KAMO: towards automated data processing for microcrystals
In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can t...
Uložené v:
| Vydané v: | Acta crystallographica. Section D, Structural biology Ročník 74; číslo 5; s. 441 - 449 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.05.2018
|
| Predmet: | |
| ISSN: | 2059-7983, 2059-7983 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection‐intensity set. However, data processing of multiple small‐wedge data sets is challenging. Here, a new open‐source data‐processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data‐processing tasks in the case of multiple small‐wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit‐cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real‐world data sets collected from hundreds of crystals, it was demonstrated that merged structure‐factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
An automated data‐processing pipeline for protein microcrystals is presented. The processing of multiple small‐wedge data sets was made dramatically easier by this pipeline. |
|---|---|
| AbstractList | In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline,
KAMO
, which utilizes existing programs, including the
XDS
and
CCP
4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly,
KAMO
processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using
KAMO
, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. An automated data-processing pipeline for protein microcrystals is presented. The processing of multiple small-wedge data sets was made dramatically easier by this pipeline. In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5–10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection‐intensity set. However, data processing of multiple small‐wedge data sets is challenging. Here, a new open‐source data‐processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data‐processing tasks in the case of multiple small‐wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit‐cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real‐world data sets collected from hundreds of crystals, it was demonstrated that merged structure‐factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. An automated data‐processing pipeline for protein microcrystals is presented. The processing of multiple small‐wedge data sets was made dramatically easier by this pipeline. In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. |
| Author | Yamashita, Keitaro Hirata, Kunio Yamamoto, Masaki |
| Author_xml | – sequence: 1 givenname: Keitaro surname: Yamashita fullname: Yamashita, Keitaro – sequence: 2 givenname: Kunio surname: Hirata fullname: Hirata, Kunio – sequence: 3 givenname: Masaki surname: Yamamoto fullname: Yamamoto, Masaki email: yamamoto@riken.jp |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29717715$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtLAzEQDlLx2R_gRfbopZpsks3Gg1B8Y8WDingK0ySrkd1NTVKl_94tVfEBeprhm-8xzKyjXutbi9AWwbuEYLF3nWMuhSwpKTFmXBRLaG0ODeZY70u_ivoxPmGMSUEFoWwFreZSECEIX0PyYnh5tZ8l_wrBxAymyTeQrMkMJMgmwWsbo2sfssqHrHG6A8IsJqjjJlquumL773UD3Z4c3xyeDUZXp-eHw9FAc0bFYAycGg5QYhCMS1aVoqhsgTkUhmBNqSg15yYXuqQFz2UlLNeGSV7kDCgzdAMdLHwn03FjjbZtClCrSXANhJny4NT3Sese1YN_UVxSTDnpDHbeDYJ_ntqYVOOitnUNrfXTqHJMKS1zJnBH3f6a9Rnyca-OQBaE7hAxBlt9UghW87eoX2_pNOKHRrsEyfn5uq7-UykXyldX29n_UWp4f5TfDTkhgr4Bb26fsQ |
