A simple flow cytometry method improves the detection of phosphatidylserine‐exposing extracellular vesicles

Summary Background Plasma contains cell‐derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub‐micrometer size and to intrinsic limitations in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thrombosis and haemostasis Vol. 13; no. 2; pp. 237 - 247
Main Authors: Arraud, N., Gounou, C., Linares, R., Brisson, A. R.
Format: Journal Article
Language:English
Published: England Elsevier Limited 01.02.2015
Wiley
BlackWell Publishing Ltd
Subjects:
ISSN:1538-7933, 1538-7836, 1538-7836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Background Plasma contains cell‐derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub‐micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Objectives Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)‐exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. Methods The concentration of PS‐exposing EVs in platelet‐free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin‐5 (Anx5) as the specific label. In addition, PS‐exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. Results We show that about 50× more Anx5‐positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000–30 000 Anx5‐positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000–2500 Anx5 molecules. Results from EM suggest that EVs down to 100–150 nm diameter are detected by fluorescence triggering. Conclusion This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV‐based diagnosis assays.
AbstractList Summary Background Plasma contains cell‐derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub‐micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Objectives Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)‐exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. Methods The concentration of PS‐exposing EVs in platelet‐free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin‐5 (Anx5) as the specific label. In addition, PS‐exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. Results We show that about 50× more Anx5‐positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000–30 000 Anx5‐positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000–2500 Anx5 molecules. Results from EM suggest that EVs down to 100–150 nm diameter are detected by fluorescence triggering. Conclusion This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV‐based diagnosis assays.
Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000-30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000-2500 Anx5 molecules. Results from EM suggest that EVs down to 100-150 nm diameter are detected by fluorescence triggering. This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays.
Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM).BACKGROUNDPlasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM).Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders.OBJECTIVESOur objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders.The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids.METHODSThe concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids.We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000-30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000-2500 Anx5 molecules. Results from EM suggest that EVs down to 100-150 nm diameter are detected by fluorescence triggering.RESULTSWe show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000-30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000-2500 Anx5 molecules. Results from EM suggest that EVs down to 100-150 nm diameter are detected by fluorescence triggering.This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays.CONCLUSIONThis study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays.
Background: Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM).Objectives: Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders.Methods: The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids.Results: We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000–30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000–2500 Anx5 molecules. Results from EM suggest that EVs down to 100–150 nm diameter are detected by fluorescence triggering.Conclusion: This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays.
Summary Background Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Objectives Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. Methods The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. Results We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000-30 000 Anx5-positive EVs per µL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000-2500 Anx5 molecules. Results from EM suggest that EVs down to 100-150 nm diameter are detected by fluorescence triggering. Conclusion This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays.
Author Brisson, A. R.
Arraud, N.
Gounou, C.
Linares, R.
Author_xml – sequence: 1
  givenname: N.
  surname: Arraud
  fullname: Arraud, N.
  organization: UMR‐5248‐CBMN CNRS‐University of Bordeaux‐IPB
– sequence: 2
  givenname: C.
  surname: Gounou
  fullname: Gounou, C.
  organization: UMR‐5248‐CBMN CNRS‐University of Bordeaux‐IPB
– sequence: 3
  givenname: R.
  surname: Linares
  fullname: Linares, R.
  organization: UMR‐5248‐CBMN CNRS‐University of Bordeaux‐IPB
– sequence: 4
  givenname: A. R.
  surname: Brisson
  fullname: Brisson, A. R.
  organization: UMR‐5248‐CBMN CNRS‐University of Bordeaux‐IPB
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25348269$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03284501$$DView record in HAL
BookMark eNp9ks1u1DAQxyNURD_gwAsgS1zKYVt_x7kgrSpgQStxKWfL6ziNV04cbGfb3HgEnpEnwWHbAiuBD_6a3_xnxp7T4qj3vSmKlwheoDwut6m9QLjk5ZPiBDEiFqUg_OhhXxFyXJzGuIUQVQzDZ8UxZoQKzKuToluCaLvBGdA4fwv0lHxnUphAnltfg2wLfmciSK0BtUlGJ-t74BswtD4OrUq2nlw0wfbmx7fv5m7w0fY3wNyloLRxbnQqgCxgtTPxefG0UZl-cb-eFV_ev7u-Wi3Wnz98vFquF5pRUi6qjao0VxjzMp8Rr0slIK8gVaiBBGuMG1JzqBQVCLMabjYcYo6YIEITjAQ5K97udYdx05lamz5n4-QQbKfCJL2y8m9Lb1t543eSElbxchZ4sxdoD9xWy7Wc73IagjKIdiiz5_fBgv86mphkZ-NcuuqNH6NEnGHKKkpoRl8foFs_hj4_xUwhykUuKFOv_sz-Mf7Dr_3OTgcfYzDNI4KgnDtC5o6Qvzois5cHrLZJzZ-YC7fufx631pnp39Ly0_Vq7_ETETvI2g
