognitive impairment, amnestic type: an epidemiologic study publication-title: Neurology – volume: 12 start-page: 584 year: 2004 end-page: 595 article-title: In‐vivo imaging of Alzheimer disease beta‐amyloid with [11C]SB‐13 PET publication-title: Am J Geriatr Psychiatry – volume: 58 start-page: 397 year: 2001 end-page: 405 article-title: Mild cognitive impairment represents early‐stage Alzheimer disease publication-title: Arch Neurol – volume: 64 start-page: 416 year: 2007 end-page: 420 article-title: Incidence of dementia in mild cognitive impairment in the cardiovascular health study cognition study publication-title: Arch Neurol – volume: 82 start-page: 239 year: 1991 end-page: 259 article-title: Neuropathological staging of Alzheimer‐related changes publication-title: Acta Neuropathol – volume: 68 start-page: 1603 year: 2007 end-page: 1606 article-title: PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment publication-title: Neurology – volume: 25 start-page: 1528 year: 2005 end-page: 1547 article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound‐B publication-title: J Cereb Blood Flow Metab – ident: e_1_2_6_24_2 doi: 10.1212/01.WNL.0000147469.18313.3B – ident: e_1_2_6_29_2 doi: 10.1159/000110800 – ident: e_1_2_6_10_2 doi: 10.1001/archneur.63.1.38 – ident: e_1_2_6_42_2 doi: 10.1093/brain/awm336 – ident: e_1_2_6_71_2 doi: 10.1212/01.wnl.0000228230.26044.a4 – ident: e_1_2_6_8_2 doi: 10.1038/sj.npp.1300690 – ident: e_1_2_6_67_2 doi: 10.1002/ana.410270502 – ident: e_1_2_6_22_2 doi: 10.1212/WNL.52.7.1397 – ident: e_1_2_6_5_2 doi: 10.1001/archneur.56.3.303 – ident: e_1_2_6_26_2 doi: 10.1080/13554790490903038 – ident: e_1_2_6_68_2 doi: 10.1212/01.wnl.0000244749.20056.d4 – ident: e_1_2_6_69_2 doi: 10.1212/WNL.58.8.1188 – ident: e_1_2_6_7_2 doi: 10.1001/archneur.57.5.675 – ident: e_1_2_6_4_2 doi: 10.1001/archneur.58.3.397 – ident: e_1_2_6_70_2 doi: 10.1016/S1474-4422(04)00710-0 – ident: e_1_2_6_2_2 doi: 10.1111/j.1365-2796.2004.01388.x – ident: e_1_2_6_66_2 doi: 10.1212/WNL.42.3.631 – ident: e_1_2_6_31_2 doi: 10.1002/ana.20009 – ident: e_1_2_6_25_2 doi: 10.1016/S1474-4422(06)70355-6 – ident: e_1_2_6_60_2 doi: 10.1080/13854049608406689 – ident: e_1_2_6_63_2 doi: 10.1212/01.wnl.0000191298.68045.50 – ident: e_1_2_6_40_2 doi: 10.1212/01.wnl.0000261919.22630.ea – ident: e_1_2_6_36_2 doi: 10.1212/WNL.58.12.1791 – ident: e_1_2_6_14_2 doi: 10.1212/01.WNL.0000132523.27540.81 – ident: e_1_2_6_27_2 doi: 10.1212/01.wnl.0000249117.23318.e1 – ident: e_1_2_6_45_2 doi: 10.1212/WNL.55.12.1854 – ident: e_1_2_6_61_2 doi: 10.1093/brain/awm213 – ident: e_1_2_6_41_2 doi: 10.1093/brain/awm238 – ident: e_1_2_6_11_2 doi: 10.1001/archneur.63.5.665 – ident: e_1_2_6_54_2 doi: 10.1109/42.906424 – ident: e_1_2_6_38_2 doi: 10.1212/01.wnl.0000260969.94695.56 – volume: 46 start-page: 1625 year: 2005 ident: e_1_2_6_23_2 article-title: Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F‐FDG PET publication-title: J Nucl Med – ident: e_1_2_6_39_2 doi: 10.1016/j.neurobiolaging.2007.03.029 – start-page: 569 volume-title: The handbook of Rey‐Osterrieth complex figure usage: clinical and research applications year: 2003 ident: e_1_2_6_57_2 – ident: e_1_2_6_16_2 