| CitedBy_id | crossref_primary_10_1107_S1600577525000177 crossref_primary_10_1016_j_bbrc_2022_03_028 crossref_primary_10_1038_s41589_018_0171_8 crossref_primary_10_1038_s41467_020_14934_5 crossref_primary_10_1038_s41467_021_25973_x crossref_primary_10_1002_pro_5185 crossref_primary_10_1038_s41467_025_59795_y crossref_primary_10_1073_pnas_2413465122 crossref_primary_10_1007_s11427_023_2459_8 crossref_primary_10_1016_j_cell_2020_08_015 crossref_primary_10_1002_pro_4775 crossref_primary_10_1107_S2052252521008423 crossref_primary_10_1038_s42003_021_02885_6 crossref_primary_10_1074_jbc_RA120_014144 crossref_primary_10_1038_s42003_019_0482_7 crossref_primary_10_1016_j_str_2024_02_009 crossref_primary_10_1016_j_str_2023_12_001 crossref_primary_10_1038_s41467_022_30326_3 crossref_primary_10_1038_s41467_023_38188_z crossref_primary_10_1038_s41467_020_19376_7 crossref_primary_10_1016_j_bbrc_2018_09_043 crossref_primary_10_1038_s42003_021_01666_5 crossref_primary_10_1016_j_bbrc_2024_150080 crossref_primary_10_1038_s41593_021_00971_w crossref_primary_10_1038_s42004_025_01440_2 crossref_primary_10_1107_S2053230X2000076X crossref_primary_10_1038_s41929_022_00822_2 crossref_primary_10_1016_j_bbrc_2024_151177 crossref_primary_10_1038_s41594_018_0079_8 crossref_primary_10_1107_S2059798321013425 crossref_primary_10_1124_molpharm_122_000633 crossref_primary_10_1093_jb_mvaf028 crossref_primary_10_1038_s41598_020_73606_y crossref_primary_10_1038_s41598_023_29195_7 crossref_primary_10_1107_S205225251800996X crossref_primary_10_1093_bbb_zbaf015 crossref_primary_10_1093_bbb_zbaf096 crossref_primary_10_1038_s41467_024_47588_8 crossref_primary_10_1038_s42003_024_06422_z crossref_primary_10_1002_prot_26473 crossref_primary_10_1107_S2059798318017795 crossref_primary_10_1038_s41598_022_19681_9 crossref_primary_10_1107_S1600577525001407 crossref_primary_10_1038_s41467_020_14687_1 crossref_primary_10_1107_S2059798322000870 crossref_primary_10_1093_glycob_cwae015 crossref_primary_10_5940_jcrsj_67_88 crossref_primary_10_1038_s42003_021_02473_8 crossref_primary_10_1107_S2059798322004399 crossref_primary_10_1038_s41589_018_0152_y crossref_primary_10_1093_bulcsj_uoaf059 crossref_primary_10_1038_s41586_019_1604_6 crossref_primary_10_1107_S2053230X22005283 crossref_primary_10_1107_S2059798323007039 crossref_primary_10_1107_S1600577518016570 crossref_primary_10_1002_cctc_202401641 crossref_primary_10_1002_sstr_202400680 crossref_primary_10_1107_S2052252519002756 crossref_primary_10_1016_S0021_9258_17_49934_0 crossref_primary_10_1038_s42003_018_0121_8 crossref_primary_10_1093_nar_gky621 crossref_primary_10_26508_lsa_202101149 crossref_primary_10_1107_S160057751900434X crossref_primary_10_1093_ismejo_wrae175 crossref_primary_10_1038_s41564_025_02016_5 crossref_primary_10_1038_s41467_023_39807_5 crossref_primary_10_1016_j_str_2019_12_003 crossref_primary_10_1039_D1RA06888A crossref_primary_10_1063_1_5128498 crossref_primary_10_1073_pnas_2205664119 crossref_primary_10_1016_j_bbrc_2019_04_062 crossref_primary_10_1016_j_bbrc_2020_06_124 crossref_primary_10_1038_s41557_020_0525_1 crossref_primary_10_1584_jpestics_W23_36 crossref_primary_10_1038_s41467_025_59908_7 