CitedBy_id crossref_primary_10_1080_09537104_2017_1280602
crossref_primary_10_1186_s12964_015_0124_8
crossref_primary_10_1111_aor_14395
crossref_primary_10_1039_C7AN00469A
crossref_primary_10_3390_ijms18061153
crossref_primary_10_1111_gtc_12645
crossref_primary_10_1097_TP_0000000000001572
crossref_primary_10_1186_s40486_022_00156_5
crossref_primary_10_1038_s41392_025_02198_8
crossref_primary_10_1007_s11427_020_1905_7
crossref_primary_10_1111_trf_17246
crossref_primary_10_1084_jem_20171978
crossref_primary_10_1111_voxs_12179
crossref_primary_10_3390_biomedicines9020124
crossref_primary_10_1177_1849454418766966
crossref_primary_10_3390_biomedicines9020206
crossref_primary_10_3390_s18103175
crossref_primary_10_33687_hzqsk539
crossref_primary_10_1002_cyto_a_22685
crossref_primary_10_3389_fcell_2017_00078
crossref_primary_10_3390_cancers14010056
crossref_primary_10_1128_JVI_01765_17
crossref_primary_10_1038_srep16314
crossref_primary_10_3390_ijms21217885
crossref_primary_10_1016_j_celrep_2025_116096
crossref_primary_10_1007_s00216_016_0036_5
crossref_primary_10_3390_cells10010085
crossref_primary_10_1002_jev2_70017
crossref_primary_10_1097_MOH_0000000000000166
crossref_primary_10_1016_j_ymeth_2016_09_018
crossref_primary_10_1002_jex2_131
crossref_primary_10_1111_jth_14154
crossref_primary_10_1016_j_bbi_2020_12_007
crossref_primary_10_1080_07391102_2020_1756409
crossref_primary_10_3390_ijms222112027
crossref_primary_10_1080_09537104_2016_1190008
crossref_primary_10_1097_MAT_0000000000001320
crossref_primary_10_1080_20013078_2018_1535750
crossref_primary_10_1080_08830185_2023_2225551
crossref_primary_10_1080_09537104_2021_1961716
crossref_primary_10_1111_jth_13514
crossref_primary_10_3390_ijms20225527
crossref_primary_10_1002_jex2_70005
crossref_primary_10_1016_j_jbc_2021_100411
crossref_primary_10_1016_j_micron_2022_103341
crossref_primary_10_1002_jev2_12200
crossref_primary_10_3390_jcm11226776
crossref_primary_10_1016_j_addr_2021_04_014
crossref_primary_10_3390_life13122321
crossref_primary_10_1080_09537104_2016_1268255
crossref_primary_10_3389_fphys_2017_00317
crossref_primary_10_1002_cyto_a_22669
crossref_primary_10_1016_j_autrev_2015_11_004
crossref_primary_10_1080_20013078_2018_1454776
crossref_primary_10_3402_jev_v4_29509
crossref_primary_10_1016_j_snb_2020_128056
crossref_primary_10_1002_cyto_a_22787
crossref_primary_10_3390_ijms22020790
crossref_primary_10_1016_j_addr_2021_113961
crossref_primary_10_1038_s41598_021_86489_4
crossref_primary_10_1186_s12986_018_0309_4
crossref_primary_10_1039_C6AN02651F
crossref_primary_10_1186_s12951_024_02750_8
Cites_doi 10.1002/cyto.a.10115
10.3402/jev.v2i0.20360
10.1038/nprot.2012.065
10.1046/j.1365-2141.1997.d01-2072.x
10.1042/CS20120309
10.1161/01.ATV.0000246775.14471.26
10.1111/jth.12254
10.4049/jimmunol.148.7.2207
10.3402/jev.v3.20795
10.1016/S0074-7742(07)79010-4
10.1016/S0008-6363(03)00367-5
10.1529/biophysj.105.064337
10.1124/pr.112.005983
10.1111/j.1365-2141.1967.tb08741.x
10.1111/j.1538-7836.2004.00936.x
10.1016/j.thromres.2010.12.014
10.1002/cyto.a.22255
10.1006/jsbi.2000.4337
10.1182/blood.V89.4.1121
10.1016/S1040-8428(98)00044-4
10.1126/science.1181928
10.1007/s00018-011-0689-3
10.1006/jmbi.1994.1129
10.1111/j.1538-7836.2010.04074.x
10.1006/jsbi.2000.4286
10.1111/jth.12554
10.1007/s00134-013-2993-x
10.1016/S0049-3848(98)00044-9
10.1016/S0166-0934(99)00167-6
10.1161/ATVBAHA.109.200956
10.3402/jev.v2i0.20389
10.1016/j.ab.2004.02.043
10.1046/j.1538-7836.2003.00456.x
10.1111/j.1538-7836.2011.04283.x
10.1016/0005-2736(83)90169-4
10.1016/j.thromres.2009.09.019
10.1182/blood.V79.2.380.380
10.1161/ATVBAHA.111.244616
10.1083/jcb.101.3.942
10.1016/j.bbalip.2003.07.003
10.1182/blood.V82.4.1192.1192
10.1016/S0021-9258(19)34062-1
10.1038/ncb1596
10.1177/27.1.374599
10.1007/s00441-008-0710-9
10.1111/j.1538-7836.2011.04610.x
10.1111/j.1423-0410.2008.01101.x
10.1111/j.1538-7836.2012.04683.x
10.1128/AEM.65.1.45-52.1999
10.1038/ncomms1270
10.1161/CIRCRESAHA.110.233056
10.1182/blood-2003-03-0713
10.1182/blood-2010-09-307595
ContentType Journal Article
Copyright 2014 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis
2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Copyright © 2015 International Society on Thrombosis and Haemostasis
licence_http://creativecommons.org/publicdomain/zero
2014 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis 2014
Copyright_xml – notice: 2014 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis
– notice: 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
– notice: Copyright © 2015 International Society on Thrombosis and Haemostasis
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2014 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis 2014
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
1XC
VOOES
5PM
DOI 10.1111/jth.12767
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7836
EndPage 247
ExternalDocumentID PMC4359678
oai:HAL:hal-03284501v1
3580094661
25348269
10_1111_jth_12767
JTH12767
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: ANR
  funderid: EMPB‐MP‐NPAuA5‐2007‐021‐01; 11‐BSV1‐03501‐PlacentA5 to AB
GroupedDBID ---
05W
24P
29L
2WC
31~
33P
36B
3SF
4.4
52U
52V
53G
5GY
5VS
66C
8-0
8-1
AAESR
AAEVG
AALRI
AAMMB
AAONW
AASGY
AAXRX
AAXUO
AAYWO
AAZKR
ABCUV
ABJNI
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACVFH
ACXBN
ACXQS
ADBBV
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADVLN
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AEUPX
AFBPY
AFEBI
AFGKR
AFJKZ
AFPUW
AFZJQ
AGXDD
AHMBA
AIACR
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJAOE
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMRAJ
AMYDB
APXCP
ATUGU
AZBYB
AZVAB
BAWUL
BHBCM
BMXJE
BOGZA
BRXPI
C45
CAG
COF
CS3
DCZOG
DIK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EFKBS
EJD
F5P
FDB
FUBAC
G-S
GODZA
HZ~
IHE
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M41
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OIG
OK1
OVD
P2P
P2W
PQQKQ
ROL
SUPJJ
TEORI
TR2
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WVDHM
ZZTAW
AAYXX
CITATION
1OC
A00
AAHHS
ABDBF
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
EAD
EAP
ECM
EIF
EMB
EMK
ESX
FIJ
IPNFZ
NPM
P4E
SV3
WYJ
7T5
H94
K9.