doi: 10.1212/WNL.56.1.37 – ident: e_1_2_6_18_2 doi: 10.1136/jnnp.2004.047720 – ident: e_1_2_6_30_2 doi: 10.1001/archneur.64.3.416 – ident: e_1_2_6_34_2 doi: 10.1093/brain/awn016 – ident: e_1_2_6_52_2 doi: 10.1016/j.neuroimage.2005.05.005 – ident: e_1_2_6_19_2 doi: 10.1001/archneur.58.10.1654 – ident: e_1_2_6_15_2 doi: 10.1212/01.WNL.0000034176.07159.F8 – ident: e_1_2_6_64_2 doi: 10.1001/jama.283.12.1571 – ident: e_1_2_6_46_2 doi: 10.1016/S0140-6736(06)68542-5 – ident: e_1_2_6_20_2 doi: 10.1212/01.wnl.0000258542.58725.4c – ident: e_1_2_6_43_2 doi: 10.1038/sj.jcbfm.9600146 – volume: 46 start-page: 1959 year: 2005 ident: e_1_2_6_44_2 article-title: Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis publication-title: J Nucl Med – ident: e_1_2_6_50_2 doi: 10.1002/hbm.20216 – ident: e_1_2_6_17_2 doi: 10.1001/archneur.63.5.674 – ident: e_1_2_6_21_2 doi: 10.1016/j.neurobiolaging.2003.12.007 – ident: e_1_2_6_9_2 doi: 10.1002/ana.10069 – ident: e_1_2_6_51_2 doi: 10.1038/sj.npp.1301655 – volume-title: A compendium of neuropsychological tests: administration, norms, and commentary year: 1998 ident: e_1_2_6_59_2 – ident: e_1_2_6_53_2 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_6_3_2 doi: 10.1111/j.1365-2796.2004.01380.x – ident: e_1_2_6_55_2 doi: 10.1109/23.873020 – ident: e_1_2_6_58_2 doi: 10.1159/000026270 – ident: e_1_2_6_65_2 doi: 10.1002/ana.410300410 – ident: e_1_2_6_6_2 doi: 10.1212/01.WNL.0000118301.92105.EE – ident: e_1_2_6_12_2 doi: 10.1002/ana.10086 – ident: e_1_2_6_48_2 doi: 10.1523/JNEUROSCI.0730-07.2007 – ident: e_1_2_6_37_2 doi: 10.1093/brain/awl178 – ident: e_1_2_6_32_2 doi: 10.1056/NEJMoa054625 – ident: e_1_2_6_13_2 doi: 10.1212/01.wnl.0000238517.59286.c5 – ident: e_1_2_6_35_2 doi: 10.1007/BF00308809 – ident: e_1_2_6_49_2 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_6_33_2 doi: 10.1097/00019442-200411000-00004 – ident: e_1_2_6_62_2 doi: 10.1016/S0197-4580(96)00170-4 – ident: e_1_2_6_28_2 doi: 10.1212/01.wnl.0000252358.03285.9d – ident: e_1_2_6_47_2 doi: 10.1001/archneur.65.11.1509 – ident: e_1_2_6_56_2 doi: 10.1212/WNL.39.9.1159 – reference: - Ann Neurol. 2009 Jul;66(1):123 |
| SSID | ssj0009610 |
| Score | 2.4603183 |
| Snippet | Objective
We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild... We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild cognitive... Objective We utilized the amyloid imaging ligand Pittsburgh Compound B (PiB) to determine the presence of Alzheimer's disease (AD) pathology in different mild... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 557 |
| SubjectTerms | Aged Aged, 80 and over Amyloid - metabolism Aniline Compounds Biological and medical sciences Brain Mapping Cognition Disorders - classification Cognition Disorders - diagnostic imaging Cognition Disorders - pathology Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Follow-Up Studies Hippocampus - diagnostic imaging Hippocampus - pathology Humans Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged Neurology Neuropsychological Tests Positron-Emission Tomography - methods Psychometrics - methods Thiazoles |
| Title | Amyloid imaging in mild cognitive impairment subtypes |