crossref_primary_10_1002_1873_3468_70095 crossref_primary_10_1038_s41467_022_32793_0 crossref_primary_10_1002_pro_4744 crossref_primary_10_1107_S1600577521008067 crossref_primary_10_1126_science_add7795 crossref_primary_10_1007_s10989_024_10651_5 crossref_primary_10_1107_S2052252519004536 crossref_primary_10_1107_S2053230X22006422 crossref_primary_10_1038_s42003_021_02575_3 crossref_primary_10_1038_s41467_020_17554_1 crossref_primary_10_1073_pnas_1914446116 crossref_primary_10_1002_1873_3468_70135 crossref_primary_10_1038_s41467_025_60940_w crossref_primary_10_1107_S2059798324011987 crossref_primary_10_1107_S1600577525000657 crossref_primary_10_1016_j_bbrc_2024_150749 crossref_primary_10_1038_s41477_019_0367_2 crossref_primary_10_1038_s41586_023_05774_6 crossref_primary_10_1016_j_abb_2024_110160 crossref_primary_10_1038_s41557_023_01162_9 crossref_primary_10_1107_S2053230X23009123 crossref_primary_10_1002_pro_4331 crossref_primary_10_1038_s41467_021_26024_1 crossref_primary_10_1016_j_bbrc_2019_12_091 crossref_primary_10_1038_s41589_018_0131_3 crossref_primary_10_1016_j_jmb_2025_169328 crossref_primary_10_1038_s42003_021_02767_x crossref_primary_10_1002_2211_5463_12837 crossref_primary_10_1038_s41586_018_0511_6 crossref_primary_10_1038_s41594_018_0180_z crossref_primary_10_1016_j_cell_2019_04_021 crossref_primary_10_1016_j_cell_2024_02_034 crossref_primary_10_1002_2211_5463_13808 crossref_primary_10_1016_j_str_2022_11_001 crossref_primary_10_1073_pnas_2501933122 crossref_primary_10_1073_pnas_2016328118 crossref_primary_10_1073_pnas_2207965119 crossref_primary_10_1039_D0SC02117B crossref_primary_10_1021_jacs_5c06360 crossref_primary_10_1038_s41467_023_39987_0 crossref_primary_10_1088_1742_6596_3010_1_012082 crossref_primary_10_1002_1873_3468_14136 crossref_primary_10_1016_j_jsb_2020_107549 crossref_primary_10_1016_j_bbrc_2020_07_071 crossref_primary_10_1016_j_str_2025_03_003 crossref_primary_10_1038_s41467_023_36883_5 crossref_primary_10_1038_s41422_020_00424_2 crossref_primary_10_1038_s41467_024_47653_2 crossref_primary_10_1038_s42003_022_03555_x crossref_primary_10_7554_eLife_77877 crossref_primary_10_1002_prot_26666 crossref_primary_10_1002_pro_70018 crossref_primary_10_1002_1873_3468_70076 crossref_primary_10_1107_S1600576722002758 crossref_primary_10_1038_s41467_018_07094_0 crossref_primary_10_1038_s41586_018_0504_5 crossref_primary_10_1016_j_ijbiomac_2024_136597 crossref_primary_10_1093_jb_mvad048 crossref_primary_10_1107_S2059798325004589 crossref_primary_10_3390_ijms231810399 crossref_primary_10_1107_S2053230X19003546 crossref_primary_10_1016_j_abb_2024_110068 crossref_primary_10_1016_j_bbrc_2022_01_053 crossref_primary_10_1107_S2053230X20016829 crossref_primary_10_1007_s44211_025_00767_z crossref_primary_10_1002_1873_3468_14302 crossref_primary_10_1002_prot_26034 crossref_primary_10_1038_s41467_023_37808_y crossref_primary_10_1016_j_bbrc_2020_05_195 crossref_primary_10_1016_j_bbrc_2020_05_094 crossref_primary_10_1107_S2052252522001907 crossref_primary_10_1002_prot_25988 crossref_primary_10_1021_acs_jmedchem_4c03092 crossref_primary_10_1038_s41598_020_62427_8 crossref_primary_10_1002_ange_202501025 crossref_primary_10_1371_journal_pbio_3002601 crossref_primary_10_1126_science_aaw8981 