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5437-9ba9c6a226754316d7a806904a1f032c22f3d60aa48125d0bb602615838c32183
IEDL.DBID 24P
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349309600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7933
1538-7836
IngestDate Tue Sep 30 16:50:57 EDT 2025
Sun Nov 23 06:20:26 EST 2025
Sun Sep 28 11:58:50 EDT 2025
Tue Oct 07 06:21:41 EDT 2025
Thu Jan 02 22:21:44 EST 2025
Tue Nov 18 22:22:11 EST 2025
Wed Oct 29 21:09:19 EDT 2025
Thu Sep 25 07:35:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords electron microscopy
phosphatidylserines
flow cytometry
cell-derived microparticles
blood plasma
Language English
License Attribution-NonCommercial
2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5437-9ba9c6a226754316d7a806904a1f032c22f3d60aa48125d0bb602615838c32183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Manuscript handled by: C. Gachet
Final decision: P. H. Reitsma, 16 October 2014
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjth.12767
PMID 25348269
PQID 1651468812
PQPubID 1086376
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359678
hal_primary_oai_HAL_hal_03284501v1
proquest_miscellaneous_1652459434
proquest_journals_1651468812
pubmed_primary_25348269
crossref_primary_10_1111_jth_12767
crossref_citationtrail_10_1111_jth_12767
wiley_primary_10_1111_jth_12767_JTH12767
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Oxford, UK
PublicationTitle Journal of thrombosis and haemostasis
PublicationTitleAlternate J Thromb Haemost
PublicationYear 2015
Publisher Elsevier Limited
Wiley
BlackWell Publishing Ltd
Publisher_xml – name: Elsevier Limited
– name: Wiley
– name: BlackWell Publishing Ltd
References 2013; 2
2011; 117
2000; 85
1997; 89
2003; 59
2013; 124
2000; 131
2004; 2
2004; 329
1990; 265
2012; 10
2007; 79
2013; 83A
2011; 127
2001; 133
1979; 27
2014; 3
2013; 11
1997; 96
2006; 26
2007; 9
2004; 57A
2011; 68
1967; 13
1998; 91
2003; 1
2014; 12
2012; 64
2010; 8
2004; 103
2011; 2
1994; 236
2010; 327
1993; 82
2010; 125
1992; 148
1985; 101
2011; 31
2007
1999; 65
1992; 79
2008; 95
2012; 32
1983; 736
2009; 335
2005; 89
2011; 9
2011; 108
2013; 39
1999; 30
2013
2012; 7
2004; 1636
Hjuler Nielsen (10.1111/jth.12767_bb0280) 2014; 3
Reviakine (10.1111/jth.12767_bb0270) 2000; 131
Owens (10.1111/jth.12767_bb0125) 2011; 108
Chandler (10.1111/jth.12767_bb0175) 2011; 9
Oling (10.1111/jth.12767_bb0275) 2001; 133
Brussaard (10.1111/jth.12767_bb0205) 2000; 85
Bevers (10.1111/jth.12767_bb0085) 1983; 736
Rubin (10.1111/jth.12767_bb0130) 2008; 95
Delabranche (10.1111/jth.12767_bb0080) 2013; 39
Zwaal (10.1111/jth.12767_bb0135) 2004; 1636
Tait (10.1111/jth.12767_bb0240) 2004; 329
vanWijk (10.1111/jth.12767_bb0055) 2003; 59
van der Pol (10.1111/jth.12767_bb0180) 2012; 10
Boilard (10.1111/jth.12767_bb0075) 2010; 327
van der Pol (10.1111/jth.12767_bb0170) 2010; 8
Cantero (10.1111/jth.12767_bb0220) 1998; 91
Castaman (10.1111/jth.12767_bb0140) 1997; 96
Jy (10.1111/jth.12767_bb0150) 2004; 2
Richter (10.1111/jth.12767_bb0245) 2005; 89
Bevers (10.1111/jth.12767_bb0210) 1992; 79
Zwaal (10.1111/jth.12767_bb0095) 1997; 89
Witwer (10.1111/jth.12767_bb0025) 2013; 2
Bouter (10.1111/jth.12767_bb0225) 2011; 2
10.1111/jth.12767_bb0230
Aras (10.1111/jth.12767_bb0105) 2004; 103
Lacroix (10.1111/jth.12767_bb0120) 2012; 10
Fadok (10.1111/jth.12767_bb0090) 1992; 148
Steen (10.1111/jth.12767_bb0195) 2004; 57A
Valadi (10.1111/jth.12767_bb0040) 2007; 9
Robert (10.1111/jth.12767_bb0255) 2012; 32
van der Pol (10.1111/jth.12767_bb0015) 2012; 64
Wiedmer (10.1111/jth.12767_bb0065) 1993; 82
Gould (10.1111/jth.12767_bb0020) 2013; 2
10.1111/jth.12767_bb0260
Biró (10.1111/jth.12767_bb0100) 2003; 1
Horstman (10.1111/jth.12767_bb0160) 2007; 79
Marie (10.1111/jth.12767_bb0200) 1999; 65
Pigault (10.1111/jth.12767_bb0265) 1994; 236
György (10.1111/jth.12767_bb0010) 2011; 68
van der Pol (10.1111/jth.12767_bb0185) 2013; 11
Nolan (10.1111/jth.12767_bb0250) 2013; 83A
Chironi (10.1111/jth.12767_bb0165) 2009; 335
Andree (10.1111/jth.12767_bb0235) 1990; 265
Morel (10.1111/jth.12767_bb0115) 2011; 31
Pan (10.1111/jth.12767_bb0035) 1985; 101
Hercher (10.1111/jth.12767_bb0190) 1979; 27
Arraud (10.1111/jth.12767_bb0145) 2014; 12
Burger (10.1111/jth.12767_bb0045) 2013; 124
Ayers (10.1111/jth.12767_bb0155) 2011; 127
Wolf (10.1111/jth.12767_bb0030) 1967; 13
Horstman (10.1111/jth.12767_bb0050) 1999; 30
Morel (10.1111/jth.12767_bb0060) 2006; 26
Manly (10.1111/jth.12767_bb0070) 2010; 125
György (10.1111/jth.12767_bb0110) 2011; 117
van der Vlist (10.1111/jth.12767_bb0215) 2012; 7
9700854 - Thromb Res. 1998 Jul 1;91(1):49-52
9028933 - Blood. 1997 Feb 15;89(4):1121-32
24511371 - J Extracell Vesicles. 2014 Feb 04;3:null
9872758 - Appl Environ Microbiol. 1999 Jan;65(1):45-52
374599 - J Histochem Cytochem. 1979 Jan;27(1):350-2
20110505 - Science. 2010 Jan 29;327(5965):580-3
21481178 - J Thromb Haemost. 2011 Jun;9(6):1216-24
20880256 - J Thromb Haemost. 2010 Dec;8(12):2596-607
24618123 - J Thromb Haemost. 2014 May;12(5):614-27
23809109 - J Thromb Haemost. 2013 Jun;11 Suppl 1:36-45
2138622 - J Biol Chem. 1990 Mar 25;265(9):4923-8
1730083 - Blood. 1992 Jan 15;79(2):380-8
21041717 - Blood. 2011 Jan 27;117(4):e39-48
22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705
21257195 - Thromb Res. 2011 Apr;127(4):370-7
16085777 - Biophys J. 2005 Nov;89(5):3372-85
24009894 - J Extracell Vesicles. 2013 May 27;2:null
23793890 - Intensive Care Med. 2013 Oct;39(10):1695-703
2993317 - J Cell Biol. 1985 Sep;101(3):942-8
10439058 - Crit Rev Oncol Hematol. 1999 Apr;30(2):111-42
11052896 - J Struct Biol. 2000 Sep;131(3):234-9
22328775 - Arterioscler Thromb Vasc Biol. 2012 Apr;32(4):1054-8
6418205 - Biochim Biophys Acta. 1983 Dec 7;736(1):57-66
6025241 - Br J Haematol. 1967 May;13(3):269-88
12909311 - Cardiovasc Res. 2003 Aug 1;59(2):277-87
16990554 - Arterioscler Thromb Vasc Biol. 2006 Dec;26(12):2594-604
10716350 - J Virol Methods. 2000 Mar;85(1-2):175-82
14738565 - J Thromb Haemost. 2003 Dec;1(12):2561-8
21566224 - Circ Res. 2011 May 13;108(10):1284-97
17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9
22722367 - Nat Protoc. 2012 Jul;7(7):1311-26
8107105 - J Mol Biol. 1994 Feb 11;236(1):199-208
1545126 - J Immunol. 1992 Apr 1;148(7):2207-16
21560073 - Cell Mol Life Sci. 2011 Aug;68(16):2667-88
11356064 - J Struct Biol. 2001 Jan;133(1):55-63
24009890 - J Extracell Vesicles. 2013 Feb 15;2:null
14988149 - Blood. 2004 Jun 15;103(12):4545-53
23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41
15136173 - Anal Biochem. 2004 Jun 1;329(1):112-9
9054648 - Br J Haematol. 1997 Mar;96(3):458-63
17531844 - Int Rev Neurobiol. 2007;79:227-68
21468022 - Nat Commun. 2011;2:270
22212198 - J Thromb Haemost. 2012 Mar;10(3):437-46
21160064 - Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):15-26
14750130 - Cytometry A. 2004 Feb;57(2):94-9
19854471 - Thromb Res. 2010 Jun;125(6):511-2
7688991 - Blood. 1993 Aug 15;82(4):1192-6
15456497 - J Thromb Haemost. 2004 Oct;2(10):1842-51
22394434 - J Thromb Haemost. 2012 May;10(5):919-30
19138258 - Vox Sang. 2008 Nov;95(4):288-97
15164759 - Biochim Biophys Acta. 2004 Mar 22;1636(2-3):119-28
23335161 - Cytometry A. 2013 Mar;83(3):301-5
18989704 - Cell Tissue Res. 2009 Jan;335(1):143-51
References_xml – volume: 2
  start-page: 270
  year: 2011
  article-title: Annexin‐A5 assembled into two‐dimensional arrays promotes cell membrane repair
  publication-title: Nat Commun
– volume: 95
  start-page: 288
  year: 2008
  end-page: 97
  article-title: Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools
  publication-title: Vox Sang
– volume: 96
  start-page: 458
  year: 1997
  end-page: 63
  article-title: Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation
  publication-title: Br J Haematol
– volume: 2
  start-page: 20389
  year: 2013
  article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles
  publication-title: J Extracell Vesicles
– volume: 108
  start-page: 1284
  year: 2011
  end-page: 97
  article-title: Microparticles in hemostasis and thrombosis
  publication-title: Circ Res
– volume: 30
  start-page: 111
  year: 1999
  end-page: 42
  article-title: Platelet microparticles: a wide‐angle perspective
  publication-title: Crit Rev Oncol Hematol
– volume: 39
  start-page: 1695
  year: 2013
  end-page: 703
  article-title: Microparticles are new biomarkers of septic shock‐induced disseminated intravascular coagulopathy
  publication-title: Intensive Care Med
– volume: 27
  start-page: 350
  year: 1979
  end-page: 2
  article-title: Detection and discrimination of individual viruses by flow cytometry
  publication-title: J Histochem Cytochem
– volume: 32
  start-page: 1054
  year: 2012
  end-page: 8
  article-title: High‐sensitivity flow cytometry provides access to standardized measurement of small‐size microparticles—brief report
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 85
  start-page: 175
  year: 2000
  end-page: 82
  article-title: Flow cytometric detection of viruses
  publication-title: J Virol Methods
– volume: 124
  start-page: 423
  year: 2013
  end-page: 41
  article-title: Microparticles: biomarkers and beyond
  publication-title: Clin Sci
– volume: 736
  start-page: 57
  year: 1983
  end-page: 66
  article-title: Changes in membrane phospholipid distribution during platelet activation
  publication-title: Biochim Biophys Acta
– volume: 335
  start-page: 143
  year: 2009
  end-page: 51
  article-title: Endothelial microparticles in diseases
  publication-title: Cell Tissue Res
– volume: 2
  start-page: 20360
  year: 2013
  article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
  publication-title: J Extracell Vesicles
– volume: 9
  start-page: 654
  year: 2007
  end-page: 9
  article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
– volume: 79
  start-page: 380
  year: 1992
  end-page: 8
  article-title: Defective Ca2 + ‐induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome
  publication-title: Blood
– volume: 329
  start-page: 112
  year: 2004
  end-page: 9
  article-title: Measurement of the affinity and cooperativity of annexin V–membrane binding under conditions of low membrane occupancy
  publication-title: Anal Biochem
– volume: 91
  start-page: 49
  year: 1998
  end-page: 52
  article-title: Interference of chylomicrons in analysis of platelets by flow cytometry
  publication-title: Thromb Res
– volume: 327
  start-page: 580
  year: 2010
  end-page: 3
  article-title: Platelets amplify inflammation in arthritis via collagen‐dependent microparticle production
  publication-title: Science
– volume: 9
  start-page: 1216
  year: 2011
  end-page: 24
  article-title: A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer
  publication-title: J Thromb Haemost
– volume: 79
  start-page: 227
  year: 2007
  end-page: 68
  article-title: Cell‐derived microparticles and exosomes in neuroinflammatory disorders
  publication-title: Int Rev Neurobiol
– volume: 11
  start-page: 36
  year: 2013
  end-page: 45
  article-title: Innovation in detection of microparticles and exosomes
  publication-title: J Thromb Haemost
– volume: 1
  start-page: 2561
  year: 2003
  end-page: 8
  article-title: Human cell‐derived microparticles promote thrombus formation in a tissue factor‐dependent manner
  publication-title: J Thromb Haemost
– volume: 31
  start-page: 15
  year: 2011
  end-page: 26
  article-title: Cellular mechanisms underlying the formation of circulating microparticles
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 89
  start-page: 1121
  year: 1997
  end-page: 32
  article-title: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells
  publication-title: Blood
– volume: 10
  start-page: 919
  year: 2012
  end-page: 30
  article-title: Single vs. swarm detection of microparticles and exosomes by flow cytometry
  publication-title: J Thromb Haemost
– volume: 103
  start-page: 4545
  year: 2004
  end-page: 53
  article-title: Induction of microparticle‐ and cell‐associated intravascular tissue factor in human endotoxemia
  publication-title: Blood
– volume: 127
  start-page: 370
  year: 2011
  end-page: 7
  article-title: Measurement of circulating cell‐derived microparticles by flow cytometry: sources of variability within the assay
  publication-title: Thromb Res
– volume: 64
  start-page: 676
  year: 2012
  end-page: 705
  article-title: Classification, functions, and clinical relevance of extracellular vesicles
  publication-title: Pharmacol Rev
– volume: 1636
  start-page: 119
  year: 2004
  end-page: 28
  article-title: Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids
  publication-title: Biochim Biophys Acta
– volume: 3
  start-page: 20795
  year: 2014
  end-page: 807
  article-title: A flow cytometric method for characterization of circulating cell‐derived microparticles in plasma
  publication-title: J Extracell Vesicles
– volume: 10
  start-page: 437
  year: 2012
  end-page: 46
  article-title: Impact of pre‐analytical parameters on the measurement of circulating microparticles: towards standardization of protocol
  publication-title: J Thromb Haemost
– volume: 8
  start-page: 2596
  year: 2010
  end-page: 607
  article-title: Optical and non‐optical methods for detection and characterization of microparticles and exosomes
  publication-title: J Thromb Haemost
– volume: 133
  start-page: 55
  year: 2001
  end-page: 63
  article-title: Trimers, dimers of trimers, and trimers of trimers are common building blocks of Annexin A5 two‐dimensional crystals
  publication-title: J Struct Biol
– year: 2007
– volume: 2
  start-page: 1842
  year: 2004
  end-page: 3
  article-title: Measuring circulating cell‐derived microparticles
  publication-title: J Thromb Haemost
– volume: 83A
  start-page: 301
  year: 2013
  end-page: 5
  article-title: A trigger channel threshold artifact in nanoparticle analysis
  publication-title: Cytometry A
– volume: 57A
  start-page: 94
  year: 2004
  end-page: 9
  article-title: Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles
  publication-title: Cytometry
– volume: 117
  start-page: e39
  year: 2011
  end-page: 48
  article-title: Detection and isolation of cell‐derived microparticles are compromised by protein complexes resulting from shared biophysical parameters
  publication-title: Blood
– volume: 236
  start-page: 199
  year: 1994
  end-page: 208
  article-title: Formation of two‐dimensional arrays of annexin V on phosphatidylserine‐containing liposomes
  publication-title: J Mol Biol
– volume: 89
  start-page: 3372
  year: 2005
  end-page: 85
  article-title: On the kinetics of adsorption and two‐dimensional self‐assembly of annexin a5 on supported lipid bilayers
  publication-title: Biophys J
– volume: 101
  start-page: 942
  year: 1985
  end-page: 8
  article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes
  publication-title: J Cell Biol
– volume: 265
  start-page: 4923
  year: 1990
  end-page: 8
  article-title: Binding of vascular anticoagulant alpha (VAC α) to planar phospholipid bilayers
  publication-title: J Biol Chem
– volume: 65
  start-page: 45
  year: 1999
  end-page: 52
  article-title: Enumeration of marine viruses in culture and natural samples by flow cytometry
  publication-title: Appl Environ Microbiol
– volume: 125
  start-page: 511
  year: 2010
  end-page: 2
  article-title: Increased microparticle tissue factor activity in cancer patients with Venous Thromboembolism
  publication-title: Thromb Res
– volume: 148
  start-page: 2207
  year: 1992
  end-page: 16
  article-title: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages
  publication-title: J Immunol
– volume: 26
  start-page: 2594
  year: 2006
  end-page: 604
  article-title: Procoagulant microparticles disrupting the vascular homeostasis equation?
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 82
  start-page: 1192
  year: 1993
  end-page: 6
  article-title: Complement‐induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria
  publication-title: Blood
– volume: 13
  start-page: 269
  year: 1967
  end-page: 88
  article-title: The nature and significance of platelet products in human plasma
  publication-title: Br J Haematol
– volume: 131
  start-page: 234
  year: 2000
  end-page: 9
  article-title: Surface topography of the p3 and p6 Annexin V crystal forms determined by atomic force microscopy
  publication-title: J Struct Biol
– volume: 59
  start-page: 277
  year: 2003
  end-page: 87
  article-title: Microparticles in cardiovascular diseases
  publication-title: Cardiovasc Res
– volume: 7
  start-page: 1311
  year: 2012
  end-page: 26
  article-title: Fluorescent labeling of nano‐sized vesicles released by cells and subsequent quantitative and qualitative analysis by high‐resolution flow cytometry
  publication-title: Nat Protoc
– volume: 68
  start-page: 2667
  year: 2011
  end-page: 88
  article-title: Membrane vesicles, current state‐of‐the‐art: emerging role of extracellular vesicles
  publication-title: Cell Mol Life Sci
– volume: 12
  start-page: 614
  year: 2014
  end-page: 27
  article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration
  publication-title: J Thromb Haemost
– year: 2013
– volume: 57A
  start-page: 94
  year: 2004
  ident: 10.1111/jth.12767_bb0195
  article-title: Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles
  publication-title: Cytometry
  doi: 10.1002/cyto.a.10115
– volume: 2
  start-page: 20360
  year: 2013
  ident: 10.1111/jth.12767_bb0025
  article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v2i0.20360
– volume: 7
  start-page: 1311
  year: 2012
  ident: 10.1111/jth.12767_bb0215
  article-title: Fluorescent labeling of nano‐sized vesicles released by cells and subsequent quantitative and qualitative analysis by high‐resolution flow cytometry
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.065
– volume: 96
  start-page: 458
  year: 1997
  ident: 10.1111/jth.12767_bb0140
  article-title: Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation
  publication-title: Br J Haematol
  doi: 10.1046/j.1365-2141.1997.d01-2072.x
– volume: 124
  start-page: 423
  year: 2013
  ident: 10.1111/jth.12767_bb0045
  article-title: Microparticles: biomarkers and beyond
  publication-title: Clin Sci
  doi: 10.1042/CS20120309
– volume: 26
  start-page: 2594
  year: 2006
  ident: 10.1111/jth.12767_bb0060
  article-title: Procoagulant microparticles disrupting the vascular homeostasis equation?
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000246775.14471.26
– volume: 11
  start-page: 36
  year: 2013
  ident: 10.1111/jth.12767_bb0185
  article-title: Innovation in detection of microparticles and exosomes
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12254
– volume: 148
  start-page: 2207
  year: 1992
  ident: 10.1111/jth.12767_bb0090
  article-title: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages
  publication-title: J Immunol
  doi: 10.4049/jimmunol.148.7.2207
– volume: 3
  start-page: 20795
  year: 2014
  ident: 10.1111/jth.12767_bb0280
  article-title: A flow cytometric method for characterization of circulating cell‐derived microparticles in plasma
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v3.20795
– volume: 79
  start-page: 227
  year: 2007
  ident: 10.1111/jth.12767_bb0160
  article-title: Cell‐derived microparticles and exosomes in neuroinflammatory disorders
  publication-title: Int Rev Neurobiol
  doi: 10.1016/S0074-7742(07)79010-4
– volume: 59
  start-page: 277
  year: 2003
  ident: 10.1111/jth.12767_bb0055
  article-title: Microparticles in cardiovascular diseases
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(03)00367-5
– volume: 89
  start-page: 3372
  year: 2005
  ident: 10.1111/jth.12767_bb0245
  article-title: On the kinetics of adsorption and two‐dimensional self‐assembly of annexin a5 on supported lipid bilayers
  publication-title: Biophys J
  doi: 10.1529/biophysj.105.064337
– volume: 64
  start-page: 676
  year: 2012
  ident: 10.1111/jth.12767_bb0015
  article-title: Classification, functions, and clinical relevance of extracellular vesicles
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.005983
– volume: 13
  start-page: 269
  year: 1967
  ident: 10.1111/jth.12767_bb0030
  article-title: The nature and significance of platelet products in human plasma
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.1967.tb08741.x
– volume: 2
  start-page: 1842
  year: 2004
  ident: 10.1111/jth.12767_bb0150
  article-title: Measuring circulating cell‐derived microparticles
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2004.00936.x
– volume: 127
  start-page: 370
  year: 2011
  ident: 10.1111/jth.12767_bb0155
  article-title: Measurement of circulating cell‐derived microparticles by flow cytometry: sources of variability within the assay
  publication-title: Thromb Res
  doi: 10.1016/j.thromres.2010.12.014
– volume: 83A
  start-page: 301
  year: 2013
  ident: 10.1111/jth.12767_bb0250
  article-title: A trigger channel threshold artifact in nanoparticle analysis
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22255
– volume: 133
  start-page: 55
  year: 2001
  ident: 10.1111/jth.12767_bb0275
  article-title: Trimers, dimers of trimers, and trimers of trimers are common building blocks of Annexin A5 two‐dimensional crystals
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2000.4337
– volume: 89
  start-page: 1121
  year: 1997
  ident: 10.1111/jth.12767_bb0095
  article-title: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells
  publication-title: Blood
  doi: 10.1182/blood.V89.4.1121
– volume: 30
  start-page: 111
  year: 1999
  ident: 10.1111/jth.12767_bb0050
  article-title: Platelet microparticles: a wide‐angle perspective
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/S1040-8428(98)00044-4
– volume: 327
  start-page: 580
  year: 2010
  ident: 10.1111/jth.12767_bb0075
  article-title: Platelets amplify inflammation in arthritis via collagen‐dependent microparticle production
  publication-title: Science
  doi: 10.1126/science.1181928
– volume: 68
  start-page: 2667
  year: 2011
  ident: 10.1111/jth.12767_bb0010
  article-title: Membrane vesicles, current state‐of‐the‐art: emerging role of extracellular vesicles
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-011-0689-3
– volume: 236
  start-page: 199
  year: 1994
  ident: 10.1111/jth.12767_bb0265
  article-title: Formation of two‐dimensional arrays of annexin V on phosphatidylserine‐containing liposomes
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1994.1129
– volume: 8
  start-page: 2596
  year: 2010
  ident: 10.1111/jth.12767_bb0170
  article-title: Optical and non‐optical methods for detection and characterization of microparticles and exosomes
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2010.04074.x
– ident: 10.1111/jth.12767_bb0260
– volume: 131
  start-page: 234
  year: 2000
  ident: 10.1111/jth.12767_bb0270
  article-title: Surface topography of the p3 and p6 Annexin V crystal forms determined by atomic force microscopy
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2000.4286
– volume: 12
  start-page: 614
  year: 2014
  ident: 10.1111/jth.12767_bb0145
  article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12554
– volume: 39
  start-page: 1695
  year: 2013
  ident: 10.1111/jth.12767_bb0080
  article-title: Microparticles are new biomarkers of septic shock‐induced disseminated intravascular coagulopathy
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-013-2993-x
– volume: 91
  start-page: 49
  year: 1998
  ident: 10.1111/jth.12767_bb0220
  article-title: Interference of chylomicrons in analysis of platelets by flow cytometry
  publication-title: Thromb Res
  doi: 10.1016/S0049-3848(98)00044-9
– volume: 85
  start-page: 175
  year: 2000
  ident: 10.1111/jth.12767_bb0205
  article-title: Flow cytometric detection of viruses
  publication-title: J Virol Methods
  doi: 10.1016/S0166-0934(99)00167-6
– volume: 31
  start-page: 15
  year: 2011
  ident: 10.1111/jth.12767_bb0115
  article-title: Cellular mechanisms underlying the formation of circulating microparticles
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.200956
– volume: 2
  start-page: 20389
  year: 2013
  ident: 10.1111/jth.12767_bb0020
  article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v2i0.20389
– volume: 329
  start-page: 112
  year: 2004
  ident: 10.1111/jth.12767_bb0240
  article-title: Measurement of the affinity and cooperativity of annexin V–membrane binding under conditions of low membrane occupancy
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2004.02.043
– volume: 1
  start-page: 2561
  year: 2003
  ident: 10.1111/jth.12767_bb0100
  article-title: Human cell‐derived microparticles promote thrombus formation in vivo in a tissue factor‐dependent manner
  publication-title: J Thromb Haemost
  doi: 10.1046/j.1538-7836.2003.00456.x
– volume: 9
  start-page: 1216
  year: 2011
  ident: 10.1111/jth.12767_bb0175
  article-title: A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2011.04283.x
– volume: 736
  start-page: 57
  year: 1983
  ident: 10.1111/jth.12767_bb0085
  article-title: Changes in membrane phospholipid distribution during platelet activation
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(83)90169-4
– volume: 125
  start-page: 511
  year: 2010
  ident: 10.1111/jth.12767_bb0070
  article-title: Increased microparticle tissue factor activity in cancer patients with Venous Thromboembolism
  publication-title: Thromb Res
  doi: 10.1016/j.thromres.2009.09.019
– volume: 79
  start-page: 380
  year: 1992
  ident: 10.1111/jth.12767_bb0210
  article-title: Defective Ca2 + ‐induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome
  publication-title: Blood
  doi: 10.1182/blood.V79.2.380.380
– volume: 32
  start-page: 1054
  year: 2012
  ident: 10.1111/jth.12767_bb0255
  article-title: High‐sensitivity flow cytometry provides access to standardized measurement of small‐size microparticles—brief report
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.244616
– ident: 10.1111/jth.12767_bb0230
– volume: 101
  start-page: 942
  year: 1985
  ident: 10.1111/jth.12767_bb0035
  article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes
  publication-title: J Cell Biol
  doi: 10.1083/jcb.101.3.942
– volume: 1636
  start-page: 119
  year: 2004
  ident: 10.1111/jth.12767_bb0135
  article-title: Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2003.07.003
– volume: 82
  start-page: 1192
  year: 1993
  ident: 10.1111/jth.12767_bb0065
  article-title: Complement‐induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria
  publication-title: Blood
  doi: 10.1182/blood.V82.4.1192.1192
– volume: 265
  start-page: 4923
  year: 1990
  ident: 10.1111/jth.12767_bb0235
  article-title: Binding of vascular anticoagulant alpha (VAC α) to planar phospholipid bilayers
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)34062-1
– volume: 9
  start-page: 654
  year: 2007
  ident: 10.1111/jth.12767_bb0040
  article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1596
– volume: 27
  start-page: 350
  year: 1979
  ident: 10.1111/jth.12767_bb0190
  article-title: Detection and discrimination of individual viruses by flow cytometry
  publication-title: J Histochem Cytochem
  doi: 10.1177/27.1.374599
– volume: 335
  start-page: 143
  year: 2009
  ident: 10.1111/jth.12767_bb0165
  article-title: Endothelial microparticles in diseases
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-008-0710-9
– volume: 10
  start-page: 437
  year: 2012
  ident: 10.1111/jth.12767_bb0120
  article-title: Impact of pre‐analytical parameters on the measurement of circulating microparticles: towards standardization of protocol
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2011.04610.x
– volume: 95
  start-page: 288
  year: 2008
  ident: 10.1111/jth.12767_bb0130
  article-title: Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools
  publication-title: Vox Sang
  doi: 10.1111/j.1423-0410.2008.01101.x
– volume: 10
  start-page: 919
  year: 2012
  ident: 10.1111/jth.12767_bb0180
  article-title: Single vs. swarm detection of microparticles and exosomes by flow cytometry
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2012.04683.x
– volume: 65
  start-page: 45
  year: 1999
  ident: 10.1111/jth.12767_bb0200
  article-title: Enumeration of marine viruses in culture and natural samples by flow cytometry
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.1.45-52.1999
– volume: 2
  start-page: 270
  year: 2011
  ident: 10.1111/jth.12767_bb0225
  article-title: Annexin‐A5 assembled into two‐dimensional arrays promotes cell membrane repair
  publication-title: Nat Commun
  doi: 10.1038/ncomms1270
– volume: 108
  start-page: 1284
  year: 2011
  ident: 10.1111/jth.12767_bb0125
  article-title: Microparticles in hemostasis and thrombosis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.233056
– volume: 103
  start-page: 4545
  year: 2004
  ident: 10.1111/jth.12767_bb0105
  article-title: Induction of microparticle‐ and cell‐associated intravascular tissue factor in human endotoxemia
  publication-title: Blood
  doi: 10.1182/blood-2003-03-0713
– volume: 117
  start-page: e39
  year: 2011
  ident: 10.1111/jth.12767_bb0110
  article-title: Detection and isolation of cell‐derived microparticles are compromised by protein complexes resulting from shared biophysical parameters
  publication-title: Blood
  doi: 10.1182/blood-2010-09-307595
– reference: 22328775 - Arterioscler Thromb Vasc Biol. 2012 Apr;32(4):1054-8
– reference: 8107105 - J Mol Biol. 1994 Feb 11;236(1):199-208
– reference: 7688991 - Blood. 1993 Aug 15;82(4):1192-6
– reference: 20110505 - Science. 2010 Jan 29;327(5965):580-3
– reference: 23793890 - Intensive Care Med. 2013 Oct;39(10):1695-703
– reference: 23809109 - J Thromb Haemost. 2013 Jun;11 Suppl 1:36-45
– reference: 9700854 - Thromb Res. 1998 Jul 1;91(1):49-52
– reference: 10716350 - J Virol Methods. 2000 Mar;85(1-2):175-82
– reference: 6418205 - Biochim Biophys Acta. 1983 Dec 7;736(1):57-66
– reference: 21257195 - Thromb Res. 2011 Apr;127(4):370-7
– reference: 1545126 - J Immunol. 1992 Apr 1;148(7):2207-16
– reference: 16085777 - Biophys J. 2005 Nov;89(5):3372-85
– reference: 17531844 - Int Rev Neurobiol. 2007;79:227-68
– reference: 11052896 - J Struct Biol. 2000 Sep;131(3):234-9
– reference: 19854471 - Thromb Res. 2010 Jun;125(6):511-2
– reference: 21560073 - Cell Mol Life Sci. 2011 Aug;68(16):2667-88
– reference: 16990554 - Arterioscler Thromb Vasc Biol. 2006 Dec;26(12):2594-604
– reference: 12909311 - Cardiovasc Res. 2003 Aug 1;59(2):277-87
– reference: 11356064 - J Struct Biol. 2001 Jan;133(1):55-63
– reference: 14988149 - Blood. 2004 Jun 15;103(12):4545-53
– reference: 14750130 - Cytometry A. 2004 Feb;57(2):94-9
– reference: 2993317 - J Cell Biol. 1985 Sep;101(3):942-8
– reference: 22722367 - Nat Protoc. 2012 Jul;7(7):1311-26
– reference: 21041717 - Blood. 2011 Jan 27;117(4):e39-48
– reference: 14738565 - J Thromb Haemost. 2003 Dec;1(12):2561-8
– reference: 20880256 - J Thromb Haemost. 2010 Dec;8(12):2596-607
– reference: 22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705
– reference: 23249271 - Clin Sci (Lond). 2013 Apr;124(7):423-41
– reference: 21468022 - Nat Commun. 2011;2:270
– reference: 10439058 - Crit Rev Oncol Hematol. 1999 Apr;30(2):111-42
– reference: 22394434 - J Thromb Haemost. 2012 May;10(5):919-30
– reference: 6025241 - Br J Haematol. 1967 May;13(3):269-88
– reference: 9028933 - Blood. 1997 Feb 15;89(4):1121-32
– reference: 24009890 - J Extracell Vesicles. 2013 Feb 15;2:null
– reference: 374599 - J Histochem Cytochem. 1979 Jan;27(1):350-2
– reference: 22212198 - J Thromb Haemost. 2012 Mar;10(3):437-46
– reference: 9054648 - Br J Haematol. 1997 Mar;96(3):458-63
– reference: 17486113 - Nat Cell Biol. 2007 Jun;9(6):654-9
– reference: 21160064 - Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):15-26
– reference: 15136173 - Anal Biochem. 2004 Jun 1;329(1):112-9
– reference: 21566224 - Circ Res. 2011 May 13;108(10):1284-97
– reference: 24618123 - J Thromb Haemost. 2014 May;12(5):614-27
– reference: 19138258 - Vox Sang. 2008 Nov;95(4):288-97
– reference: 24009894 - J Extracell Vesicles. 2013 May 27;2:null
– reference: 23335161 - Cytometry A. 2013 Mar;83(3):301-5
– reference: 2138622 - J Biol Chem. 1990 Mar 25;265(9):4923-8
– reference: 24511371 - J Extracell Vesicles. 2014 Feb 04;3:null
– reference: 21481178 - J Thromb Haemost. 2011 Jun;9(6):1216-24
– reference: 18989704 - Cell Tissue Res. 2009 Jan;335(1):143-51
– reference: 15456497 - J Thromb Haemost. 2004 Oct;2(10):1842-51
– reference: 1730083 - Blood. 1992 Jan 15;79(2):380-8
– reference: 15164759 - Biochim Biophys Acta. 2004 Mar 22;1636(2-3):119-28
– reference: 9872758 - Appl Environ Microbiol. 1999 Jan;65(1):45-52
SSID ssj0019520
Score 2.4180906
Snippet Summary Background Plasma contains cell‐derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications...
Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease...
Summary Background Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications...
Background: Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Annexin A5
Biochemistry
Biochemistry, Molecular Biology
Bioengineering
Biomarkers - blood
blood plasma
Cell-Derived Microparticles - chemistry
Cell-Derived Microparticles - ultrastructure
cell‐derived microparticles
Coagulation
electron microscopy
Flow Cytometry
Fluorescent Dyes
Humans
Life Sciences
Male
Microscopy, Electron
Phenotype
phosphatidylserines
Phosphatidylserines - blood
Predictive Value of Tests
Title A simple flow cytometry method improves the detection of phosphatidylserine‐exposing extracellular vesicles
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjth.12767
https://www.ncbi.nlm.nih.gov/pubmed/25348269
https://www.proquest.com/docview/1651468812
https://www.proquest.com/docview/1652459434
https://hal.science/hal-03284501
https://pubmed.ncbi.nlm.nih.gov/PMC4359678
Volume 13
WOSCitedRecordID wos000349309600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1538-7836
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0019520
  issn: 1538-7933
  databaseCode: WIN
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1538-7836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019520
  issn: 1538-7933
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71gRAX3o9AqQziwCUoTuw4EacVsFpQWVWoFXuLHNtpVtomq01a2Bs_gd_IL8HjZKOuChISlyiJnYftGfuzZ_wNwCvGlBTMGF9rFvos14mfKKH9uIgUTRKmZaRcsAkxnSazWXq8A283e2E6fohhwQ01w_XXqOAyb64qeVu-oaGIxS7sUxolGLchZMeDCSHljpPRabQVwqinFXJuPJtHtwaj3RJdIa_jzOvukldhrBuHxnf-qwR34XYPP8mok5d7sGOq-3Dzc29gfwDnI9LMkTCYFIv6G1Hrtj437WpNukjTZO7WIExDLG4k2rTOkasidUGWZd0sS9vOer1o3J7CXz9-mu_oFFadETsErCQaCdDrldgXOG-8h3A6_nDybuL3ERl8xVkk_DSXqYqlhWzC7aHXQiZIdcwkLYIoVGFYRDoOpGQWN3Ad5DlGuKJomlURgrFHsFfVlXkCJM5lUNguTvKUsYJymUpqeMzs4wVOEj14vWmaTPV05Rg1Y5EN05a2zFz1efByyLrsODr-mMm275COrNqT0VGG95BSkPGAXlIPDjbNn_W63GQ05rg_zZbIgxdDstVCrDVZmfrC5QkZR649Dx530jJ8KuRIIBSnHogtOdr6l-2Ual46pm-LZVOLJmxdODn6e-myTycTd_L037M-g1sW_fHOBf0A9trVhXkON9RlO29Wh06Z7FHMkkPYf_9lfHpkr75-nP4Gk4gnmA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61BVEu_FMCBQziwCUoTuw4kbisENUWtisOi-gtcmyHrLRNVpu0sDcegWfkSfA42airgoTELYrtJLZn4s-emW8AXjGmpGDG-Fqz0Ge5TvxECe3HRaRokjAtI-WSTYjpNDk9TT_twNtNLEzHDzEcuKFmuP81KjgeSF_W8rZ8Q0MRi124xizQwMQNX46ngw0h5Y6U0am0lcKo5xVyfjybplur0W6JvpBXgeZVf8nLONYtREe3_68Ld-BWD0DJqJOYu7Bjqntw46Q3sd-HsxFp5kgZTIpF_Y2odVufmXa1Jl2uaTJ3pxCmIRY5Em1a58pVkbogy7JulqWdab1eNC6q8NePn-Y7uoVVX4ldBFYSzQTo90rsA5w_3gP4fPR-9m7s9zkZfMVZJPw0l6mKpQVtwkXRayETJDtmkhZBFKowLCIdB1Iyixy4DvIcc1xRNM6qCOHYQ9ir6so8AhLnMijsT07ylLGCcplKanjMbPMCt4kevN7MTaZ6wnLMm7HIho1LW2Zu-Dx4OVRddiwdf6xkJ3goR17t8WiS4T0kFWQ8oBfUg8PN_Ge9NjcZjTlGqNkeefBiKLZ6iKMmK1Ofuzoh48i258FBJy7Dq0KOFEJx6oHYEqStb9kuqeal4_q2aDa1eMKOhROkv_cu-zAbu4vH_171OeyPZyeTbHI8_fgEblosyDuH9EPYa1fn5ilcVxftvFk9c5r1G6wYKFk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61W1RxofwTWsAgDlxSxYmdH6mXFWW1wLKqUCv1Fjm2Q1baJqtNWtgbj8Az8iT1ONmoq4KExC2K7ST2zMSf7ZlvAN4yJkXEtHaVYr7LMhW7sYyUG-aBpHHMlAikTTYRTafx-XlysgVH61iYlh-i33BDy7D_azRwvVD5TStvikPqR2G0DTsMk8gMYOf46-hs0p8iJNzSMlqjNnoYdMxC1pNn3XhjPtou0BvyNtS87TF5E8naqWi093-duA_3OghKhq3OPIAtXT6E3S_dIfsjuBiSeoakwSSfV9-JXDXVhW6WK9JmmyYzuw-ha2KwI1G6sc5cJalysiiqelEYWavVvLZxhb9__tI_0DGs_EbMNLAUeFCAnq_EPMB65D2Gs9GH0_djt8vK4ErOgshNMpHIUBjYFtk4ehWJGOmOmaC5F_jS9_NAhZ4QzGAHrrwswyxXFI9nZYCA7AkMyqrUz4CEmfBy85sTPGEsp1wkgmoeMtM8x4WiA-_WskllR1mOmTPmab90aYrUDp8Db_qqi5an44-VjID7cmTWHg8nKd5DWkHGPXpFHThYyz_t7LlOacgxRs30yIHXfbGxRBw1Uerq0tbxjR6ygDnwtFWX_lU-RxKhMHEg2lCkjW_ZLClnhWX7Nng2MYjCjIVVpL_3Lv10OrYXz_-96ivYPTkepZOP08_7cNeAQd56pB_AoFle6hdwR141s3r5sjOta6W-KQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+flow+cytometry+method+improves+the+detection+of+phosphatidylserine-exposing+extracellular+vesicles&rft.jtitle=Journal+of+thrombosis+and+haemostasis&rft.au=Arraud%2C+N&rft.au=Gounou%2C+C&rft.au=Linares%2C+R&rft.au=Brisson%2C+A+R&rft.date=2015-02-01&rft.pub=BlackWell+Publishing+Ltd&rft.issn=1538-7933&rft.eissn=1538-7836&rft.volume=13&rft.issue=2&rft.spage=237&rft.epage=247&rft_id=info:doi/10.1111%2Fjth.12767&rft_id=info%3Apmid%2F25348269&rft.externalDocID=PMC4359678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7933&client=summon