Assessing the utility of conserving evolutionary history
ABSTRACT It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and area...
Gespeichert in:
| Veröffentlicht in: | Biological reviews of the Cambridge Philosophical Society Jg. 94; H. 5; S. 1740 - 1760 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.10.2019
Wiley |
| Schlagworte: | |
| ISSN: | 1464-7931, 1469-185X, 1469-185X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | ABSTRACT
It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile.
Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. |
|---|---|
| AbstractList | It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human-centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human-centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most - but not all - arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity-ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here.It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human-centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most - but not all - arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity-ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. ABSTRACT It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here. |
| Author | Aze, Tracy Grenyer, Richard Chisholm, Chelsea Tucker, Caroline M. Díaz, Sandra Pennell, Matthew W. Winter, Marten Mooers, Arne O. Mazel, Florent Huang, Danwei Pearse, William D. Cantalapiedra, Juan L. Cadotte, Marc W. |
| AuthorAffiliation | 7 Departamento de Ciencias de la Vida Universidad de Alcalá 28805 Alcalá de Henares Madrid Spain 15 Department of Biology & Ecology Center 5205 Old Main Hill, Utah State University Logan UT 84322, U.S.A 1 Department of Biology University of North Carolina at Chapel Hill, Coker Hall, CB #3280 120 South Road Chapel Hill, NC 27599‐3280 U.S.A 8 Department of Ecology and Evolution Quartier UNIL‐Sorge Batiment Biophore CH‐1015 Lausanne Switzerland 17 German Centre for Integrative Biodiversity Research (iDiv) Deutscher Platz 5E, 04103 Leipzig Germany 9 Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Casilla de Correo 495 5000 Córdoba Argentina 11 Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore, 16 Science Drive 4, 117558 Singapore 12 Department of Biological Sciences 8888 University Drive, |
| AuthorAffiliation_xml | – name: 2 Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS 34090 Montpellier France – name: 17 German Centre for Integrative Biodiversity Research (iDiv) Deutscher Platz 5E, 04103 Leipzig Germany – name: 4 Department of Biological Sciences University of Toronto Scarborough, 1265 Military Trail Toronto ON M1C 1A4 Canada – name: 13 Department of Botany 2329 West Mall, University of British Columbia Vancouver BC V6T 1Z4 Canada – name: 5 Department of Ecology and Evolutionary Biology University of Toronto, 25 Willcocks Street Toronto ON M5S 3B2 Canada – name: 12 Department of Biological Sciences 8888 University Drive, Simon Fraser University Burnaby BC V5A 1S6, Canada – name: 10 School of Geography and the Environment South Parks Road, University of Oxford Oxford OX1 3QY U.K – name: 3 School of Earth and Environment, Maths/Earth and Environment Building University of Leeds Leeds LS2 9JT U.K – name: 8 Department of Ecology and Evolution Quartier UNIL‐Sorge Batiment Biophore CH‐1015 Lausanne Switzerland – name: 7 Departamento de Ciencias de la Vida Universidad de Alcalá 28805 Alcalá de Henares Madrid Spain – name: 9 Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba, Casilla de Correo 495 5000 Córdoba Argentina – name: 1 Department of Biology University of North Carolina at Chapel Hill, Coker Hall, CB #3280 120 South Road Chapel Hill, NC 27599‐3280 U.S.A – name: 11 Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore, 16 Science Drive 4, 117558 Singapore – name: 14 Biodiversity Research Centre 2212 Main Mall, University of British Columbia Vancouver BC V6T 1Z4 Canada – name: 16 Department of Zoology South Parks Road, University of British Columbia Vancouver BC V6T 1Z4 Canada – name: 6 Museum für Naturkunde, Leibniz‐Institut für Evolutions und Biodiversitätsforschung, Invalidenstraße 43 10115 Berlin Germany – name: 15 Department of Biology & Ecology Center 5205 Old Main Hill, Utah State University Logan UT 84322, U.S.A |
| Author_xml | – sequence: 1 givenname: Caroline M. orcidid: 0000-0002-4871-2010 surname: Tucker fullname: Tucker, Caroline M. email: carolinetucker@unc.edu organization: Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS – sequence: 2 givenname: Tracy surname: Aze fullname: Aze, Tracy organization: University of Leeds – sequence: 3 givenname: Marc W. surname: Cadotte fullname: Cadotte, Marc W. organization: University of Toronto, 25 Willcocks Street – sequence: 4 givenname: Juan L. surname: Cantalapiedra fullname: Cantalapiedra, Juan L. organization: Universidad de Alcalá – sequence: 5 givenname: Chelsea surname: Chisholm fullname: Chisholm, Chelsea organization: Quartier UNIL‐Sorge Batiment Biophore CH‐1015 Lausanne – sequence: 6 givenname: Sandra surname: Díaz fullname: Díaz, Sandra organization: Universidad Nacional de Córdoba, Casilla de Correo 495 – sequence: 7 givenname: Richard surname: Grenyer fullname: Grenyer, Richard organization: South Parks Road, University of Oxford – sequence: 8 givenname: Danwei orcidid: 0000-0003-3365-5583 surname: Huang fullname: Huang, Danwei organization: National University of Singapore, 16 Science Drive 4, 117558 – sequence: 9 givenname: Florent orcidid: 0000-0003-0572-9901 surname: Mazel fullname: Mazel, Florent organization: 2212 Main Mall, University of British Columbia – sequence: 10 givenname: William D. surname: Pearse fullname: Pearse, William D. organization: 5205 Old Main Hill, Utah State University – sequence: 11 givenname: Matthew W. surname: Pennell fullname: Pennell, Matthew W. organization: South Parks Road, University of British Columbia – sequence: 12 givenname: Marten surname: Winter fullname: Winter, Marten organization: German Centre for Integrative Biodiversity Research (iDiv) – sequence: 13 givenname: Arne O. surname: Mooers fullname: Mooers, Arne O. email: amooers@sfu.ca organization: 8888 University Drive, Simon Fraser University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31149769$$D View this record in MEDLINE/PubMed https://cnrs.hal.science/hal-04960472$$DView record in HAL |
| BookMark | eNp9kU1LJDEQhoMofq0H_4A0eFkPrfnqdHIRRlFnYWBBXPEWujOJE-lJNOnuZf69aUdndWDNJUnVU29V8u6BTeedBuAQwVOU1lkd-lOEC8w2wC6iTOSIFw-bb2eal4KgHbAX4xOEKcDINtghCFFRMrEL-ChGHaN1j1k701nX2sa2i8ybTHkXdeiHjO59kzLeVWGRzWxsfVj8AFumaqI-eN_3wZ_rq7vLcT75ffPrcjTJVUEJy40iJVcGG2oEqrXicFpzgU1V1gYzxowghVAY4ymEkEzrQimuDUoXbjDUJdkH50vd566e66nSrg1VI5-DnadppK-s_JpxdiYffS8ZL3DBcBI4WQrM1srGo4kcYpAKBmmJe5TYn-_Ngn_pdGzl3Ealm6Zy2ndRYkwIpyXFNKHHa-iT74JLX5EoTjmFCA_Njz5Pv-r_YcC_6VTwMQZtVgiCcjBXJnPlm7mJPVtjlW2rwZf0cNt8V_HXNnrxf2l5cXu_rHgFvfm1Iw |
| CitedBy_id | crossref_primary_10_1080_01650521_2025_2530818 crossref_primary_10_1111_ddi_13179 crossref_primary_10_1139_cjfr_2020_0055 crossref_primary_10_1016_j_earscirev_2024_104767 crossref_primary_10_1093_sysbio_syaa062 crossref_primary_10_1177_19400829251363214 crossref_primary_10_1016_j_biocon_2023_109988 crossref_primary_10_1038_s44185_023_00024_4 crossref_primary_10_1016_j_pecon_2024_01_006 crossref_primary_10_1038_s41559_021_01438_8 crossref_primary_10_1371_journal_pbio_3003356 crossref_primary_10_1016_j_biocon_2022_109584 crossref_primary_10_1016_j_biocon_2023_110223 crossref_primary_10_1016_j_palaeo_2021_110672 crossref_primary_10_1007_s00285_023_01988_4 crossref_primary_10_1111_mec_16682 crossref_primary_10_1126_science_abd5110 crossref_primary_10_1007_s11692_022_09570_4 crossref_primary_10_1038_s41598_022_11739_y crossref_primary_10_1016_j_scitotenv_2020_140380 crossref_primary_10_1111_1440_1703_12518 crossref_primary_10_1111_cobi_13802 crossref_primary_10_1111_rec_14292 crossref_primary_10_1002_ece3_9012 crossref_primary_10_1016_j_ympev_2024_108203 crossref_primary_10_1111_geb_13823 crossref_primary_10_3390_d14050334 crossref_primary_10_1016_j_scitotenv_2021_148874 crossref_primary_10_1093_botlinnean_boaa049 crossref_primary_10_1038_s41467_021_23861_y crossref_primary_10_1016_j_tree_2022_05_006 crossref_primary_10_1016_j_biocon_2022_109876 crossref_primary_10_1002_inc3_70026 crossref_primary_10_1016_j_foreco_2021_119452 crossref_primary_10_1016_j_jclepro_2024_143783 crossref_primary_10_1038_s41598_021_03616_x crossref_primary_10_1111_ecog_07149 crossref_primary_10_1111_1365_2435_14140 crossref_primary_10_1002_ecs2_70045 crossref_primary_10_1016_j_biocon_2025_111088 crossref_primary_10_1111_gcb_70006 crossref_primary_10_1016_j_biocon_2024_110853 crossref_primary_10_1016_j_envexpbot_2019_103853 crossref_primary_10_1007_s10643_021_01185_2 crossref_primary_10_1038_s41559_021_01414_2 crossref_primary_10_1016_j_tree_2021_12_011 crossref_primary_10_1038_s41467_020_16449_5 crossref_primary_10_1002_ece3_70722 crossref_primary_10_1371_journal_pbio_3001991 crossref_primary_10_1111_1365_2745_13245 crossref_primary_10_1093_zoolinnean_zlac080 crossref_primary_10_1111_jbi_14970 crossref_primary_10_1111_jbi_15148 crossref_primary_10_1002_fee_2474 crossref_primary_10_1093_sysbio_syad072 crossref_primary_10_1038_s41467_020_16410_6 crossref_primary_10_1007_s00285_022_01779_3 crossref_primary_10_1007_s42995_025_00313_w crossref_primary_10_1111_ddi_13526 crossref_primary_10_1111_ddi_13609 crossref_primary_10_1038_s41598_023_27946_0 crossref_primary_10_1007_s11406_021_00422_7 crossref_primary_10_1016_j_biocon_2022_109492 crossref_primary_10_1038_s41586_022_04664_7 crossref_primary_10_1111_ecog_05660 crossref_primary_10_1016_j_jnc_2025_127017 crossref_primary_10_1111_geb_13762 crossref_primary_10_1002_ecs2_3832 crossref_primary_10_1016_j_scitotenv_2022_161151 crossref_primary_10_1007_s10531_025_03137_3 |