| URI | https://api.istex.fr/ark:/67375/WNG-LPKWN2W6-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21598 https://www.ncbi.nlm.nih.gov/pubmed/19475670 https://www.proquest.com/docview/20125326 https://www.proquest.com/docview/67316553 https://pubmed.ncbi.nlm.nih.gov/PMC2828870 |
| Volume | 65 |
| WOSCitedRecordID | wos000266611700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1531-8249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009610 issn: 0364-5134 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_udkXuxW_P-rEWEbmXem2apAk-LeoqeJZDPHbfQr6KxduebG_FP98k7XZdvAPBt0InoZ3MZGYyk98AvGQVZ1ZykjjjqROMDE0UNyhJpdLcGXxVWByaTRRlyRYLfroHbzZ3YTp8iOHAzWtG2K-9gkvVHm9BQ2UjXzt7xdk-jJGTWzyC8bsvs7OTLeYuDWAEPtOWkCzHG2ChFB0Pg3fM0dhz9pcvj5St41DVtba4yvf8u4TyT9c22KbZ7f_6qztwq3dJ42knQ3dhzzb34ObnPul-H8h06aL62sT1MrQ0iusmXtbnJh5Kj2J_17Je-YPGuF0rf6zbPoCz2fuvbz8mfbeFRBPsdr3cVEhzmynJuNKEWu7Mu8kxVZwgy6mxuDJE5pnMsLSqyLXMXPillDYuiMzz_CGMmovGPoJYM8OQsTTLKo5JzmVVUYOLVLEqxQbZCI42TBe6hyL3HTHORQeijIRjgwhsiODFQPqjw9-4iuhVWLmBQq6--4K1goh5-UGcnH6al2hOhSOc7CztMMBNQwpEUATPN2stnJ755Ils7MW6Fc5RQsT5utdTUN8EjJA8gsNONrYfzHFBaJFGUOxIzUDgMb533zT1t4D17SNi5kceBam5ngdiWk7Dw-N_J30CB11yzNdvPoXR5Wptn8EN_fOyblcT2C8WbNIr1W8LySSE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9tAEB5SuzR96X2oRyJKKXlRI-0lLfTFtHVT4ohQEpy3ZS9RkVgpVlz687u7suWaJlDom0CzQpqd0Zz7DcDbouKFlZwmznjqhCDDEsUNSlKpNHcGX-WWhGETeVkWZ2f8eAs-rM7CdPgQfcLNa0b4X3sF9wnp_TVqqGzke2eweHELhsSJER3A8NO38elkDbrLAhqBL7UlNMNkhSyUov1-8YY9GnrW_vL9kbJ1LKq62RbXOZ9_91D-6dsG4zS-_3-f9QDuLZ3SeNRJ0UPYss0juHO0LLs_Bjqaubi-NnE9C0ON4rqJZ_WFifvmo9iftqznPtUYtwvlE7vtEzgdfz75eJAs5y0kmhL338OmQprbTMmCK02Z5c7AG0yY4hRZzowllaESZzIj0qoca5m5AEwpbVwYiTF-CoPmsrHPIdaFKZCxLMsqTijmsqqYIXmqiiolBtkI9lZcF3oJRu5nYlyIDkYZCccGEdgQwZue9EeHwHEd0buwdT2FnJ_7lrWcimn5RUyOD6clmjLhCHc29rZf4B5Dc0RRBLurzRZO03z5RDb2ctEK5yoh6rzdmymYHwNGKY7gWScc6xfmJKcsTyPIN8SmJ_Ao35t3mvp7QPv2MXHhV-4FsbmZB2JUjsLFi38n3YXtg5OjiZh8LQ9fwt2uVOa7OV_B4Gq-sK_htv55VbfznaVu_QaVhCeM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qT4ovfmvjRxtEpC9pk_1KFnw5rKfSMxxiub4t-xUM7aXl0hP_fHc3dzkPWxB8C2R2SWZndmZ2Zn8D8LaoeGElp4kznjohyLBEcYOSVCrNncFXuSWh2URelsXZGZ9swfvVXZgOH6I_cPOaEfZrr-D2ylRHa9RQ2chDZ7B4cQcGhHLm1HJw_G10Ol6D7rKARuBTbQnNMFkhC6XoqB-8YY8GnrW_fH2kbB2Lqq63xU3O5981lH_6tsE4jR783289hPtLpzQedlL0CLZs8xh2vi7T7k-ADmcurq9NXM9CU6O4buJZfWHivvgo9rct67k_aozbhfIHu-1TOB19_P7hc7Lst5BoSty-h02FNLeZkgVXmjLLnYE3mDDFKbKcGUsqQyXOZEakVTnWMnMBmFLauDASY_wMtpvLxu5CrAtTIGNZllWcUMxlVTFD8lQVVUoMshEcrLgu9BKM3PfEuBAdjDISjg0isCGCNz3pVYfAcRPRu7B0PYWcn_uStZyKaflJjCcn0xJNmXCEextr2w9w09AcURTB_mqxhdM0nz6Rjb1ctMK5Sog6b_d2CubbgFGKI3jeCcf6gznJKcvTCPINsekJPMr35pum_hHQvn1MXPiRB0FsbueBGJbD8PDi30n3YWdyPBLjL-XJS7jXZcp8Mecr2L6eL-xruKt_XtftfG-pWr8B6d4nBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyloid+imaging+in+mild+cognitive+impairment+subtypes&rft.jtitle=Annals+of+neurology&rft.au=Wolk%2C+David+A.&rft.au=Price%2C+Julie+C.&rft.au=Saxton%2C+Judy+A.&rft.au=Snitz%2C+Beth+E.&rft.date=2009-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=65&rft.issue=5&rft.spage=557&rft.epage=568&rft_id=info:doi/10.1002%2Fana.21598&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LPKWN2W6_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |