KAMO: towards automated data processing for microcrystals

In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta crystallographica. Section D, Structural biology Ročník 74; číslo 5; s. 441 - 449
Hlavní autoři: Yamashita, Keitaro, Hirata, Kunio, Yamamoto, Masaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.05.2018
Témata:
ISSN:2059-7983, 2059-7983
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection‐intensity set. However, data processing of multiple small‐wedge data sets is challenging. Here, a new open‐source data‐processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data‐processing tasks in the case of multiple small‐wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit‐cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real‐world data sets collected from hundreds of crystals, it was demonstrated that merged structure‐factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. An automated data‐processing pipeline for protein microcrystals is presented. The processing of multiple small‐wedge data sets was made dramatically easier by this pipeline.
AbstractList In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO , which utilizes existing programs, including the XDS and CCP 4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO , which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
An automated data-processing pipeline for protein microcrystals is presented. The processing of multiple small-wedge data sets was made dramatically easier by this pipeline. In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection‐intensity set. However, data processing of multiple small‐wedge data sets is challenging. Here, a new open‐source data‐processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data‐processing tasks in the case of multiple small‐wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit‐cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real‐world data sets collected from hundreds of crystals, it was demonstrated that merged structure‐factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. An automated data‐processing pipeline for protein microcrystals is presented. The processing of multiple small‐wedge data sets was made dramatically easier by this pipeline.
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
Author Yamashita, Keitaro
Hirata, Kunio
Yamamoto, Masaki
Author_xml – sequence: 1
  givenname: Keitaro
  surname: Yamashita
  fullname: Yamashita, Keitaro
– sequence: 2
  givenname: Kunio
  surname: Hirata
  fullname: Hirata, Kunio
– sequence: 3
  givenname: Masaki
  surname: Yamamoto
  fullname: Yamamoto, Masaki
  email: yamamoto@riken.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29717715$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtLAzEQDlLx2R_gRfbopZpsks3Gg1B8Y8WDingK0ySrkd1NTVKl_94tVfEBeprhm-8xzKyjXutbi9AWwbuEYLF3nWMuhSwpKTFmXBRLaG0ODeZY70u_ivoxPmGMSUEFoWwFreZSECEIX0PyYnh5tZ8l_wrBxAymyTeQrMkMJMgmwWsbo2sfssqHrHG6A8IsJqjjJlquumL773UD3Z4c3xyeDUZXp-eHw9FAc0bFYAycGg5QYhCMS1aVoqhsgTkUhmBNqSg15yYXuqQFz2UlLNeGSV7kDCgzdAMdLHwn03FjjbZtClCrSXANhJny4NT3Sese1YN_UVxSTDnpDHbeDYJ_ntqYVOOitnUNrfXTqHJMKS1zJnBH3f6a9Rnyca-OQBaE7hAxBlt9UghW87eoX2_pNOKHRrsEyfn5uq7-UykXyldX29n_UWp4f5TfDTkhgr4Bb26fsQ
CitedBy_id crossref_primary_10_1107_S1600577525000177
crossref_primary_10_1016_j_bbrc_2022_03_028
crossref_primary_10_1038_s41589_018_0171_8
crossref_primary_10_1038_s41467_020_14934_5
crossref_primary_10_1038_s41467_021_25973_x
crossref_primary_10_1002_pro_5185
crossref_primary_10_1038_s41467_025_59795_y
crossref_primary_10_1073_pnas_2413465122
crossref_primary_10_1007_s11427_023_2459_8
crossref_primary_10_1016_j_cell_2020_08_015
crossref_primary_10_1002_pro_4775
crossref_primary_10_1107_S2052252521008423
crossref_primary_10_1038_s42003_021_02885_6
crossref_primary_10_1074_jbc_RA120_014144
crossref_primary_10_1038_s42003_019_0482_7
crossref_primary_10_1016_j_str_2024_02_009
crossref_primary_10_1016_j_str_2023_12_001
crossref_primary_10_1038_s41467_022_30326_3
crossref_primary_10_1038_s41467_023_38188_z
crossref_primary_10_1038_s41467_020_19376_7
crossref_primary_10_1016_j_bbrc_2018_09_043
crossref_primary_10_1038_s42003_021_01666_5
crossref_primary_10_1016_j_bbrc_2024_150080
crossref_primary_10_1038_s41593_021_00971_w
crossref_primary_10_1038_s42004_025_01440_2
crossref_primary_10_1107_S2053230X2000076X
crossref_primary_10_1038_s41929_022_00822_2
crossref_primary_10_1016_j_bbrc_2024_151177
crossref_primary_10_1038_s41594_018_0079_8
crossref_primary_10_1107_S2059798321013425
crossref_primary_10_1124_molpharm_122_000633
crossref_primary_10_1093_jb_mvaf028
crossref_primary_10_1038_s41598_020_73606_y
crossref_primary_10_1038_s41598_023_29195_7
crossref_primary_10_1107_S205225251800996X
crossref_primary_10_1093_bbb_zbaf015
crossref_primary_10_1093_bbb_zbaf096
crossref_primary_10_1038_s41467_024_47588_8
crossref_primary_10_1038_s42003_024_06422_z
crossref_primary_10_1002_prot_26473
crossref_primary_10_1107_S2059798318017795
crossref_primary_10_1038_s41598_022_19681_9
crossref_primary_10_1107_S1600577525001407
crossref_primary_10_1038_s41467_020_14687_1
crossref_primary_10_1107_S2059798322000870
crossref_primary_10_1093_glycob_cwae015
crossref_primary_10_5940_jcrsj_67_88
crossref_primary_10_1038_s42003_021_02473_8
crossref_primary_10_1107_S2059798322004399
crossref_primary_10_1038_s41589_018_0152_y
crossref_primary_10_1093_bulcsj_uoaf059
crossref_primary_10_1038_s41586_019_1604_6
crossref_primary_10_1107_S2053230X22005283
crossref_primary_10_1107_S2059798323007039
crossref_primary_10_1107_S1600577518016570
crossref_primary_10_1002_cctc_202401641
crossref_primary_10_1002_sstr_202400680
crossref_primary_10_1107_S2052252519002756
crossref_primary_10_1016_S0021_9258_17_49934_0
crossref_primary_10_1038_s42003_018_0121_8
crossref_primary_10_1093_nar_gky621
crossref_primary_10_26508_lsa_202101149
crossref_primary_10_1107_S160057751900434X
crossref_primary_10_1093_ismejo_wrae175
crossref_primary_10_1038_s41564_025_02016_5
crossref_primary_10_1038_s41467_023_39807_5
crossref_primary_10_1016_j_str_2019_12_003
crossref_primary_10_1039_D1RA06888A
crossref_primary_10_1063_1_5128498
crossref_primary_10_1073_pnas_2205664119
crossref_primary_10_1016_j_bbrc_2019_04_062
crossref_primary_10_1016_j_bbrc_2020_06_124
crossref_primary_10_1038_s41557_020_0525_1
crossref_primary_10_1584_jpestics_W23_36
crossref_primary_10_1038_s41467_025_59908_7
crossref_primary_10_1002_1873_3468_70095
crossref_primary_10_1038_s41467_022_32793_0
crossref_primary_10_1002_pro_4744
crossref_primary_10_1107_S1600577521008067
crossref_primary_10_1126_science_add7795
crossref_primary_10_1007_s10989_024_10651_5
crossref_primary_10_1107_S2052252519004536
crossref_primary_10_1107_S2053230X22006422
crossref_primary_10_1038_s42003_021_02575_3
crossref_primary_10_1038_s41467_020_17554_1
crossref_primary_10_1073_pnas_1914446116
crossref_primary_10_1002_1873_3468_70135
crossref_primary_10_1038_s41467_025_60940_w
crossref_primary_10_1107_S2059798324011987
crossref_primary_10_1107_S1600577525000657
crossref_primary_10_1016_j_bbrc_2024_150749
crossref_primary_10_1038_s41477_019_0367_2
crossref_primary_10_1038_s41586_023_05774_6
crossref_primary_10_1016_j_abb_2024_110160
crossref_primary_10_1038_s41557_023_01162_9
crossref_primary_10_1107_S2053230X23009123
crossref_primary_10_1002_pro_4331
crossref_primary_10_1038_s41467_021_26024_1
crossref_primary_10_1016_j_bbrc_2019_12_091
crossref_primary_10_1038_s41589_018_0131_3
crossref_primary_10_1016_j_jmb_2025_169328
crossref_primary_10_1038_s42003_021_02767_x
crossref_primary_10_1002_2211_5463_12837
crossref_primary_10_1038_s41586_018_0511_6
crossref_primary_10_1038_s41594_018_0180_z
crossref_primary_10_1016_j_cell_2019_04_021
crossref_primary_10_1016_j_cell_2024_02_034
crossref_primary_10_1002_2211_5463_13808
crossref_primary_10_1016_j_str_2022_11_001
crossref_primary_10_1073_pnas_2501933122
crossref_primary_10_1073_pnas_2016328118
crossref_primary_10_1073_pnas_2207965119
crossref_primary_10_1039_D0SC02117B
crossref_primary_10_1021_jacs_5c06360
crossref_primary_10_1038_s41467_023_39987_0
crossref_primary_10_1088_1742_6596_3010_1_012082
crossref_primary_10_1002_1873_3468_14136
crossref_primary_10_1016_j_jsb_2020_107549
crossref_primary_10_1016_j_bbrc_2020_07_071
crossref_primary_10_1016_j_str_2025_03_003
crossref_primary_10_1038_s41467_023_36883_5
crossref_primary_10_1038_s41422_020_00424_2
crossref_primary_10_1038_s41467_024_47653_2
crossref_primary_10_1038_s42003_022_03555_x
crossref_primary_10_7554_eLife_77877
crossref_primary_10_1002_prot_26666
crossref_primary_10_1002_pro_70018
crossref_primary_10_1002_1873_3468_70076
crossref_primary_10_1107_S1600576722002758
crossref_primary_10_1038_s41467_018_07094_0
crossref_primary_10_1038_s41586_018_0504_5
crossref_primary_10_1016_j_ijbiomac_2024_136597
crossref_primary_10_1093_jb_mvad048
crossref_primary_10_1107_S2059798325004589
crossref_primary_10_3390_ijms231810399
crossref_primary_10_1107_S2053230X19003546
crossref_primary_10_1016_j_abb_2024_110068
crossref_primary_10_1016_j_bbrc_2022_01_053
crossref_primary_10_1107_S2053230X20016829
crossref_primary_10_1007_s44211_025_00767_z
crossref_primary_10_1002_1873_3468_14302
crossref_primary_10_1002_prot_26034
crossref_primary_10_1038_s41467_023_37808_y
crossref_primary_10_1016_j_bbrc_2020_05_195
crossref_primary_10_1016_j_bbrc_2020_05_094
crossref_primary_10_1107_S2052252522001907
crossref_primary_10_1002_prot_25988
crossref_primary_10_1021_acs_jmedchem_4c03092
crossref_primary_10_1038_s41598_020_62427_8
crossref_primary_10_1002_ange_202501025
crossref_primary_10_1371_journal_pbio_3002601
crossref_primary_10_1126_science_aaw8981
crossref_primary_10_1038_s41598_025_94981_4
crossref_primary_10_1073_pnas_2017749118
crossref_primary_10_1038_s41467_023_43443_4
crossref_primary_10_1038_s41467_023_44630_z
crossref_primary_10_1038_s41467_020_15459_7
crossref_primary_10_1038_s41467_018_06421_9
crossref_primary_10_3390_cryst14121012
crossref_primary_10_1038_s41598_020_68355_x
crossref_primary_10_1074_jbc_RA119_011431
crossref_primary_10_1107_S2053230X1801840X
crossref_primary_10_1111_febs_16392
crossref_primary_10_1111_gtc_13080
crossref_primary_10_1016_j_str_2022_07_008
crossref_primary_10_1093_nar_gkab1302
crossref_primary_10_5940_jcrsj_67_164
crossref_primary_10_1002_anie_202501025
crossref_primary_10_1038_s41586_024_07924_w
crossref_primary_10_1038_s41598_024_65627_8
crossref_primary_10_1016_j_molcel_2022_08_001
crossref_primary_10_1073_pnas_2322452121
crossref_primary_10_1038_s41467_024_52235_3
crossref_primary_10_1107_S160057671901673X
crossref_primary_10_1002_anie_202403485
crossref_primary_10_1128_AEM_02438_20
crossref_primary_10_1002_ange_202403485
crossref_primary_10_1016_j_ejphar_2023_175962
crossref_primary_10_1016_j_str_2022_05_008
crossref_primary_10_1093_bbb_zbac169
crossref_primary_10_1126_science_abl8615
crossref_primary_10_1002_1873_3468_14046
crossref_primary_10_1016_j_jbc_2025_108507
crossref_primary_10_1107_S2052252525006062
crossref_primary_10_3389_fmolb_2020_612226
crossref_primary_10_1093_nar_gkaf212
crossref_primary_10_1002_2211_5463_13476
crossref_primary_10_1016_j_str_2023_09_007
Cites_doi 10.1107/S0907444909038360
10.1107/S1399004715005210
10.1107/S2059798315021683
10.1007/s00357-014-9161-z
10.1107/S090744491003982X
10.1038/nature23448
10.1107/S205225251402702X
10.1107/S0907444902016657
10.1107/S0907444913012274
10.1107/S1600576714011996
10.1107/S0907444910014836
10.1107/S1399004715017927
10.1107/S2053230X14026843
10.1107/S0021889811041768
10.1107/S0907444909047337
10.1016/j.str.2017.11.005
10.1016/j.sbi.2015.08.003
10.1038/s41467-017-01541-0
10.1038/s41477-017-0022-8
10.1007/978-0-387-98141-3
10.1107/S0021889809045701
10.1107/S2059798317000699
10.1107/S2059798316012079
10.1073/pnas.1111325108
10.1038/nsmb.3450
10.1107/S1399004714013534
10.1107/S0907444913000061
10.1016/j.abb.2016.03.021
10.1021/acsnano.6b06099
10.1107/S1399004714017556
10.1107/S1600576716005471
10.1107/S2059798315024110
10.1038/290107a0
10.1038/nature05628
10.1107/S0907444910045749
10.1107/S2052252517008193
10.1107/S1399004713025431
10.1107/S2059798317017235
10.1107/S0909049505004735
10.1038/1325
10.1107/S0907444912006841
10.1107/S0021889801017824
10.1107/S0907444909052925
10.1080/0889311X.2010.527964
10.1107/S0907444911007773
10.1016/j.sbi.2012.09.001
ContentType Journal Article
Copyright Yamashita et al. 2018
open access.
Yamashita et al. 2018 2018
Copyright_xml – notice: Yamashita et al. 2018
– notice: open access.
– notice: Yamashita et al. 2018 2018
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1107/S2059798318004576
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate KAMO
EISSN 2059-7983
EndPage 449
ExternalDocumentID PMC5930351
29717715
10_1107_S2059798318004576
AYD2WA5117
Genre article
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 15H06862
– fundername: Japan Agency for Medical Research and Development
GroupedDBID 1OC
24P
53G
5VS
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BMXJE
DCZOG
DRFUL
DRSTM
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RCJ
SUPJJ
WIH
WIK
AAYXX
ABJNI
AGHNM
AGYGG
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5437-ba53d5aa80a74594f876fe605a6d10c3378c55d27c836529f7e5cd495624a34d3
IEDL.DBID 24P
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431248900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2059-7983
IngestDate Tue Nov 04 02:02:04 EST 2025
Thu Oct 02 16:27:17 EDT 2025
Wed Feb 19 02:32:33 EST 2025
Sat Nov 29 05:02:24 EST 2025
Tue Nov 18 21:08:36 EST 2025
Wed Jan 22 16:20:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords small-wedge data sets
microcrystals
KAMO
automatic data processing
Language English
License Attribution
open access.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5437-ba53d5aa80a74594f876fe605a6d10c3378c55d27c836529f7e5cd495624a34d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1311-1768
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2059798318004576
PMID 29717715
PQID 2033382470
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5930351
proquest_miscellaneous_2033382470
pubmed_primary_29717715
crossref_primary_10_1107_S2059798318004576
crossref_citationtrail_10_1107_S2059798318004576
wiley_primary_10_1107_S2059798318004576_AYD2WA5117
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
PublicationTitle Acta crystallographica. Section D, Structural biology
PublicationTitleAlternate Acta Crystallogr D Struct Biol
PublicationYear 2018
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Olieric (wa5117_bb29) 2016; 72
Suno (wa5117_bb37) 2017; 26
wa5117_bb19
Winter (wa5117_bb43) 2018; 74
wa5117_bb52
Diederichs (wa5117_bb10) 2010; 66
Evans (wa5117_bb13) 2011; 67
Ueno (wa5117_bb41) 2005; 12
wa5117_bb50
wa5117_bb51
Diederichs (wa5117_bb11) 2017; 73
Coulibaly (wa5117_bb8) 2007; 446
Yamamoto (wa5117_bb47) 2017; 4
Huang (wa5117_bb22) 2015; 71
Kabsch (wa5117_bb24) 2014; 70
Sheldrick (wa5117_bb34) 2010; 66
Cusack (wa5117_bb9) 1998; 5
Hendrickson (wa5117_bb20) 1981; 290
Evans (wa5117_bb12) 2011; 17
Kabsch (wa5117_bb23) 2010; 66
wa5117_bb44
Winn (wa5117_bb45) 2011; 67
wa5117_bb40
Murtagh (wa5117_bb28) 2014; 31
Zander (wa5117_bb48) 2015; 71
Taniguchi (wa5117_bb38) 2017; 548
Parkhurst (wa5117_bb31) 2014; 47
Vonrhein (wa5117_bb42) 2011; 67
Adams (wa5117_bb2) 2010; 66
Abe (wa5117_bb1) 2017; 11
Caffrey (wa5117_bb7) 2015; 71
Owen (wa5117_bb30) 2016; 602
Adams (wa5117_bb3) 2002; 58
Lee (wa5117_bb25) 2017; 3
Giordano (wa5117_bb17) 2012; 68
Huang (wa5117_bb21) 2016; 72
Akey (wa5117_bb4) 2014; 70
wa5117_bb32
Assmann (wa5117_bb5) 2016; 49
Liu (wa5117_bb26) 2015; 34
Thorn (wa5117_bb39) 2011; 44
Evans (wa5117_bb14) 2013; 69
Fraser (wa5117_bb16) 2011; 108
Schlichting (wa5117_bb33) 2015; 2
Winter (wa5117_bb46) 2010; 43
Miyauchi (wa5117_bb27) 2017; 8
Grosse-Kunstleve (wa5117_bb18) 2002; 35
Shihoya (wa5117_bb35) 2017; 24
Brehm (wa5117_bb6) 2014; 70
Smith (wa5117_bb36) 2012; 22
Zander (wa5117_bb49) 2016; 72
Foadi (wa5117_bb15) 2013; 69
References_xml – volume: 66
  start-page: 479
  year: 2010
  ident: wa5117_bb34
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909038360
– volume: 71
  start-page: 1238
  year: 2015
  ident: wa5117_bb22
  publication-title: Acta Cryst. D
  doi: 10.1107/S1399004715005210
– volume: 72
  start-page: 93
  year: 2016
  ident: wa5117_bb21
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798315021683
– ident: wa5117_bb40
– ident: wa5117_bb50
– volume: 31
  start-page: 274
  year: 2014
  ident: wa5117_bb28
  publication-title: J. Classif.
  doi: 10.1007/s00357-014-9161-z
– volume: 67
  start-page: 282
  year: 2011
  ident: wa5117_bb13
  publication-title: Acta Cryst. D
  doi: 10.1107/S090744491003982X
– volume: 548
  start-page: 356
  year: 2017
  ident: wa5117_bb38
  publication-title: Nature (London)
  doi: 10.1038/nature23448
– volume: 2
  start-page: 246
  year: 2015
  ident: wa5117_bb33
  publication-title: IUCrJ
  doi: 10.1107/S205225251402702X
– volume: 58
  start-page: 1948
  year: 2002
  ident: wa5117_bb3
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444902016657
– volume: 69
  start-page: 1617
  year: 2013
  ident: wa5117_bb15
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444913012274
– volume: 47
  start-page: 1459
  year: 2014
  ident: wa5117_bb31
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576714011996
– volume: 66
  start-page: 733
  year: 2010
  ident: wa5117_bb10
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910014836
– ident: wa5117_bb19
– volume: 71
  start-page: 2328
  year: 2015
  ident: wa5117_bb48
  publication-title: Acta Cryst. D
  doi: 10.1107/S1399004715017927
– volume: 71
  start-page: 3
  year: 2015
  ident: wa5117_bb7
  publication-title: Acta Cryst. F
  doi: 10.1107/S2053230X14026843
– volume: 44
  start-page: 1285
  year: 2011
  ident: wa5117_bb39
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889811041768
– volume: 66
  start-page: 125
  year: 2010
  ident: wa5117_bb23
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909047337
– ident: wa5117_bb32
– volume: 26
  start-page: 7
  year: 2017
  ident: wa5117_bb37
  publication-title: Structure
  doi: 10.1016/j.str.2017.11.005
– volume: 34
  start-page: 99
  year: 2015
  ident: wa5117_bb26
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.08.003
– volume: 8
  start-page: 1633
  year: 2017
  ident: wa5117_bb27
  publication-title: Nature Commun.
  doi: 10.1038/s41467-017-01541-0
– volume: 3
  start-page: 825
  year: 2017
  ident: wa5117_bb25
  publication-title: Nature Plants
  doi: 10.1038/s41477-017-0022-8
– ident: wa5117_bb44
  doi: 10.1007/978-0-387-98141-3
– volume: 43
  start-page: 186
  year: 2010
  ident: wa5117_bb46
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889809045701
– volume: 73
  start-page: 286
  year: 2017
  ident: wa5117_bb11
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798317000699
– volume: 72
  start-page: 1026
  year: 2016
  ident: wa5117_bb49
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798316012079
– volume: 108
  start-page: 16247
  year: 2011
  ident: wa5117_bb16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1111325108
– volume: 24
  start-page: 758
  year: 2017
  ident: wa5117_bb35
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.3450
– volume: 70
  start-page: 2204
  year: 2014
  ident: wa5117_bb24
  publication-title: Acta Cryst. D
  doi: 10.1107/S1399004714013534
– volume: 69
  start-page: 1204
  year: 2013
  ident: wa5117_bb14
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444913000061
– ident: wa5117_bb52
– volume: 602
  start-page: 21
  year: 2016
  ident: wa5117_bb30
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.03.021
– volume: 11
  start-page: 2410
  year: 2017
  ident: wa5117_bb1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06099
– volume: 70
  start-page: 2719
  year: 2014
  ident: wa5117_bb4
  publication-title: Acta Cryst. D
  doi: 10.1107/S1399004714017556
– volume: 49
  start-page: 1021
  year: 2016
  ident: wa5117_bb5
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576716005471
– volume: 72
  start-page: 421
  year: 2016
  ident: wa5117_bb29
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798315024110
– volume: 290
  start-page: 107
  year: 1981
  ident: wa5117_bb20
  publication-title: Nature (London)
  doi: 10.1038/290107a0
– volume: 446
  start-page: 97
  year: 2007
  ident: wa5117_bb8
  publication-title: Nature (London)
  doi: 10.1038/nature05628
– volume: 67
  start-page: 235
  year: 2011
  ident: wa5117_bb45
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910045749
– volume: 4
  start-page: 529
  year: 2017
  ident: wa5117_bb47
  publication-title: IUCrJ
  doi: 10.1107/S2052252517008193
– volume: 70
  start-page: 101
  year: 2014
  ident: wa5117_bb6
  publication-title: Acta Cryst. D
  doi: 10.1107/S1399004713025431
– volume: 74
  start-page: 85
  year: 2018
  ident: wa5117_bb43
  publication-title: Acta Cryst. D
  doi: 10.1107/S2059798317017235
– volume: 12
  start-page: 380
  year: 2005
  ident: wa5117_bb41
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049505004735
– volume: 5
  start-page: 634
  year: 1998
  ident: wa5117_bb9
  publication-title: Nature Struct. Biol.
  doi: 10.1038/1325
– volume: 68
  start-page: 649
  year: 2012
  ident: wa5117_bb17
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444912006841
– volume: 35
  start-page: 126
  year: 2002
  ident: wa5117_bb18
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889801017824
– volume: 66
  start-page: 213
  year: 2010
  ident: wa5117_bb2
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909052925
– ident: wa5117_bb51
– volume: 17
  start-page: 105
  year: 2011
  ident: wa5117_bb12
  publication-title: Crystallogr. Rev.
  doi: 10.1080/0889311X.2010.527964
– volume: 67
  start-page: 293
  year: 2011
  ident: wa5117_bb42
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444911007773
– volume: 22
  start-page: 602
  year: 2012
  ident: wa5117_bb36
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2012.09.001
SSID ssj0001637134
Score 2.6242979
Snippet In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic...
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic...
An automated data-processing pipeline for protein microcrystals is presented. The processing of multiple small-wedge data sets was made dramatically easier by...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 441
SubjectTerms automatic data processing
Cluster Analysis
Crystallography, X-Ray - methods
Data Collection - methods
Datasets as Topic
Electronic Data Processing - methods
Humans
KAMO
microcrystals
Proteins - chemistry
Research Papers
small‐wedge data sets
Software
Viral Proteins - chemistry
Title KAMO: towards automated data processing for microcrystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2059798318004576
https://www.ncbi.nlm.nih.gov/pubmed/29717715
https://www.proquest.com/docview/2033382470
https://pubmed.ncbi.nlm.nih.gov/PMC5930351
Volume 74
WOSCitedRecordID wos000431248900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2059-7983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637134
  issn: 2059-7983
  databaseCode: DRFUL
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6tg_bw9Z26-ZtLR70qWBmS9bX3kKzMGiaha2h2ZORZZkWUifkY7D_fifZyRICLYy--MW6w9bppN_pTj8BnBXMkhKnxCgpOXcBio5ypXnkiFVw-dEsKTy7flf0enI4VP0duFiehan5IVYbbs4z_HztHFznzS0kPq__kyAyEErioHS4RPBnsJckVLr7G0ja_7fRwqmos8tOIHISTXYT9Xze0rK5Pm2Bzu3ayXVM6xelzqsn-Z0DeNlg0rBVD6JD2LHVEbxYYyp8DeqydfX9Szj3RbazUC_mY4S6tghdhWk4qU8bYMsQMXB474r8zPQPAs_R7A0MOl-vL75Fza0LkWEpFVGuGS2Y1jLWImUqLXG-LC1GPZoXSWwoFdIwVhBhJOWMqFJYZgoXZ5FU07Sgx7BbjSv7DkKtqOGohFqfH0xkyYlQudQ5oTznJIB42deZaSjJ3c0Yo8yHJrHItnolgPOVyKTm43io8aelATP0GpcK0ZUdL2YZiSnG5iQVcQBva4Ou1BGFIa5IWABiw9SrBo6Re_NNdXfrmbmZoi4zGwDxpn78C7PWrza5aSHqFe__R-gDPEcEJ-sKzI-wO58u7Ansm9_zu9n01DsCPsVQnsJe-0dn0P0Ls0wDYw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED6ydrD2Yd3WtfXWdR7sqWBqS5Zk7S2sKyn50cAylj4ZWZZZIXVCnAz23-8kJ2lCYIWyZ-sO26fTfac7fQL4nDNDClwSg6jg3CYoKsik4oElVsHwo1iUO3b9juj1kuFQ9htwuTwLU_NDrDbcrGe49do6uN2Qrr3cFfa_E4QGQiY4Ky0wEfwZ7MYYbexsJ3H_YaeFU1GXl61AYCUW5U3Uc7GlZTNAbaHO7ebJdVDrotLVwf_5nlfwcoFK_WY9jV5Dw5RvYH-Nq_AQZLvZvfniz1ybbeWr-WyMYNfkvu0x9Sf1eQMc6SMK9u9tm5-e_kHoOarewo-rb4OvrWBx70KgWUxFkClGc6ZUEioRMxkXuGIWBvMexfMo1JSKRDOWE6ETyhmRhTBM5zbTIrGicU6PYKccl-YEfCWp5qiEGlchjJKCEyGzRGWE8owTD8Llz071gpTc3o0xSl1yEop06694cL4SmdSMHP8a_GlpwRT9xhZDVGnG8yolIcXsnMQi9OC4tuhKHZGY5IqIeSA2bL0aYDm5N5-Ud78cNzeT1NZmPSDO1o-_Ydq8vSQ_m4h7xbunCH2EF61Bt5N2rnvt97CHeC6p-zFPYWc2nZsP8Fz_nt1V0zPnFX8BBbEExg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xgiZ42NjGR8YGQdrTpIjEju2Yt4pSbaJ0CIbGniLHdgQSpFU_Ju2_5-ykharSJk17ju_k-Hz273znnwE-GWZJiUtilJScuwBFRYVUPHLEKrj9KJYYz67fE_1-dnMjL1agM7sLU_NDzA_cnGf49do5uB2asvZyn9i_IggNhMxwVjpgIvgLWE3dYzItWO1cdq97T2ctnIo6wexEIifTJDhR09GSnsUtagl3LpdPPoe1fl_qvv4_f7QJrxpcGrbrifQGVmz1FjaesRW-A3nWPv92HE58oe04VNPJAOGuNaGrMg2H9Y0DbBkiDg4fXKGfHv1G8Hk_3oLr7un3ky9R8_JCpFlKRVQoRg1TKouVwCFNS1wzS4uRj-ImiTWlItOMGSJ0RjkjshSWaeNiLZIqmhq6Da1qUNldCJWkmqMSan2OMMlKToQsMlUQygtOAohng53rhpbcvY5xn_vwJBb50qgE8HkuMqw5Of7U-HBmwRw9x6VDVGUH03FOYorxOUlFHMBObdG5OiIxzBUJC0As2HrewLFyL36p7m49OzeT1GVnAyDe1n_vYd7-2SE_2oh8xft_ETqAlxedbt772j_bg3UEdFldkPkBWpPR1H6ENf1rcjce7Tdu8Qhh2gXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KAMO+%3A+towards+automated+data+processing+for+microcrystals&rft.jtitle=Acta+crystallographica.+Section+D%2C+Structural+biology&rft.au=Yamashita%2C+Keitaro&rft.au=Hirata%2C+Kunio&rft.au=Yamamoto%2C+Masaki&rft.date=2018-05-01&rft.issn=2059-7983&rft.eissn=2059-7983&rft.volume=74&rft.issue=5&rft.spage=441&rft.epage=449&rft_id=info:doi/10.1107%2FS2059798318004576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S2059798318004576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-7983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-7983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-7983&client=summon