crossref_primary_10_1038_s41598_025_94981_4 crossref_primary_10_1073_pnas_2017749118 crossref_primary_10_1038_s41467_023_43443_4 crossref_primary_10_1038_s41467_023_44630_z crossref_primary_10_1038_s41467_020_15459_7 crossref_primary_10_1038_s41467_018_06421_9 crossref_primary_10_3390_cryst14121012 crossref_primary_10_1038_s41598_020_68355_x crossref_primary_10_1074_jbc_RA119_011431 crossref_primary_10_1107_S2053230X1801840X crossref_primary_10_1111_febs_16392 crossref_primary_10_1111_gtc_13080 crossref_primary_10_1016_j_str_2022_07_008 crossref_primary_10_1093_nar_gkab1302 crossref_primary_10_5940_jcrsj_67_164 crossref_primary_10_1002_anie_202501025 crossref_primary_10_1038_s41586_024_07924_w crossref_primary_10_1038_s41598_024_65627_8 crossref_primary_10_1016_j_molcel_2022_08_001 crossref_primary_10_1073_pnas_2322452121 crossref_primary_10_1038_s41467_024_52235_3 crossref_primary_10_1107_S160057671901673X crossref_primary_10_1002_anie_202403485 crossref_primary_10_1128_AEM_02438_20 crossref_primary_10_1002_ange_202403485 crossref_primary_10_1016_j_ejphar_2023_175962 crossref_primary_10_1016_j_str_2022_05_008 crossref_primary_10_1093_bbb_zbac169 crossref_primary_10_1126_science_abl8615 crossref_primary_10_1002_1873_3468_14046 crossref_primary_10_1016_j_jbc_2025_108507 crossref_primary_10_1107_S2052252525006062 crossref_primary_10_3389_fmolb_2020_612226 crossref_primary_10_1093_nar_gkaf212 crossref_primary_10_1002_2211_5463_13476 crossref_primary_10_1016_j_str_2023_09_007 |
| Cites_doi | 10.1107/S0907444909038360 10.1107/S1399004715005210 10.1107/S2059798315021683 10.1007/s00357-014-9161-z 10.1107/S090744491003982X 10.1038/nature23448 10.1107/S205225251402702X 10.1107/S0907444902016657 10.1107/S0907444913012274 10.1107/S1600576714011996 10.1107/S0907444910014836 10.1107/S1399004715017927 10.1107/S2053230X14026843 10.1107/S0021889811041768 10.1107/S0907444909047337 10.1016/j.str.2017.11.005 10.1016/j.sbi.2015.08.003 10.1038/s41467-017-01541-0 10.1038/s41477-017-0022-8 10.1007/978-0-387-98141-3 10.1107/S0021889809045701 10.1107/S2059798317000699 10.1107/S2059798316012079 10.1073/pnas.1111325108 10.1038/nsmb.3450 10.1107/S1399004714013534 10.1107/S0907444913000061 10.1016/j.abb.2016.03.021 10.1021/acsnano.6b06099 10.1107/S1399004714017556 10.1107/S1600576716005471 10.1107/S2059798315024110 10.1038/290107a0 10.1038/nature05628 10.1107/S0907444910045749 10.1107/S2052252517008193 10.1107/S1399004713025431 10.1107/S2059798317017235 10.1107/S0909049505004735 10.1038/1325 10.1107/S0907444912006841 10.1107/S0021889801017824 10.1107/S0907444909052925 10.1080/0889311X.2010.527964 10.1107/S0907444911007773 10.1016/j.sbi.2012.09.001 |
| ContentType | Journal Article |
| Copyright | Yamashita et al. 2018 open access. Yamashita et al. 2018 2018 |
| Copyright_xml | – notice: Yamashita et al. 2018 – notice: open access. – notice: Yamashita et al. 2018 2018 |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1107/S2059798318004576 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | KAMO |
| EISSN | 2059-7983 |
| EndPage | 449 |
| ExternalDocumentID | PMC5930351 29717715 10_1107_S2059798318004576 AYD2WA5117 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 15H06862 – fundername: Japan Agency for Medical Research and Development |
| GroupedDBID | 1OC 24P 53G 5VS AAEVG AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG DRFUL DRSTM HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RCJ SUPJJ WIH WIK AAYXX ABJNI AGHNM AGYGG CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c5437-ba53d5aa80a74594f876fe605a6d10c3378c55d27c836529f7e5cd495624a34d3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 218 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431248900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2059-7983 |
| IngestDate | Tue Nov 04 02:02:04 EST 2025 Thu Oct 02 16:27:17 EDT 2025 Wed Feb 19 02:32:33 EST 2025 Sat Nov 29 05:02:24 EST 2025 Tue Nov 18 21:08:36 EST 2025 Wed Jan 22 16:20:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | small-wedge data sets microcrystals KAMO automatic data processing |
| Language | English |
| License | Attribution open access. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5437-ba53d5aa80a74594f876fe605a6d10c3378c55d27c836529f7e5cd495624a34d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1311-1768 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2059798318004576 |
| PMID | 29717715 |
| PQID | 2033382470 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5930351 proquest_miscellaneous_2033382470 pubmed_primary_29717715 crossref_primary_10_1107_S2059798318004576 crossref_citationtrail_10_1107_S2059798318004576 wiley_primary_10_1107_S2059798318004576_AYD2WA5117 |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
| PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: United States |
| PublicationTitle | Acta crystallographica. Section D, Structural biology |
| PublicationTitleAlternate | Acta Crystallogr D Struct Biol |
| PublicationYear | 2018 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Olieric (wa5117_bb29) 2016; 72 Suno (wa5117_bb37) 2017; 26 wa5117_bb19 Winter (wa5117_bb43) 2018; 74 wa5117_bb52 Diederichs (wa5117_bb10) 2010; 66 Evans (wa5117_bb13) 2011; 67 Ueno (wa5117_bb41) 2005; 12 wa5117_bb50 wa5117_bb51 Diederichs (wa5117_bb11) 2017; 73 Coulibaly (wa5117_bb8) 2007; 446 Yamamoto (wa5117_bb47) 2017; 4 Huang (wa5117_bb22) 2015; 71 Kabsch (wa5117_bb24) 2014; 70 Sheldrick (wa5117_bb34) 2010; 66 Cusack (wa5117_bb9) 1998; 5 Hendrickson (wa5117_bb20) 1981; 290 Evans (wa5117_bb12) 2011; 17 Kabsch (wa5117_bb23) 2010; 66 wa5117_bb44 Winn (wa5117_bb45) 2011; 67 wa5117_bb40 Murtagh (wa5117_bb28) 2014; 31 Zander (wa5117_bb48) 2015; 71 Taniguchi (wa5117_bb38) 2017; 548 Parkhurst (wa5117_bb31) 2014; 47 Vonrhein (wa5117_bb42) 2011; 67 Adams (wa5117_bb2) 2010; 66 Abe (wa5117_bb1) 2017; 11 Caffrey (wa5117_bb7) 2015; 71 Owen (wa5117_bb30) 2016; 602 Adams (wa5117_bb3) 2002; 58 Lee (wa5117_bb25) 2017; 3 Giordano (wa5117_bb17) 2012; 68 Huang (wa5117_bb21) 2016; 72 Akey (wa5117_bb4) 2014; 70 wa5117_bb32 Assmann (wa5117_bb5) 2016; 49 Liu (wa5117_bb26) 2015; 34 Thorn (wa5117_bb39) 2011; 44 Evans (wa5117_bb14) 2013; 69 Fraser (wa5117_bb16) 2011; 108 Schlichting (wa5117_bb33) 2015; 2 Winter (wa5117_bb46) 2010; 43 Miyauchi (wa5117_bb27) 2017; 8 Grosse-Kunstleve (wa5117_bb18) 2002; 35 Shihoya (wa5117_bb35) 2017; 24 Brehm (wa5117_bb6) 2014; 70 Smith (wa5117_bb36) 2012; 22 Zander (wa5117_bb49) 2016; 72 Foadi (wa5117_bb15) 2013; 69 |
| References_xml | – volume: 66 start-page: 479 year: 2010 ident: wa5117_bb34 publication-title: Acta Cryst. D doi: 10.1107/S0907444909038360 – volume: 71 start-page: 1238 year: 2015 ident: wa5117_bb22 publication-title: Acta Cryst. D doi: 10.1107/S1399004715005210 – volume: 72 start-page: 93 year: 2016 ident: wa5117_bb21 publication-title: Acta Cryst. D doi: 10.1107/S2059798315021683 – ident: wa5117_bb40 – ident: wa5117_bb50 – volume: 31 start-page: 274 year: 2014 ident: wa5117_bb28 publication-title: J. Classif. doi: 10.1007/s00357-014-9161-z – volume: 67 start-page: 282 year: 2011 ident: wa5117_bb13 publication-title: Acta Cryst. D doi: 10.1107/S090744491003982X – volume: 548 start-page: 356 year: 2017 ident: wa5117_bb38 publication-title: Nature (London) doi: 10.1038/nature23448 – volume: 2 start-page: 246 year: 2015 ident: wa5117_bb33 publication-title: IUCrJ doi: 10.1107/S205225251402702X – volume: 58 start-page: 1948 year: 2002 ident: wa5117_bb3 publication-title: Acta Cryst. D doi: 10.1107/S0907444902016657 – volume: 69 start-page: 1617 year: 2013 ident: wa5117_bb15 publication-title: Acta Cryst. D doi: 10.1107/S0907444913012274 – volume: 47 start-page: 1459 year: 2014 ident: wa5117_bb31 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576714011996 – volume: 66 start-page: 733 year: 2010 ident: wa5117_bb10 publication-title: Acta Cryst. D doi: 10.1107/S0907444910014836 – ident: wa5117_bb19 – volume: 71 start-page: 2328 year: 2015 ident: wa5117_bb48 publication-title: Acta Cryst. D doi: 10.1107/S1399004715017927 – volume: 71 start-page: 3 year: 2015 ident: wa5117_bb7 publication-title: Acta Cryst. F doi: 10.1107/S2053230X14026843 – volume: 44 start-page: 1285 year: 2011 ident: wa5117_bb39 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889811041768 – volume: 66 start-page: 125 year: 2010 ident: wa5117_bb23 publication-title: Acta Cryst. D doi: 10.1107/S0907444909047337 – ident: wa5117_bb32 – volume: 26 start-page: 7 year: 2017 ident: wa5117_bb37 publication-title: Structure doi: 10.1016/j.str.2017.11.005 – volume: 34 start-page: 99 year: 2015 ident: wa5117_bb26 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.08.003 – volume: 8 start-page: 1633 year: 2017 ident: wa5117_bb27 publication-title: Nature Commun. doi: 10.1038/s41467-017-01541-0 – volume: 3 start-page: 825 year: 2017 ident: wa5117_bb25 publication-title: Nature Plants doi: 10.1038/s41477-017-0022-8 – ident: wa5117_bb44 doi: 10.1007/978-0-387-98141-3 – volume: 43 start-page: 186 year: 2010 ident: wa5117_bb46 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889809045701 – volume: 73 start-page: 286 year: 2017 ident: wa5117_bb11 publication-title: Acta Cryst. D doi: 10.1107/S2059798317000699 – volume: 72 start-page: 1026 year: 2016 ident: wa5117_bb49 publication-title: Acta Cryst. D doi: 10.1107/S2059798316012079 – volume: 108 start-page: 16247 year: 2011 ident: wa5117_bb16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1111325108 – volume: 24 start-page: 758 year: 2017 ident: wa5117_bb35 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.3450 – volume: 70 start-page: 2204 year: 2014 ident: wa5117_bb24 publication-title: Acta Cryst. D doi: 10.1107/S1399004714013534 – volume: 69 start-page: 1204 year: 2013 ident: wa5117_bb14 publication-title: Acta Cryst. D doi: 10.1107/S0907444913000061 – ident: wa5117_bb52 – volume: 602 start-page: 21 year: 2016 ident: wa5117_bb30 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.03.021 – volume: 11 start-page: 2410 year: 2017 ident: wa5117_bb1 publication-title: ACS Nano doi: 10.1021/acsnano.6b06099 – volume: 70 start-page: 2719 year: 2014 ident: wa5117_bb4 publication-title: Acta Cryst. D doi: 10.1107/S1399004714017556 – volume: 49 start-page: 1021 year: 2016 ident: wa5117_bb5 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576716005471 – volume: 72 start-page: 421 year: 2016 ident: wa5117_bb29 publication-title: Acta Cryst. D doi: 10.1107/S2059798315024110 – volume: 290 start-page: 107 year: 1981 ident: wa5117_bb20 publication-title: Nature (London) doi: 10.1038/290107a0 – volume: 446 start-page: 97 year: 2007 ident: wa5117_bb8 publication-title: Nature (London) doi: 10.1038/nature05628 – volume: 67 start-page: 235 year: 2011 ident: wa5117_bb45 publication-title: Acta Cryst. D doi: 10.1107/S0907444910045749 – volume: 4 start-page: 529 year: 2017 ident: wa5117_bb47 publication-title: IUCrJ doi: 10.1107/S2052252517008193 – volume: 70 start-page: 101 year: 2014 ident: wa5117_bb6 publication-title: Acta Cryst. D doi: 10.1107/S1399004713025431 – volume: 74 start-page: 85 year: 2018 ident: wa5117_bb43 publication-title: Acta Cryst. D doi: 10.1107/S2059798317017235 – volume: 12 start-page: 380 year: 2005 ident: wa5117_bb41 publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049505004735 – volume: 5 start-page: 634 year: 1998 ident: wa5117_bb9 publication-title: Nature Struct. Biol. doi: 10.1038/1325 – volume: 68 start-page: 649 year: 2012 ident: wa5117_bb17 publication-title: Acta Cryst. D doi: 10.1107/S0907444912006841 – volume: 35 start-page: 126 year: 2002 ident: wa5117_bb18 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889801017824 – volume: 66 start-page: 213 year: 2010 ident: wa5117_bb2 publication-title: Acta Cryst. D doi: 10.1107/S0907444909052925 – ident: wa5117_bb51 – volume: 17 start-page: 105 year: 2011 ident: wa5117_bb12 publication-title: Crystallogr. Rev. doi: 10.1080/0889311X.2010.527964 – volume: 67 start-page: 293 year: 2011 ident: wa5117_bb42 publication-title: Acta Cryst. D doi: 10.1107/S0907444911007773 – volume: 22 start-page: 602 year: 2012 ident: wa5117_bb36 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2012.09.001 |
| SSID | ssj0001637134 |
| Score | 2.6242979 |
| Snippet | In protein microcrystallography, radiation damage often hampers complete and high‐resolution data collection from a single crystal, even under cryogenic... In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic... An automated data-processing pipeline for protein microcrystals is presented. The processing of multiple small-wedge data sets was made dramatically easier by... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 441 |
| SubjectTerms | automatic data processing Cluster Analysis Crystallography, X-Ray - methods Data Collection - methods Datasets as Topic Electronic Data Processing - methods Humans KAMO microcrystals Proteins - chemistry Research Papers small‐wedge data sets Software Viral Proteins - chemistry |
| Title | KAMO: towards automated data processing for microcrystals |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2059798318004576 https://www.ncbi.nlm.nih.gov/pubmed/29717715 https://www.proquest.com/docview/2033382470 https://pubmed.ncbi.nlm.nih.gov/PMC5930351 |
| Volume | 74 |
| WOSCitedRecordID | wos000431248900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2059-7983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637134 issn: 2059-7983 databaseCode: DRFUL dateStart: 20160101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R6KEcKC2lpC2rIPVUKcLxI7Z7Wy1dIfEookUsp8jYjkCiWbQPpP77jp3sltVKRUK95BKPlXg89vd5xjMAn3GWVF4SmznPiowXwmdaW5cRJpU22uu84rHYhDw9VYOBPluB3uwuTJMfYn7gFiwjrtfBwM11W4Uk-vV_UEQGUiuclAGXyOIFrOU5U6F-A-Vnfw9aCiYb73IQyIJE693EfvaXelncn5ZA53Ls5GNMGzel_uv_8jubsNFi0rTbTKI3sOLrt7D-KFPhFuij7sn3r-kkBtmOUzOdDBHqepeGCNP0vrltgC1TxMDprxDkZ0e_EXjejd_BRf_bz95h1lZdyKzgTGbXRjAnjFHESC40r3C9rDyyHlO4nFiGSrRCOCqtYoWgupJeWBd4FuWGcce2YbUe1n4HUkUcshunDK8MNvDGIz9ynlY59RyZZwJkNtalbVOSh8oYd2WkJkSWS6OSwJe5yH2Tj-NfjfdmCizRaoIrxNR-OB2XlDDk5pRLksD7RqHz7qhGiitzkYBcUPW8QcjIvfimvr2JmbmFZsEzmwCNqn76C8vu1QG97CLqlR-eI_QRXiGCU00E5idYnYymfhde2ofJ7XjUiYaATzlQHVg7OO9fHP8Bkx8Emw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-VggR7GAMGywYsSDwhRTj-iOO9VeumonalEkWMp8jYjjappFU_Ju2_39lpy6pKQ0I8585Kcnf27-c7nwE-opeUThKTWMeyhGfCJUoZmxAmc6WVU2nJw2UTst_PLy_VoAHt1VmYuj_EesPNR0aYr32A-w3pOspDYv8bRWggVY5e6YGJzB7BY46rjfd2ygd_dloyJuv0sldIvMYyvYnjfN4aZXOB2kKd28WT90FtWJXOn_-f79mD3SUqjVu1G72Ahqtews69XoWvQHVbF19P4nkos53FejEfI9h1NvY1pvGkPm-AkjGi4Pi3L_Mz01uEnqPZPnw_PxuedpLlvQuJEZzJ5JcWzAqtc6IlF4qXOGOWDnmPzmxKDEMzGiEslSZnmaCqlE4Y65kW5Zpxy15DsxpX7gDinFjkNzbXvNQo4LRDhmQdLVPqOHLPCMjqZxdm2ZTc340xKgI5IbLY-isRfFqrTOqOHA8Jf1hZsMC48ckQXbnxYlZQwpCdUy5JBG9qi66HowpJrkxFBHLD1msB35N780l1fRV6cwvFfG42Ahps_fc3LFo_2_RHC3GvPPwXpWN42hle9Irel373CJ4hnsvresy30JxPF-4dPDE38-vZ9H2IijvkCQX- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB90FTkf9E69s36cFe7poJjNR9P4trguironeqI-lZikKHjdZT8E_3snbXd1WThBfO5MaDOZ5PfrTGYAfuEqyZwkJrKOxRGPhYuUMjYiTCZKK6fqGS-aTch2O7m5Uecz0BzdhSnrQ4x_uHnPKPZr7-Cua7PSy4vA_iVFaCBVgqvSAxMZz8Ic981kajDXvGhdnb7-a4mZLAPMXiXyOlWAE0famxpn8oiawp3T6ZNvYW1xLrWWP-eLvsJShUvDRrmQvsGMy1dg8U21wlVQJ42zP_vhoEi07Yd6OOgg3HU29FmmYbe8cYCSIeLg8J9P9DO9ZwSfj_01uGod_j04iqrOC5ERnMnoTgtmhdYJ0RKnlGe4Z2YOmY-ObZ0YhoY0QlgqTcJiQVUmnTDWcy3KNeOWfYda3sndOoQJschwbKJ5plHAaYccyTqa1anjyD4DIKPJTk1Vltx3x3hMC3pCZDo1KwH8Hqt0y5oc_xPeHVkwRc_x4RCdu86wn1LCkJ9TLkkAP0qLjoejCmmurIsA5IStxwK-Kvfkk_zhvqjOLRTz0dkAaGHr998wbdw26XUDka_c-IjSDiycN1vp6XH7ZBO-IKBLyoTMLagNekO3DfPmafDQ7_2s3OIFQn0HFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KAMO%3A+towards+automated+data+processing+for+microcrystals&rft.jtitle=Acta+crystallographica.+Section+D%2C+Structural+biology&rft.au=Yamashita%2C+Keitaro&rft.au=Hirata%2C+Kunio&rft.au=Yamamoto%2C+Masaki&rft.date=2018-05-01&rft.pub=International+Union+of+Crystallography&rft.issn=2059-7983&rft.eissn=2059-7983&rft.volume=74&rft.issue=5&rft.spage=441&rft.epage=449&rft_id=info:doi/10.1107%2FS2059798318004576&rft.externalDBID=10.1107%252FS2059798318004576&rft.externalDocID=AYD2WA5117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-7983&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-7983&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-7983&client=summon |