| Cites_doi | 10.1038/s41559-017-0151 10.1016/0006-3207(91)90030-D 10.1038/35012241 10.1086/682022 10.1038/nature22368 10.1016/j.biocon.2008.10.006 10.1111/j.1558-5646.2008.00317.x 10.1038/s41586-018-0273-1 10.1111/j.2041-210X.2012.00196.x 10.1002/ecy.2349 10.1016/j.cub.2014.03.011 10.1073/pnas.0709069104 10.1111/j.1523-1739.2010.01455.x 10.1073/pnas.091092498 10.1017/9781139024105 10.1890/120126 10.1111/ele.12796 10.2307/2999760 10.1371/journal.pbio.0040415 10.1016/j.tree.2006.02.002 10.1071/PC140286 10.1111/j.1365-294X.2009.04311.x 10.1111/j.1471-8286.2006.01522.x 10.1038/nature09678 10.1073/pnas.0408648102 10.1038/nature10824 10.1111/geb.12158 10.1111/j.0014-3820.2003.tb00285.x 10.1046/j.1365-2435.2002.00664.x 10.1086/419657 10.1007/978-3-319-22461-9 10.1038/nclimate2113 10.1890/11-0599.1 10.1073/pnas.0906829107 10.1146/annurev.ecolsys.28.1.495 10.1007/s100219900062 10.1016/0006-3207(92)91202-4 10.1111/jvs.12399 10.1126/science.1085510 10.1146/annurev-ecolsys-110411-160304 10.1111/j.1461-0248.2009.01314.x 10.1016/j.biocon.2016.03.037 10.1111/j.1558-5646.2007.00068.x 10.1073/pnas.1202242109 10.1126/science.1103960 10.1098/rspb.2016.0536 10.1890/11-0392.1 10.1126/science.235.4785.167 10.1111/j.1365-2745.2011.01945.x 10.1126/science.1217909 10.1038/nature11148 10.1002/evl3.4 10.1126/science.253.5021.750 10.1038/s41559-017-0448-4 10.1016/j.tree.2012.10.015 10.1038/nature05587 10.1038/nature22897 10.1073/pnas.0709763105 10.1038/s41467-019-08600-8 10.1111/j.1755-263X.2008.00013.x 10.1890/04-0922 10.1093/jpe/rtp007 10.1080/10635150802302427 10.1111/gcb.12963 10.1016/j.tree.2013.11.001 10.1016/j.cosust.2014.11.002 10.1126/science.1197479 10.1126/science.aat6016 10.1073/pnas.96.4.1463 10.1002/ecm.1267 10.1126/science.1215855 10.1016/j.biocon.2006.05.028 10.1111/j.1461-0248.2006.00924.x 10.1016/0006-3207(92)91201-3 10.1111/j.1752-4571.2007.00013.x 10.1890/080216 10.1098/rspb.2006.3630 10.1146/annurev-ecolsys-120213-091917 10.1017/CBO9780511614927 10.1016/j.tree.2011.08.006 10.1016/j.jtbi.2017.11.005 10.1126/science.1069349 10.1016/j.cosust.2018.11.003 10.1098/rstb.2012.0080 10.7208/chicago/9780226500829.001.0001 10.1111/j.1461-0248.2006.00963.x 10.1073/pnas.1706461114 10.1111/j.1523-1739.2006.00555.x 10.1111/ddi.12556 10.1111/j.1558-5646.2007.00077.x 10.1093/sysbio/syp106 10.1111/j.1365-2745.2010.01753.x 10.1073/pnas.1513125112 10.1371/journal.pbio.1001569 10.2307/2999617 10.1111/j.1365-2745.2008.01395.x 10.1007/s10531-017-1441-6 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 10.1098/rspb.2014.2620 10.1038/nature05202 10.1073/pnas.1409886112 10.1080/0376835042000288833 10.1016/j.landurbplan.2016.08.003 10.1111/ddi.12188 10.1038/35083573 10.1890/07-1206.1 10.1111/nyas.12157 10.1073/pnas.1702078114 10.1146/annurev-ecolsys-110411-160331 10.1111/1365-2435.12425 10.1016/j.landurbplan.2006.03.007 10.1016/0169-5347(92)90107-M 10.1111/j.1469-185X.2007.00028.x 10.1038/35012221 10.1126/science.aaf4381 10.1111/ele.12073 10.1111/j.1744-7429.2001.tb00232.x 10.1146/annurev-arplant-042916-040949 10.1111/j.1461-0248.2008.01189.x 10.1038/s41598-017-07037-7 10.1038/nature09060 10.1111/j.1461-0248.2010.01493.x 10.1038/srep30965 10.1126/science.1246752 10.1111/j.0030-1299.2007.15559.x 10.1073/pnas.0704716104 10.2307/3546381 10.1111/geb.12669 10.1038/s41598-017-09084-6 10.1098/rstb.2011.0024 10.1038/430741a 10.1126/science.286.5439.542 10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2 10.1038/srep30531 10.1073/pnas.1104015108 10.1086/341574 10.1007/978-94-007-3991-8 10.1111/j.1461-0248.2008.01215.x 10.1073/pnas.1602404113 10.1126/science.aao2117 10.1890/10-1245.1 10.1126/science.1064088 10.1038/s41598-018-33671-w 10.1111/j.1461-0248.2005.00753.x 10.1111/j.1365-2435.2009.01596.x 10.1038/srep34229 10.1016/j.tree.2014.06.005 10.1093/sysbio/syu030 10.1126/science.aap8826 10.1073/pnas.2235465100 10.1146/annurev.ecolsys.28.1.243 10.1371/journal.pbio.1000620 10.1111/j.1365-294X.2007.03529.x 10.1086/208926 10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2 10.1111/ecog.00623 10.2307/3546010 10.1038/35012251 10.1111/j.1558-5646.2010.01025.x 10.1016/S0022-0981(00)00194-5 10.1126/science.1194513 10.1038/s41467-018-05126-3 10.1111/geb.12146 10.1371/journal.pone.0011618 10.1086/519400 10.1093/sysbio/syx054 10.1111/j.1469-185X.2010.00171.x 10.1046/j.1461-0248.2001.00189.x 10.1002/ecy.1507 10.1111/j.1461-0248.2009.01333.x 10.1007/s10531-008-9361-0 10.1111/brv.12252 10.1098/rspb.2018.0971 10.1111/gcb.13553 10.1126/science.253.5021.758 10.1017/CBO9780511614927.005 10.1007/978-3-319-22461-9_2 10.1371/journal.pone.0005695 10.1017/CBO9780511614927.018 10.1126/science.286.5442.1123 10.1126/science.1203060 10.1038/nature05237 10.1086/284840 10.1126/science.288.5464.328 10.1146/annurev.ecolsys.33.010802.150448 10.1016/j.biocon.2018.06.014 10.1086/209292 10.1038/s41467-019-08603-5 10.1126/science.1116030 10.1073/pnas.102163299 10.1111/1365-2745.12903 10.1126/science.277.5330.1300 10.1007/978-3-319-22461-9_3 10.1038/379718a0 10.1371/journal.pone.0000296 10.1111/j.1523-1739.2012.01845.x 10.1111/ele.12035 10.1016/j.biocon.2007.06.005 10.1890/ES12-00380.1 10.1086/673915 10.1038/nature05956 10.1016/S0169-5347(01)02283-2 10.1111/j.1461-0248.2008.01255.x |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Biological Reviews © 2019 Cambridge Philosophical Society Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. – notice: Biological Reviews © 2019 Cambridge Philosophical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 1XC 5PM |
| DOI | 10.1111/brv.12526 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Ecology Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Entomology Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library : Open Access journals [open access] url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Environmental Sciences |
| DocumentTitleAlternate | Assessing the utility of evolutionary history |
| EISSN | 1469-185X |
| EndPage | 1760 |
| ExternalDocumentID | PMC6852562 oai:HAL:hal-04960472v1 31149769 10_1111_brv_12526 BRV12526 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation funderid: MSRDP‐P03 – fundername: FONCyT – fundername: NSERC Natural Sciences and Engineering Council of Canada – fundername: Humboldt Foundation and the German Research Foundation – fundername: USDA Forest Service – fundername: National Science Foundation funderid: EF‐1802605; ABI‐1759965 – fundername: CONICET – fundername: European Commission funderid: H2020‐MSCA‐IF‐2014‐657951 – fundername: ; – fundername: ; grantid: MSRDP‐P03 – fundername: ; grantid: EF‐1802605; ABI‐1759965 – fundername: ; grantid: H2020‐MSCA‐IF‐2014‐657951 |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCQX ABCUV ABEML ABITZ ABJNI ABLJU ABPVW ABQWH ABVKB ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACGOF ACMXC ACPOU ACPRK ACQPF ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKSM AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMXJE BROTX BRXPI BY8 C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M K48 KBYEO L7B L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 RXW SUPJJ SV3 TAE TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ X6Y XG1 XOL XSW YZZ ZXP ~02 ~IA ~WT AAMMB AAYXX ABGDZ ABUFD AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 1XC 5PM |
| ID | FETCH-LOGICAL-c5436-fc378cf2f4f91bec80db892fa7bf2666f9359c222d0003db5cc8ef10008f20e73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485285900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1464-7931 1469-185X |
| IngestDate | Tue Nov 04 01:59:50 EST 2025 Tue Oct 14 21:02:48 EDT 2025 Fri Sep 05 10:55:45 EDT 2025 Wed Aug 13 11:00:11 EDT 2025 Thu Apr 03 07:03:50 EDT 2025 Tue Nov 18 22:28:52 EST 2025 Sat Nov 29 05:35:54 EST 2025 Wed Jan 22 16:39:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | functional diversity conservation ecosystem function extinction phylogenetic diversity phenotypic diversity benefits to people prioritization |
| Language | English |
| License | Attribution 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5436-fc378cf2f4f91bec80db892fa7bf2666f9359c222d0003db5cc8ef10008f20e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4871-2010 0000-0003-0572-9901 0000-0003-3365-5583 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12526 |
| PMID | 31149769 |
| PQID | 2284840122 |
| PQPubID | 36769 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6852562 hal_primary_oai_HAL_hal_04960472v1 proquest_miscellaneous_2233847424 proquest_journals_2284840122 pubmed_primary_31149769 crossref_primary_10_1111_brv_12526 crossref_citationtrail_10_1111_brv_12526 wiley_primary_10_1111_brv_12526_BRV12526 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England – name: Cambridge |
| PublicationTitle | Biological reviews of the Cambridge Philosophical Society |
| PublicationTitleAlternate | Biol Rev Camb Philos Soc |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | 2002; 16 2018; 285 2004; 21 2007; 104 2012; 482 2013; 4 2012; 486 2010; 13 2010; 107 2019; 10 2013; 368 2017; 87 2002; 99 2010; 465 1997; 277 2003; 57 1999; 286 2000; 250 2014; 24 2008; 105 2014; 29 1998; 82 2011; 471 2017; 158 2014; 23 2007; 79 2018; 47 2014; 20 2009; 12 1992; 7 2018; 9 2018; 8 2011; 366 2006; 20 2018; 2 2010; 24 1990 2013; 2013 2007; 170 2006; 21 1987; 235 2013; 1289 2005; 102 2000; 405 2005; 75 2007; 61 2007; 2 2012; 27 2012; 26 1996; 379 2010; 5 1998; 12 2001; 412 1989 2006; 444 2009; 18 2006; 443 2018; 35 2007; 445 2007; 448 2012; 100 2018; 106 2017; 66 2018; 225 2017; 68 1998 2016; 97 1997 1997; 28 2008; 57 1994 2016; 204 2004; 306 2013; 183 2018; 27 2014; 45 1998; 66 2012; 109 2016; 283 2011; 9 2004; 430 2016; 6 2018; 359 2005; 8 2011; 92 2015; 112 2010; 330 2011; 86 2014; 37 2007; 82 2001; 33 2018; 99 2016; 27 2012; 43 2003; 100 2017; 546 2017; 7 2017; 1 2010; 59 2013; 28 1991; 55 2015; 186 2011; 99 1992; 19 2014; 63 2008; 1 2013; 280 1999; 80 2017; 114 2006; 133 2019; 363 2010; 64 2001; 294 2014; 4 2013; 16 2007; 139 2001 2013; 11 1999; 14 2016; 113 1982; 9 2016; 353 2011; 21 2005; 309 1988; 132 2001; 16 1999; 96 2000; 288 2008; 62 2012; 336 2001; 98 1991; 253 2009; 23 2017; 20 2015; 282 2015; 14 2002; 296 2012 2006; 9 2017; 23 2008; 17 2002; 33 2006; 273 2008 2007 2005 2006; 4 2008; 11 2008; 96 2003 1999; 2 1999; 6 2011; 332 2012; 93 2011; 108 1997; 72 2012; 3 2002; 29 2007; 116 2015; 29 2017; 92 2017; 15 2006; 87 2018; 559 2018; 438 2001; 4 1997; 79 2015; 21 2008; 89 2017 2016 2009; 4 2009; 142 2009; 2 2003; 300 1994; 2 1992; 61 2014; 344 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 Atkinson I. A. E. (e_1_2_10_7_1) 1989 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 Norton B. (e_1_2_10_135_1) 2003 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 Millennium Ecosystem Assessment (e_1_2_10_124_1) 2005 e_1_2_10_196_1 e_1_2_10_13_1 Williams P. H. (e_1_2_10_215_1) 1994 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 Eklund R. (e_1_2_10_52_1) 1997 e_1_2_10_211_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 Cantalapiedra J. L. (e_1_2_10_22_1) e_1_2_10_42_1 Agar N. (e_1_2_10_3_1) 2001 e_1_2_10_190_1 Hodgson J. (e_1_2_10_80_1) 1998; 12 e_1_2_10_212_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_31_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 Smith B. T. (e_1_2_10_176_1) 2017; 15 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 Shurin J. B. (e_1_2_10_173_1) 2005 e_1_2_10_143_1 e_1_2_10_45_1 Maier D. S. (e_1_2_10_111_1) 2018; 47 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_19_1 Verde Arregoita L. D. (e_1_2_10_202_1) 2013; 280 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 Vining J. (e_1_2_10_204_1) 1999; 6 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Faith D. P. (e_1_2_10_59_1) 2017 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 McNeely J. A. (e_1_2_10_123_1) 1990 e_1_2_10_24_1 e_1_2_10_108_1 Garnier E. (e_1_2_10_67_1) 2016 e_1_2_10_217_1 Lynch M. (e_1_2_10_106_1) 1998 e_1_2_10_157_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_50_1 Wilson E. O. (e_1_2_10_216_1) 2007 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 43 start-page: 183 year: 2012 end-page: 203 article-title: Coextinction and persistence of dependent species in a changing world publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 5 year: 2010 article-title: Plant trait diversity buffers variability in denitrification potential over changes in season and soil conditions publication-title: PLoS One – volume: 21 start-page: 3002 year: 2011 end-page: 3013 article-title: Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity publication-title: Ecological Applications – volume: 114 start-page: 10678 year: 2017 end-page: 10683 article-title: Extinction risk is most acute for the world's largest and smallest vertebrates publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 year: 2012 article-title: Incorporating geographical and evolutionary rarity into conservation prioritisation publication-title: Conservation Biology – volume: 9 start-page: 1146 year: 2006 end-page: 1156 article-title: Quantifying the evidence for biodiversity effects on ecosystem functioning and services publication-title: Ecology Letters – volume: 64 start-page: 2385 year: 2010 end-page: 2396 article-title: Early bursts of body size and shape evolution are rare in comparative data publication-title: Evolution – volume: 12 start-page: 843 year: 1998 end-page: 856 article-title: Does biodiversity determine ecosystem function? The Ecotron experiment reconsidered publication-title: Functional Ecology – volume: 9 start-page: 2888 year: 2018 article-title: Prioritizing phylogenetic diversity captures functional diversity unreliably publication-title: Nature Communications – volume: 9 start-page: 311 year: 1982 end-page: 322 article-title: Variety seeking behaviour: an interdisciplinary review publication-title: Journal of Consumer Research – volume: 235 start-page: 167 year: 1987 end-page: 171 article-title: Community diversity: relative roles of local and regional processes publication-title: Science – volume: 16 start-page: 646 year: 2001 end-page: 655 article-title: Vive la difference: plant functional diversity matters to ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 108 start-page: 17034 year: 2011 end-page: 17039 article-title: More diverse plant communities have higher functioning over time due to turnover in complementary dominant species publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 100 start-page: 12765 year: 2003 end-page: 12770 article-title: Biodiversity as spatial insurance in heterogeneous landscapes publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1990 – volume: 66 start-page: 1019 year: 2017 end-page: 1027 article-title: Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity publication-title: Systematic Biology – volume: 405 start-page: 234 year: 2000 end-page: 242 article-title: Consequences of changing biodiversity publication-title: Nature – volume: 82 start-page: 607 year: 2007 end-page: 645 article-title: A review of the relationships between human population density and biodiversity publication-title: Biological Reviews – volume: 2 start-page: 87 year: 2009 end-page: 93 article-title: Towards a trait‐based quantification of species niche publication-title: Journal of Plant Ecology – volume: 170 start-page: 271 year: 2007 end-page: 283 article-title: Trait evolution, community assembly, and the phylogenetic structure of ecological communities publication-title: American Naturalist – volume: 28 start-page: 199 year: 2013 end-page: 204 article-title: Phylogenetic diversity and nature conservation: where are we? publication-title: Trends in Ecology & Evolution – volume: 20 start-page: 286 year: 2014 end-page: 295 article-title: Public attitude towards conservation in New Zealand and awareness of threatened species publication-title: Pacific Conservation Biology – volume: 286 start-page: 542 year: 1999 end-page: 544 article-title: Stability and variability in competitive communities publication-title: Science – volume: 465 start-page: 609 year: 2010 end-page: 612 article-title: Population diversity and the portfolio effect in an exploited species publication-title: Nature – volume: 61 start-page: 942 year: 2007 end-page: 957 article-title: Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness publication-title: Evolution – year: 2008 – volume: 27 start-page: 646 year: 2016 end-page: 653 article-title: Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? publication-title: Journal of Vegetation Science – volume: 106 start-page: 1277 year: 2018 end-page: 1285 article-title: Scale dependence of the diversity–stability relationship in a temperate grassland publication-title: Journal of Ecology – volume: 296 start-page: 904 year: 2002 end-page: 907 article-title: Mammal population losses and the extinction crisis publication-title: Science – volume: 61 start-page: 1 year: 1992 end-page: 10 article-title: Conservation evaluation and phylogenetic diversity publication-title: Biological Conservation – volume: 14 start-page: 450 year: 1999 end-page: 453 article-title: Biotic homogenization: a few winners replacing many losers in the next mass extinction publication-title: Trends in Ecology & Evolution – volume: 99 start-page: 8139 year: 2002 end-page: 8144 article-title: Survival without recovery after mass extinctions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 250 start-page: 117 year: 2000 end-page: 131 article-title: Marine biodiversity and ecosystem services: an elusive link publication-title: Journal of Experimental Marine Biology and Ecology – volume: 93 start-page: S83 year: 2012 end-page: S98 article-title: Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient publication-title: Ecology – volume: 11 start-page: 1047 year: 2008 end-page: 1053 article-title: Nonrandom extinction leads to elevated loss of angiosperm evolutionary history publication-title: Ecology Letters – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 273 start-page: 2659 year: 2006 end-page: 2665 article-title: Biotic homogenization and changes in species diversity across human‐modified ecosystems publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 448 start-page: 925 year: 2007 end-page: 928 article-title: Non–random coextinctions in phylogenetically structured mutualistic networks publication-title: Nature – volume: 11 start-page: 251 year: 2013 end-page: 259 article-title: Threats to an ecosystem service: pressures on pollinators publication-title: Frontiers in Ecology and the Environment – volume: 99 start-page: 1473 year: 2018 end-page: 1479 article-title: On the relationship between phylogenetic diversity and trait diversity publication-title: Ecology – volume: 33 start-page: 723 year: 2001 end-page: 726 article-title: Frugivory and seed dispersal by the lowland tapir ( ) in Southeast Brazil publication-title: Biotropica – volume: 12 start-page: 22 year: 2009 end-page: 33 article-title: Loss of functional diversity under land use intensification across multiple taxa publication-title: Ecology Letters – volume: 253 start-page: 750 year: 1991 end-page: 752 article-title: An evolutionary basis for conservation strategies publication-title: Science – volume: 306 start-page: 1177 year: 2004 end-page: 1180 article-title: Extinction and ecosystem function in the marine benthos publication-title: Science – volume: 98 start-page: 5389 year: 2001 end-page: 5392 article-title: The biotic crisis and the future of evolution publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 4061 year: 2009 end-page: 4072 article-title: Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history publication-title: Molecular Ecology – volume: 87 start-page: S109 year: 2006 end-page: S122 article-title: Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale publication-title: Ecology – volume: 443 start-page: 989 year: 2006 end-page: 992 article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems publication-title: Nature – volume: 186 start-page: E33 year: 2015 end-page: E50 article-title: Model adequacy and the macroevolution of angiosperm functional traits publication-title: The American Naturalist – volume: 6 year: 2016 article-title: Evolutionary prediction of medicinal properties in the genus L publication-title: Scientific Reports – volume: 20 start-page: 989 year: 2017 end-page: 996 article-title: Functional traits explain ecosystem function through opposing mechanisms publication-title: Ecology Letters – volume: 23 start-page: 836 year: 2014 end-page: 847 article-title: Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity publication-title: Global Ecology and Biogeography – volume: 288 start-page: 328 year: 2000 end-page: 330 article-title: Nonrandom extinction and the loss of evolutionary history publication-title: Science – volume: 104 start-page: 20684 year: 2007 end-page: 20689 article-title: Incorporating plant functional diversity effects in ecosystem service assessments publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 645 year: 2004 end-page: 662 article-title: The value of flower tourism on the Bokkeveld Plateau – a botanical hotspot publication-title: Development Southern Africa – volume: 6 start-page: 21 year: 1999 end-page: 34 article-title: Values, emotions and desired outcomes reflected in public responses to forest management plans publication-title: Human Ecology Review – volume: 412 start-page: 72 year: 2001 end-page: 76 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature – volume: 309 start-page: 1239 year: 2005 end-page: 1241 article-title: Multiple causes of high extinction risk in large mammal species publication-title: Science – volume: 405 start-page: 212 year: 2000 end-page: 219 article-title: Getting the measure of biodiversity publication-title: Nature – volume: 86 start-page: 792 year: 2011 end-page: 812 article-title: Measuring biodiversity to explain community assembly: a unified approach publication-title: Biological Reviews – volume: 80 start-page: 1455 year: 1999 end-page: 1474 article-title: The ecological consequences of changes in biodiversity: a search for general principles publication-title: Ecology – volume: 87 start-page: 1465 year: 2006 end-page: 1471 article-title: A trait‐based test for habitat filtering: convex hull volume publication-title: Ecology – article-title: Conserving evolutionary history does not result in greater diversity over geological timescales publication-title: Proceedings of the Royal Society of London B – start-page: 101 year: 2005 end-page: 199 – volume: 92 start-page: 1573 year: 2011 end-page: 1581 article-title: Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships publication-title: Ecology – volume: 66 start-page: 1279 year: 1998 end-page: 1298 article-title: The Noah's ark problem publication-title: Econometrica – volume: 225 start-page: 128 year: 2018 end-page: 133 article-title: Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent publication-title: Biological Conservation – volume: 285 start-page: 20180971 year: 2018 article-title: Integrating the aesthetic value of landscapes and biological diversity publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 23 start-page: 595 year: 2014 end-page: 609 article-title: The n‐dimensional hypervolume publication-title: Global Ecology and Biogeography – start-page: 39 year: 2016 end-page: 56 – volume: 344 year: 2014 article-title: The biodiversity of species and their rates of extinction, distribution, and protection publication-title: Science – volume: 23 start-page: 1847 year: 2017 end-page: 1860 article-title: Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates publication-title: Global Change Biology – volume: 112 start-page: 14307 year: 2015 end-page: 14312 article-title: Community rescue in experimental metacommunities publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: e1000620 year: 2011 article-title: Extinction risk and diversification are linked in a plant biodiversity hotspot publication-title: PLoS Biology – volume: 8 start-page: 604 year: 2005 end-page: 611 article-title: Diversity decreases invasion via both sampling and complementarity effects publication-title: Ecology Letters – volume: 112 start-page: 4909 year: 2015 end-page: 4914 article-title: Fossils, phylogenies, and the challenge of preserving evolutionary history in the face of anthropogenic extinctions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 116 start-page: 882 year: 2007 end-page: 892 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 277 start-page: 1300 year: 1997 end-page: 1302 article-title: The influence of functional diversity and composition on ecosystem processes publication-title: Science – volume: 96 start-page: 1463 year: 1999 end-page: 1468 article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 89 start-page: 2290 year: 2008 end-page: 2301 article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology publication-title: Ecology – year: 1997 – volume: 15 year: 2017 article-title: A latitudinal phylogeographic diversity gradient in birds publication-title: PLoS Biology – volume: 7 start-page: 55 year: 1992 end-page: 59 article-title: Phylogeny and biodiversity: conserving our evolutionary legacy publication-title: Trends in Ecology & Evolution – volume: 29 start-page: 246 year: 2002 end-page: 257 article-title: The impact of private versus public consumption on variety‐seeking behaviour publication-title: Journal of Consumer Research – volume: 97 start-page: 2212 year: 2016 end-page: 2222 article-title: Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning publication-title: Ecology – volume: 1 start-page: 40 year: 2017 end-page: 48 article-title: Linking speciation to extinction: diversification raises contemporary extinction risk in amphibians publication-title: Evolution Letters – volume: 35 start-page: A1 year: 2018 end-page: A7 article-title: Editorial overview: relational values: what are they, and what's the fuss about? publication-title: Current Opinion in Environmental Sustainability – volume: 114 start-page: 7641 year: 2017 end-page: 7646 article-title: Global priorities for conservation across multiple dimensions of mammalian diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 109 start-page: 15835 year: 2012 end-page: 15840 article-title: Phylogenies reveal predictive power of traditional medicine in bioprospecting publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 87 start-page: 535 year: 2017 end-page: 551 article-title: Why phylogenies do not always predict ecological differences publication-title: Ecological Monographs – volume: 3 start-page: 743 year: 2012 end-page: 756 article-title: How to measure and test phylogenetic signal publication-title: Methods in Ecology and Evolution – volume: 113 start-page: 7962 year: 2016 end-page: 7969 article-title: Comparative phylogeography of the ocean planet publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 95 year: 1999 end-page: 113 article-title: Plant atttribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species publication-title: Ecosystems – year: 2003 – volume: 10 start-page: 859 year: 2019 article-title: Global conservation of phylogenetic diversity captures more than just functional diversity publication-title: Nature Communications – volume: 107 start-page: 1443 year: 2010 end-page: 1446 article-title: Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 57 start-page: 591 year: 2008 end-page: 601 article-title: Phylogenetic signal, evolutionary process, and rate publication-title: Systematic Biology – volume: 21 start-page: 178 year: 2006 end-page: 186 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 359 start-page: 791 year: 2018 end-page: 793 article-title: Species turnover promotes the importance of bee diversity for crop pollination at regional scales publication-title: Science – volume: 16 start-page: 242 year: 2013 end-page: 251 article-title: Variability in life‐history and ecological traits is a buffer against extinction in mammals publication-title: Ecology Letters – volume: 14 start-page: 1 year: 2015 end-page: 16 article-title: The IPBES Conceptual Framework—connecting nature and people publication-title: Current Opinion in Environmental Sustainability – volume: 24 start-page: 919 year: 2014 end-page: 930 article-title: Global distribution and conservation of evolutionary distinctness in birds publication-title: Current Biology – volume: 29 start-page: 600 year: 2015 end-page: 614 article-title: Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better) publication-title: Functional Ecology – volume: 183 start-page: 1 year: 2013 end-page: 12 article-title: Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments publication-title: The American Naturalist – volume: 29 start-page: 521 year: 2014 end-page: 530 article-title: Evolutionary rescue in a changing world publication-title: Trends in Ecology & Evolution – volume: 445 start-page: 757 year: 2007 end-page: 760 article-title: Preserving the evolutionary potential of floras in biodiversity hotspots publication-title: Nature – start-page: 54 year: 1989 end-page: 75 – volume: 336 start-page: 589 year: 2012 end-page: 592 article-title: Impacts of biodiversity loss escalate through time as redundancy fades publication-title: Science – volume: 29 start-page: 117 year: 2014 end-page: 125 article-title: Evolution in an acidifying ocean publication-title: Trends in Ecology & Evolution – volume: 368 year: 2013 article-title: Evolutionary rescue and the limits of adaptation publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – volume: 28 start-page: 243 year: 1997 end-page: 268 article-title: Preserving the information content of species: genetic diversity, phylogeny, and conservation worth publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 132 start-page: 107 year: 1988 end-page: 128 article-title: The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? publication-title: The American Naturalist – volume: 6 year: 2016 article-title: Progress to extinction: increased specialisation causes the demise of animals clades publication-title: Scientific Reports – volume: 283 start-page: 20160536 year: 2016 article-title: Understanding the value of plant diversity for ecosystem functioning through niche theory publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 99 start-page: 135 year: 2011 end-page: 147 article-title: Using plant functional traits to understand the landscape distribution of multiple ecosystem services publication-title: Journal of Ecology – volume: 359 start-page: 270 year: 2018 end-page: 272 article-title: Assessing nature's contributions to people publication-title: Science – start-page: 19 year: 2016 end-page: 37 – volume: 158 start-page: 105 year: 2017 end-page: 118 article-title: Biodiversity perennial meadows have aesthetic value and increase residents' perceptions of site quality in urban green‐space publication-title: Landscape and Urban Planning – volume: 294 start-page: 804 year: 2001 end-page: 808 article-title: Biodiversity and ecosystem functioning: current knowledge and future challenges publication-title: Science – start-page: 249 year: 2007 end-page: 257 – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecological Monographs – volume: 405 start-page: 243 year: 2000 end-page: 253 article-title: Systematic conservation planning publication-title: Nature – year: 2005 – volume: 366 start-page: 2536 year: 2011 end-page: 2544 article-title: Understanding global patterns of mammalian functional and phylogenetic diversity publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 482 start-page: 357 year: 2012 end-page: 362 article-title: Eutrophication causes speciation reversal in whitefish adaptive radiations publication-title: Nature – volume: 332 start-page: 1273 year: 2011 end-page: 1277 article-title: Terrestrial ecosystem responses to species gains and losses publication-title: Science – volume: 139 start-page: 67 year: 2007 end-page: 82 article-title: The non‐economic motives behind the willingness to pay for biodiversity conservation publication-title: Biological Conservation – volume: 45 start-page: 471 year: 2014 end-page: 493 article-title: Biodiversity and ecosystem functioning publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 6 year: 2016 article-title: Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs publication-title: Scientific Reports – volume: 1289 start-page: 90 year: 2013 end-page: 105 article-title: An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology publication-title: Annals of the New York Academy of Sciences – volume: 336 start-page: 1401 year: 2012 end-page: 1406 article-title: The functions of biological diversity in an age of extinction publication-title: Science – volume: 379 start-page: 718 year: 1996 end-page: 720 article-title: Productivity and sustainability influenced by biodiversity in grassland ecosystems publication-title: Nature – year: 1998 – volume: 92 start-page: 698 year: 2017 end-page: 715 article-title: A guide to phylogenetic metrics for conservation, community ecology and macroecology publication-title: Biological Reviews – volume: 17 start-page: 1517 year: 2008 end-page: 1528 article-title: Flagship species on covers of US conservation and nature magazines publication-title: Biodiversity and Conservation – volume: 55 start-page: 235 year: 1991 end-page: 254 article-title: What to protect? – Systematics and the agony of choice publication-title: Biological Conservation – volume: 20 start-page: 600 year: 2014 end-page: 612 article-title: Phylogenetic trees do not reliably predict feature diversity publication-title: Diversity and Distributions – volume: 2 start-page: 67 year: 1994 end-page: 78 article-title: Do conservationists and molecular biologists value differences between organisms in the same way? publication-title: Biodiversity Letters – volume: 486 start-page: 59 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 17 start-page: 30 year: 2008 end-page: 44 article-title: Speciation reversal and biodiversity dynamics with hybridization in changing environments publication-title: Molecular Ecology – volume: 133 start-page: 143 year: 2006 end-page: 155 article-title: Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities publication-title: Biological Conservation – volume: 72 start-page: 31 year: 1997 end-page: 54 article-title: Inferring evolutionary precoess from the phylogenetic tree shape publication-title: Quarterly Review of Biology – volume: 27 start-page: 381 year: 2018 end-page: 394 article-title: Pattern of evolutionarily distinct species among four classes of animals and their conservation status: a comparison using evolutionary distinctiveness scores publication-title: Biodiversity and Conservation – volume: 559 start-page: 392 year: 2018 end-page: 395 article-title: An inverse latitudinal gradient in speciation rate for marine fishes publication-title: Nature – start-page: 438 year: 1994 – volume: 7 start-page: 9132 year: 2017 article-title: Taxonomic bias in biodiversity data and societal preferences publication-title: Scientific Reports – volume: 27 start-page: 19 year: 2012 end-page: 26 article-title: Biodiversity and ecosystem services: a multilayered relationship publication-title: Trends in Ecology & Evolution – volume: 204 start-page: 42 year: 2016 end-page: 50 article-title: Using Wikipedia page views to explore the cultural importance of global reptiles publication-title: Biological Conservation – year: 2016 – volume: 8 start-page: 15475 year: 2018 article-title: Disentangling direct and indirect effects of water availability, vegetation, and topography on avian diversity publication-title: Scientific Reports – volume: 68 start-page: 563 year: 2017 end-page: 586 article-title: Plant biodiversity change across scales during the Anthropocene publication-title: Annual Review of Plant Biology – volume: 79 start-page: 298 year: 2007 end-page: 307 article-title: Species richness, structural diversity and species composition in meadows created by visitors of a botanical garden in Switzerland publication-title: Landscape and Urban Planning – volume: 11 start-page: 809 year: 2008 end-page: 819 article-title: Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse publication-title: Ecology Letters – volume: 43 start-page: 267 year: 2012 end-page: 285 article-title: Evolutionary inferences from phylogenies: a review of methods publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 363 start-page: 282 year: 2019 end-page: 284 publication-title: Science – volume: 1 year: 2017 article-title: Spatial conservation prioritization of biodiversity spanning the evolutionary continuum publication-title: Nature Ecology & Evolution – volume: 11 year: 2013 article-title: Rare species support vulnerable functions in high‐diversity ecosystems publication-title: PLoS Biology – volume: 61 start-page: 885 year: 2007 end-page: 901 article-title: Lineages with long durations are old and morphologically average: an analysis using multiple datasets publication-title: Evolution – volume: 37 start-page: 1047 year: 2014 end-page: 1055 article-title: Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes publication-title: Ecography – volume: 79 start-page: 247 year: 1997 end-page: 258 article-title: Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function publication-title: Oikos – volume: 10 start-page: 858 year: 2019 article-title: Reply to: “Global conservation of phylogenetic diversity captures more than just functional diversity publication-title: Nature Communications – volume: 282 year: 2015 article-title: Functional identity and diversity of animals predict ecosystem functioning better than species‐based indices publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 353 start-page: 1532 year: 2016 end-page: 1535 article-title: An Anthropocene map of genetic diversity publication-title: Science – volume: 57 start-page: 717 year: 2003 end-page: 745 article-title: Testing for phylogenetic signal in comparative data: behavioral traits are more labile publication-title: Evolution – volume: 23 start-page: 1059 year: 2009 end-page: 1069 article-title: New multivariate tests for phylogenetic signal and trait correlations applied to ecophysiological phenotypes of nine species publication-title: Functional Ecology – volume: 23 start-page: 615 year: 2017 end-page: 626 article-title: Multifaceted biodiversity hotspots of marine mammals for conservation priorities publication-title: Diversity and Distributions – volume: 4 year: 2006 article-title: Rarity value and species extinction: the anthropogenic allee effect publication-title: PLoS Biology – volume: 4 start-page: 1 year: 2013 end-page: 16 article-title: Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes publication-title: Ecosphere – volume: 63 start-page: 685 year: 2014 end-page: 697 article-title: A generalized K statistic for estimating phylogenetic signal from shape and other high‐dimensional multivariate data publication-title: Systematic Biology – volume: 332 start-page: 349 year: 2011 end-page: 351 article-title: Interplay between changing climate and species' ecology drives macroevolutionary dynamics publication-title: Science – year: 2001 – volume: 430 start-page: 741 year: 2004 end-page: 741 article-title: Coral reefs: corals' adaptive response to climate change publication-title: Nature – volume: 59 start-page: 245 year: 2010 end-page: 261 article-title: Testing and quantifying phylogenetic signals and homoplasy in morphometric data publication-title: Systematic Biology – volume: 1 start-page: 75 year: 2008 end-page: 81 article-title: Endangering the endangered: the effects of perceived rarity on species exploitation publication-title: Conservation Letters – volume: 104 start-page: 18123 year: 2007 end-page: 18128 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 280 year: 2013 article-title: Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 2 start-page: e296 year: 2007 article-title: Mammals on the edge: conservation priorities based on threat and phylogeny publication-title: PLoS One – volume: 12 start-page: 735 year: 2009 end-page: 743 article-title: Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions publication-title: Ecology Letters – volume: 27 start-page: 2 year: 2018 end-page: 13 article-title: Spatial scaling of extinction rates: theory and data reveal nonlinearity and a major upscaling and downscaling challenge publication-title: Global Ecology and Biogeography – volume: 62 start-page: 715 year: 2008 end-page: 739 article-title: Biotic interactions and macroevolution: extensions and mismatches across scales and levels publication-title: Evolution – volume: 2013 start-page: 106 year: 2013 end-page: 115 article-title: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms publication-title: Ecology Letters – volume: 7 start-page: 6915 year: 2017 article-title: Plant survival and keystone pollinator species in stochastic coextinction models: role of intrinsic dependence on animal‐pollination publication-title: Scientific Reports – volume: 546 start-page: 141 year: 2017 end-page: 144 article-title: Large conservation gains possible for global biodiversity facets publication-title: Nature – volume: 438 start-page: 151 year: 2018 end-page: 155 article-title: Evolutionary isolation and phylogenetic diversity loss under random extinction events publication-title: Journal of Theoretical Biology – volume: 330 start-page: 493 year: 2010 end-page: 495 article-title: Species selection maintains self‐incompatibility publication-title: Science – volume: 9 start-page: 222 year: 2011 end-page: 228 article-title: Worldwide decline of specialist species: toward a global functional homogenization? publication-title: Frontiers in Ecology and the Environment – volume: 4 start-page: 72 year: 2001 end-page: 85 article-title: Biodiversity may regulate the temporal variability of ecological systems publication-title: Ecology Letters – volume: 21 start-page: 3595 year: 2015 end-page: 3607 article-title: Marine extinction risk shaped by trait–environment interactions over 500 million years publication-title: Global Change Biology – volume: 13 start-page: 1030 year: 2010 end-page: 1040 article-title: Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world publication-title: Ecology Letters – volume: 286 start-page: 1123 year: 1999 end-page: 1127 article-title: Plant diversity and productivity experiments in European grasslands publication-title: Science – volume: 300 start-page: 1707 year: 2003 end-page: 1709 article-title: Preserving the tree of life publication-title: Science – volume: 61 start-page: 11 year: 1992 end-page: 15 article-title: Genetic diversity and the agony of choice publication-title: Biological Conservation – volume: 444 start-page: 93 year: 2006 end-page: 96 article-title: Global distribution and conservation of rare and threatened vertebrates publication-title: Nature – volume: 20 start-page: 1670 year: 2006 end-page: 1678 article-title: Incorporating evolutionary measures into conservation prioritization publication-title: Conservation Biology – volume: 102 start-page: 4387 year: 2005 end-page: 4392 article-title: Functional‐and abundance‐based mechanisms explain diversity loss due to N fertilization publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 471 start-page: 51 year: 2011 end-page: 57 article-title: Has the Earth/'s sixth mass extinction already arrived? publication-title: Nature – volume: 546 start-page: 48 year: 2017 end-page: 55 article-title: Speciation gradients and the distribution of biodiversity publication-title: Nature – volume: 1 start-page: 95 year: 2008 end-page: 111 article-title: Adaptation, migration or extirpation: climate change outcomes for tree populations publication-title: Evolutionary Applications – volume: 19 start-page: 133 year: 1992 end-page: 138 article-title: The influence of purchase quantity and display format on consumer preference for variety publication-title: Journal of Consumer Research – volume: 253 start-page: 758 year: 1991 end-page: 762 article-title: Biodiversity studies: science and policy publication-title: Science – volume: 105 start-page: 6097 year: 2008 end-page: 6102 article-title: Higher origination and extinction rates in larger mammals publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 28 start-page: 495 year: 1997 end-page: 516 article-title: Extinction vulnerability and selectivity: combining ecological and paleontological views publication-title: Annual Review of Ecology and Systematics – volume: 100 start-page: 652 year: 2012 end-page: 661 article-title: Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes publication-title: Journal of Ecology – volume: 96 start-page: 884 year: 2008 end-page: 893 article-title: Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland publication-title: Journal of Ecology – volume: 82 start-page: 600 year: 1998 end-page: 602 article-title: Separating sampling and other effects in biodiversity experiments publication-title: Oikos – volume: 24 start-page: 1042 year: 2010 end-page: 1051 article-title: Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits publication-title: Conservation Biology – year: 2012 – volume: 2 start-page: 288 year: 2018 end-page: 298 article-title: Global priorities for conserving the evolutionary history of sharks, rays and chimaeras publication-title: Nature Ecology & Evolution – volume: 142 start-page: 14 year: 2009 end-page: 32 article-title: Biodiversity management in the face of climate change: a review of 22 years of recommendations publication-title: Biological Conservation – volume: 33 start-page: 475 year: 2002 end-page: 505 article-title: Phylogenies and community ecology publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 47 start-page: 477 year: 2018 end-page: 492 article-title: Should biodiversity and nature have to earn their keep? What it really means to bring environmental goods into the marketplace publication-title: Ambio – volume: 4 year: 2009 article-title: Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity publication-title: PLoS One – volume: 12 start-page: 693 year: 2009 end-page: 715 article-title: The merging of community ecology and phylogenetic biology publication-title: Ecology Letters – volume: 4 start-page: 217 year: 2014 end-page: 221 article-title: Life history and spatial traits predict extinction risk due to climate change publication-title: Nature Climate Change – volume: 9 start-page: 741 year: 2006 end-page: 758 article-title: Functional diversity: back to basics and looking forward publication-title: Ecology Letters – year: 2017 – volume-title: Ecosystems and Human Well‐Being: Biodiversity Synthesis year: 2005 ident: e_1_2_10_124_1 – ident: e_1_2_10_28_1 doi: 10.1038/s41559-017-0151 – ident: e_1_2_10_200_1 doi: 10.1016/0006-3207(91)90030-D – ident: e_1_2_10_33_1 doi: 10.1038/35012241 – ident: e_1_2_10_143_1 doi: 10.1086/682022 – ident: e_1_2_10_148_1 doi: 10.1038/nature22368 – ident: e_1_2_10_79_1 doi: 10.1016/j.biocon.2008.10.006 – start-page: 54 volume-title: Conservation for the Twenty‐First Century year: 1989 ident: e_1_2_10_7_1 – ident: e_1_2_10_86_1 doi: 10.1111/j.1558-5646.2008.00317.x – ident: e_1_2_10_154_1 doi: 10.1038/s41586-018-0273-1 – ident: e_1_2_10_131_1 doi: 10.1111/j.2041-210X.2012.00196.x – ident: e_1_2_10_195_1 doi: 10.1002/ecy.2349 – ident: e_1_2_10_87_1 doi: 10.1016/j.cub.2014.03.011 – ident: e_1_2_10_26_1 doi: 10.1073/pnas.0709069104 – ident: e_1_2_10_64_1 doi: 10.1111/j.1523-1739.2010.01455.x – ident: e_1_2_10_132_1 doi: 10.1073/pnas.091092498 – ident: e_1_2_10_134_1 doi: 10.1017/9781139024105 – ident: e_1_2_10_199_1 doi: 10.1890/120126 – ident: e_1_2_10_18_1 doi: 10.1111/ele.12796 – ident: e_1_2_10_214_1 doi: 10.2307/2999760 – ident: e_1_2_10_39_1 doi: 10.1371/journal.pbio.0040415 – ident: e_1_2_10_119_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_10_171_1 doi: 10.1071/PC140286 – ident: e_1_2_10_166_1 doi: 10.1111/j.1365-294X.2009.04311.x – ident: e_1_2_10_122_1 doi: 10.1111/j.1471-8286.2006.01522.x – ident: e_1_2_10_10_1 doi: 10.1038/nature09678 – volume-title: Conserving the World's Biological Diversity year: 1990 ident: e_1_2_10_123_1 – ident: e_1_2_10_183_1 doi: 10.1073/pnas.0408648102 – ident: e_1_2_10_207_1 doi: 10.1038/nature10824 – ident: e_1_2_10_114_1 doi: 10.1111/geb.12158 – ident: e_1_2_10_13_1 doi: 10.1111/j.0014-3820.2003.tb00285.x – ident: e_1_2_10_93_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_10_128_1 doi: 10.1086/419657 – ident: e_1_2_10_142_1 doi: 10.1007/978-3-319-22461-9 – ident: e_1_2_10_141_1 doi: 10.1038/nclimate2113 – ident: e_1_2_10_182_1 doi: 10.1890/11-0599.1 – ident: e_1_2_10_220_1 doi: 10.1073/pnas.0906829107 – ident: e_1_2_10_121_1 doi: 10.1146/annurev.ecolsys.28.1.495 – ident: e_1_2_10_208_1 doi: 10.1007/s100219900062 – ident: e_1_2_10_40_1 doi: 10.1016/0006-3207(92)91202-4 – ident: e_1_2_10_209_1 doi: 10.1111/jvs.12399 – ident: e_1_2_10_107_1 doi: 10.1126/science.1085510 – ident: e_1_2_10_36_1 doi: 10.1146/annurev-ecolsys-110411-160304 – ident: e_1_2_10_30_1 doi: 10.1111/j.1461-0248.2009.01314.x – ident: e_1_2_10_165_1 doi: 10.1016/j.biocon.2016.03.037 – ident: e_1_2_10_146_1 doi: 10.1111/j.1558-5646.2007.00068.x – ident: e_1_2_10_168_1 doi: 10.1073/pnas.1202242109 – ident: e_1_2_10_177_1 doi: 10.1126/science.1103960 – ident: e_1_2_10_196_1 doi: 10.1098/rspb.2016.0536 – ident: e_1_2_10_91_1 doi: 10.1890/11-0392.1 – volume-title: A History of Economic Theory and Method year: 1997 ident: e_1_2_10_52_1 – ident: e_1_2_10_162_1 doi: 10.1126/science.235.4785.167 – ident: e_1_2_10_179_1 doi: 10.1111/j.1365-2745.2011.01945.x – ident: e_1_2_10_158_1 doi: 10.1126/science.1217909 – ident: e_1_2_10_24_1 doi: 10.1038/nature11148 – ident: e_1_2_10_73_1 doi: 10.1002/evl3.4 – ident: e_1_2_10_55_1 doi: 10.1126/science.253.5021.750 – ident: e_1_2_10_181_1 doi: 10.1038/s41559-017-0448-4 – ident: e_1_2_10_218_1 doi: 10.1016/j.tree.2012.10.015 – ident: e_1_2_10_22_1 article-title: Conserving evolutionary history does not result in greater diversity over geological timescales publication-title: Proceedings of the Royal Society of London B – ident: e_1_2_10_63_1 doi: 10.1038/nature05587 – ident: e_1_2_10_170_1 doi: 10.1038/nature22897 – ident: e_1_2_10_98_1 doi: 10.1073/pnas.0709763105 – ident: e_1_2_10_139_1 doi: 10.1038/s41467-019-08600-8 – ident: e_1_2_10_76_1 doi: 10.1111/j.1755-263X.2008.00013.x – ident: e_1_2_10_81_1 doi: 10.1890/04-0922 – ident: e_1_2_10_205_1 doi: 10.1093/jpe/rtp007 – ident: e_1_2_10_160_1 doi: 10.1080/10635150802302427 – ident: e_1_2_10_138_1 doi: 10.1111/gcb.12963 – ident: e_1_2_10_184_1 doi: 10.1016/j.tree.2013.11.001 – ident: e_1_2_10_47_1 doi: 10.1016/j.cosust.2014.11.002 – ident: e_1_2_10_210_1 doi: 10.1126/science.1197479 – ident: e_1_2_10_71_1 doi: 10.1126/science.aat6016 – ident: e_1_2_10_219_1 doi: 10.1073/pnas.96.4.1463 – ident: e_1_2_10_20_1 doi: 10.1002/ecm.1267 – volume: 6 start-page: 21 year: 1999 ident: e_1_2_10_204_1 article-title: Values, emotions and desired outcomes reflected in public responses to forest management plans publication-title: Human Ecology Review – volume-title: Life's Intrinsic Value: Science, Ethics, and Nature year: 2001 ident: e_1_2_10_3_1 – ident: e_1_2_10_133_1 doi: 10.1126/science.1215855 – ident: e_1_2_10_53_1 doi: 10.1016/j.biocon.2006.05.028 – ident: e_1_2_10_145_1 doi: 10.1111/j.1461-0248.2006.00924.x – ident: e_1_2_10_57_1 doi: 10.1016/0006-3207(92)91201-3 – ident: e_1_2_10_4_1 doi: 10.1111/j.1752-4571.2007.00013.x – ident: e_1_2_10_34_1 doi: 10.1890/080216 – start-page: 249 volume-title: Evolutionary Perspectives on Environmental Problems year: 2007 ident: e_1_2_10_216_1 – ident: e_1_2_10_175_1 doi: 10.1098/rspb.2006.3630 – ident: e_1_2_10_186_1 doi: 10.1146/annurev-ecolsys-120213-091917 – ident: e_1_2_10_151_1 doi: 10.1017/CBO9780511614927 – ident: e_1_2_10_108_1 doi: 10.1016/j.tree.2011.08.006 – ident: e_1_2_10_180_1 doi: 10.1016/j.jtbi.2017.11.005 – ident: e_1_2_10_31_1 doi: 10.1126/science.1069349 – ident: e_1_2_10_32_1 doi: 10.1016/j.cosust.2018.11.003 – ident: e_1_2_10_12_1 doi: 10.1098/rstb.2012.0080 – ident: e_1_2_10_109_1 doi: 10.7208/chicago/9780226500829.001.0001 – volume-title: Plant Functional Diversity year: 2016 ident: e_1_2_10_67_1 – ident: e_1_2_10_9_1 doi: 10.1111/j.1461-0248.2006.00963.x – ident: e_1_2_10_17_1 doi: 10.1073/pnas.1706461114 – ident: e_1_2_10_157_1 doi: 10.1111/j.1523-1739.2006.00555.x – volume: 47 start-page: 477 year: 2018 ident: e_1_2_10_111_1 article-title: Should biodiversity and nature have to earn their keep? What it really means to bring environmental goods into the marketplace publication-title: Ambio – ident: e_1_2_10_5_1 doi: 10.1111/ddi.12556 – ident: e_1_2_10_97_1 doi: 10.1111/j.1558-5646.2007.00077.x – ident: e_1_2_10_90_1 doi: 10.1093/sysbio/syp106 – ident: e_1_2_10_94_1 doi: 10.1111/j.1365-2745.2010.01753.x – volume: 15 year: 2017 ident: e_1_2_10_176_1 article-title: A latitudinal phylogeographic diversity gradient in birds publication-title: PLoS Biology – ident: e_1_2_10_104_1 doi: 10.1073/pnas.1513125112 – ident: e_1_2_10_130_1 doi: 10.1371/journal.pbio.1001569 – ident: e_1_2_10_213_1 doi: 10.2307/2999617 – ident: e_1_2_10_127_1 doi: 10.1111/j.1365-2745.2008.01395.x – ident: e_1_2_10_129_1 doi: 10.1007/s10531-017-1441-6 – ident: e_1_2_10_37_1 doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 – ident: e_1_2_10_65_1 doi: 10.1098/rspb.2014.2620 – ident: e_1_2_10_25_1 doi: 10.1038/nature05202 – ident: e_1_2_10_82_1 doi: 10.1073/pnas.1409886112 – ident: e_1_2_10_197_1 doi: 10.1080/0376835042000288833 – ident: e_1_2_10_178_1 doi: 10.1016/j.landurbplan.2016.08.003 – ident: e_1_2_10_89_1 doi: 10.1111/ddi.12188 – ident: e_1_2_10_101_1 doi: 10.1038/35083573 – ident: e_1_2_10_203_1 doi: 10.1890/07-1206.1 – ident: e_1_2_10_144_1 doi: 10.1111/nyas.12157 – ident: e_1_2_10_163_1 doi: 10.1073/pnas.1702078114 – ident: e_1_2_10_137_1 doi: 10.1146/annurev-ecolsys-110411-160331 – ident: e_1_2_10_68_1 doi: 10.1111/1365-2435.12425 – ident: e_1_2_10_96_1 doi: 10.1016/j.landurbplan.2006.03.007 – ident: e_1_2_10_16_1 doi: 10.1016/0169-5347(92)90107-M – ident: e_1_2_10_105_1 doi: 10.1111/j.1469-185X.2007.00028.x – ident: e_1_2_10_152_1 doi: 10.1038/35012221 – ident: e_1_2_10_125_1 doi: 10.1126/science.aaf4381 – ident: e_1_2_10_100_1 doi: 10.1111/ele.12073 – ident: e_1_2_10_66_1 doi: 10.1111/j.1744-7429.2001.tb00232.x – ident: e_1_2_10_201_1 doi: 10.1146/annurev-arplant-042916-040949 – start-page: 438 volume-title: Systematics and Conservation Evaluation year: 1994 ident: e_1_2_10_215_1 – ident: e_1_2_10_149_1 doi: 10.1111/j.1461-0248.2008.01189.x – ident: e_1_2_10_189_1 doi: 10.1038/s41598-017-07037-7 – ident: e_1_2_10_169_1 doi: 10.1038/nature09060 – ident: e_1_2_10_45_1 doi: 10.1111/j.1461-0248.2010.01493.x – ident: e_1_2_10_155_1 doi: 10.1038/srep30965 – ident: e_1_2_10_147_1 doi: 10.1126/science.1246752 – ident: e_1_2_10_206_1 doi: 10.1111/j.0030-1299.2007.15559.x – ident: e_1_2_10_48_1 doi: 10.1073/pnas.0704716104 – ident: e_1_2_10_99_1 doi: 10.2307/3546381 – ident: e_1_2_10_88_1 doi: 10.1111/geb.12669 – ident: e_1_2_10_192_1 doi: 10.1038/s41598-017-09084-6 – ident: e_1_2_10_167_1 doi: 10.1098/rstb.2011.0024 – ident: e_1_2_10_8_1 doi: 10.1038/430741a – ident: e_1_2_10_84_1 doi: 10.1126/science.286.5439.542 – ident: e_1_2_10_185_1 doi: 10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2 – ident: e_1_2_10_54_1 doi: 10.1038/srep30531 – ident: e_1_2_10_6_1 doi: 10.1073/pnas.1104015108 – ident: e_1_2_10_156_1 doi: 10.1086/341574 – ident: e_1_2_10_110_1 doi: 10.1007/978-94-007-3991-8 – ident: e_1_2_10_198_1 doi: 10.1111/j.1461-0248.2008.01215.x – ident: e_1_2_10_15_1 doi: 10.1073/pnas.1602404113 – ident: e_1_2_10_217_1 doi: 10.1126/science.aao2117 – ident: e_1_2_10_62_1 doi: 10.1890/10-1245.1 – ident: e_1_2_10_103_1 doi: 10.1126/science.1064088 – ident: e_1_2_10_159_1 doi: 10.1038/s41598-018-33671-w – volume-title: Environmental Ethics and Weak Anthropocentrism year: 2003 ident: e_1_2_10_135_1 – ident: e_1_2_10_60_1 doi: 10.1111/j.1461-0248.2005.00753.x – ident: e_1_2_10_222_1 doi: 10.1111/j.1365-2435.2009.01596.x – ident: e_1_2_10_191_1 doi: 10.1038/srep34229 – ident: e_1_2_10_27_1 doi: 10.1016/j.tree.2014.06.005 – volume-title: Metacommunities: Spatial Dynamics and Ecological Communities year: 2005 ident: e_1_2_10_173_1 – ident: e_1_2_10_2_1 doi: 10.1093/sysbio/syu030 – ident: e_1_2_10_49_1 doi: 10.1126/science.aap8826 – ident: e_1_2_10_102_1 doi: 10.1073/pnas.2235465100 – ident: e_1_2_10_41_1 doi: 10.1146/annurev.ecolsys.28.1.243 – ident: e_1_2_10_42_1 doi: 10.1371/journal.pbio.1000620 – volume-title: The Routledge Handbook of Philosophy of Biodiversity year: 2017 ident: e_1_2_10_59_1 – ident: e_1_2_10_172_1 doi: 10.1111/j.1365-294X.2007.03529.x – ident: e_1_2_10_118_1 doi: 10.1086/208926 – ident: e_1_2_10_29_1 doi: 10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2 – ident: e_1_2_10_44_1 doi: 10.1111/ecog.00623 – ident: e_1_2_10_211_1 doi: 10.2307/3546010 – ident: e_1_2_10_112_1 doi: 10.1038/35012251 – ident: e_1_2_10_77_1 doi: 10.1111/j.1558-5646.2010.01025.x – volume: 280 year: 2013 ident: e_1_2_10_202_1 article-title: Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk publication-title: Proceedings of the Royal Society B: Biological Sciences – ident: e_1_2_10_50_1 doi: 10.1016/S0022-0981(00)00194-5 – ident: e_1_2_10_69_1 doi: 10.1126/science.1194513 – ident: e_1_2_10_116_1 doi: 10.1038/s41467-018-05126-3 – ident: e_1_2_10_14_1 doi: 10.1111/geb.12146 – ident: e_1_2_10_120_1 doi: 10.1371/journal.pone.0011618 – volume: 12 start-page: 843 year: 1998 ident: e_1_2_10_80_1 article-title: Does biodiversity determine ecosystem function? The Ecotron experiment reconsidered publication-title: Functional Ecology – ident: e_1_2_10_92_1 doi: 10.1086/519400 – ident: e_1_2_10_115_1 doi: 10.1093/sysbio/syx054 – ident: e_1_2_10_140_1 doi: 10.1111/j.1469-185X.2010.00171.x – ident: e_1_2_10_38_1 doi: 10.1046/j.1461-0248.2001.00189.x – ident: e_1_2_10_43_1 doi: 10.1002/ecy.1507 – ident: e_1_2_10_153_1 doi: 10.1111/j.1461-0248.2009.01333.x – ident: e_1_2_10_35_1 doi: 10.1007/s10531-008-9361-0 – ident: e_1_2_10_193_1 doi: 10.1111/brv.12252 – ident: e_1_2_10_190_1 doi: 10.1098/rspb.2018.0971 – ident: e_1_2_10_136_1 doi: 10.1111/gcb.13553 – ident: e_1_2_10_51_1 doi: 10.1126/science.253.5021.758 – ident: e_1_2_10_164_1 doi: 10.1017/CBO9780511614927.005 – ident: e_1_2_10_95_1 doi: 10.1007/978-3-319-22461-9_2 – ident: e_1_2_10_19_1 doi: 10.1371/journal.pone.0005695 – ident: e_1_2_10_11_1 doi: 10.1017/CBO9780511614927.018 – ident: e_1_2_10_78_1 doi: 10.1126/science.286.5442.1123 – ident: e_1_2_10_56_1 doi: 10.1126/science.1203060 – ident: e_1_2_10_74_1 doi: 10.1038/nature05237 – volume-title: Genetics and Analysis of Quantitative Traits year: 1998 ident: e_1_2_10_106_1 – ident: e_1_2_10_126_1 doi: 10.1086/284840 – ident: e_1_2_10_150_1 doi: 10.1126/science.288.5464.328 – ident: e_1_2_10_212_1 doi: 10.1146/annurev.ecolsys.33.010802.150448 – ident: e_1_2_10_21_1 doi: 10.1016/j.biocon.2018.06.014 – ident: e_1_2_10_174_1 doi: 10.1086/209292 – ident: e_1_2_10_117_1 doi: 10.1038/s41467-019-08603-5 – ident: e_1_2_10_23_1 doi: 10.1126/science.1116030 – ident: e_1_2_10_85_1 doi: 10.1073/pnas.102163299 – ident: e_1_2_10_221_1 doi: 10.1111/1365-2745.12903 – ident: e_1_2_10_187_1 doi: 10.1126/science.277.5330.1300 – ident: e_1_2_10_58_1 doi: 10.1007/978-3-319-22461-9_3 – ident: e_1_2_10_188_1 doi: 10.1038/379718a0 – ident: e_1_2_10_83_1 doi: 10.1371/journal.pone.0000296 – ident: e_1_2_10_194_1 doi: 10.1111/j.1523-1739.2012.01845.x – ident: e_1_2_10_72_1 doi: 10.1111/ele.12035 – ident: e_1_2_10_113_1 doi: 10.1016/j.biocon.2007.06.005 – ident: e_1_2_10_70_1 doi: 10.1890/ES12-00380.1 – ident: e_1_2_10_75_1 doi: 10.1086/673915 – ident: e_1_2_10_161_1 doi: 10.1038/nature05956 – ident: e_1_2_10_46_1 doi: 10.1016/S0169-5347(01)02283-2 – ident: e_1_2_10_61_1 doi: 10.1111/j.1461-0248.2008.01255.x |
| SSID | ssj0014663 |
| Score | 2.5619123 |
| Snippet | ABSTRACT
It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity... It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that... It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that... |
| SourceID | pubmedcentral hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1740 |
| SubjectTerms | Animals benefits to people Biodiversity Biodiversity and Ecology Biological Evolution Biological Variation, Population Conservation Conservation areas Conservation of Natural Resources Ecological function Ecosystem ecosystem function Ecosystems Empirical analysis Environmental Sciences Evolution extinction functional diversity Humans Original phenotypic diversity phylogenetic diversity Phylogeny prioritization Species Species diversity Species extinction Wildlife conservation |
| Title | Assessing the utility of conserving evolutionary history |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12526 https://www.ncbi.nlm.nih.gov/pubmed/31149769 https://www.proquest.com/docview/2284840122 https://www.proquest.com/docview/2233847424 https://cnrs.hal.science/hal-04960472 https://pubmed.ncbi.nlm.nih.gov/PMC6852562 |
| Volume | 94 |
| WOSCitedRecordID | wos000485285900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-185X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014663 issn: 1464-7931 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_UVbiXu_PrrneeVPHBl8o2TfPBPXkfyz4sIuLKvpVNmqAgXdnVBf_7m0m7xWUVhHtpS5OSJpnp_CaZ_gbghGysY0qgW9LlCdcqTbTMTFIK5VOHAEkFdv6bgby4UKORvlyDn4t_YWp-iHbBjTQjfK9Jwcdm9kLJzXR-htaZiXXopGmmKG8D45ftFgIXIY0annmCQpg2tEIUxtM-umSM1m8pFHIVZ66GS76EscEO9T79Vw8-w8cGfsbntbxsw5qrdmCrTkj5vAuq3gNGcxYjMIxRKAmlxxMfW4q6ntLqQ-zmjbhiy3HNV_y8B8Pe3-vf_aTJrZDYnGci8TaTynrmudcpzqPqlkZp5sfSeLTZwtMfuxbBQ0leU2lya5XztBmgPOs6me3DRjWp3FeIcyu09p6bXGbc8dyUuVFj5zPW9ULlJoLTxSAXtiEep_wX98XCAcGBKMJARHDcVn2o2TZerYQz1ZYTP3b_fFDQPXR3BNFfztMIDhYTWTRaOSsY2mJ0aFPGIjhqi1GfaJNkXLnJE9VBp51LzngEX-p5b5vK0HlE-KYjkEsSsfQuyyXV3W3g7MaBQHCJ7Z4GiXi7d8Wvq5tw8e39Vb_DB8Rxuo4xPICNx-mT-wGbdv54N5seBrXAoxypQ-j8ueoNB_8AMa8RZA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB7UU_TFO39XPa3igy-VbZqmCfiix8nKrYuIim9lkyasIF1ZdcH_3pm0W1xUEO6ppUlJk8x0vslMvgAckI21TAp0S1o84krGkcoSHRVCutgiQJKenf-2k3W78u5OXU7B8XgvTMUP0Sy4kWb4_zUpOC1Iv9NyPRwdoXlmYhp-cLQyJOWMXzYxBC78OWp45RFKYVzzClEeT_PqhDWa7lMu5Eeg-TFf8j2O9Ybo7Of_deEXLNYANDypJGYJpmy5DHPVkZSvKyCrKDAatBChYYhiSTg9HLjQUN71kNYfQjuqBRabDivG4tdVuDn7e_2nHdWnK0Qm5YmInEkyaRxz3KkYZ1K2Ci0Vc71MO7TawtGeXYPwoSC_qdCpMdI6CgdIx1o2S9ZgphyUdgPC1AilnOM6zRJueaqLVMuedQlrOSFTHcDheJRzU1OP0wkYD_nYBcGByP1ABLDfVH2s-DY-rYRT1ZQTQ3b7pJPTM3R4BBFgjuIAtsczmdd6-ZQztMbo0saMBbDXFKNGUZikV9rBC9VBt51nnPEA1quJb5pK0H1EAKcCyCZEYuJbJkvK-75n7caBQHiJ7R56kfi6d_np1a2_2fx-1V2Yb19fdPLOefffFiwgqlNVxuE2zDwPX-xvmDWj5_un4Y7XkTdx_BLH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50feDF96M-q3jwUtmmaZqAF1-L4rKIqHgrmzRBQbqy6oL_3pm2W1xUEDy1NClpkpnON8nkG4B9srGWSYFuSZMHXMkwUEmkg0xIF1oESLJg579vJ52OfHhQ12NwNDwLU_JD1AtupBnF_5oU3L5k7ouW6_7gEM0zE-MwwSmJTAMmzm5ad-16F4GLIpMaXnmAchhWzEIUyVO_PGKPxh8pGvI71PweMfkVyRamqDX3v07Mw2wFQf3jUmYWYMzmizBVJqX8WAJZ7gOjSfMRHPoomITU_Z7zDUVe92kFwreDSmSxab_kLP5YhrvW-e3pRVDlVwhMzCMROBMl0jjmuFMhzqVsZloq5rqJdmi3haNTuwYBREaeU6ZjY6R1tCEgHWvaJFqBRt7L7Rr4sRFKOcd1nETc8lhnsZZd6yLWdELG2oOD4SinpiIfpxwYz-nQCcGBSIuB8GCvrvpSMm78WAmnqi4njuyL43ZKz9DlEUSBOQg92BzOZFpp5mvK0B6jUxsy5sFuXYw6RRsl3dz23qkOOu484Yx7sFpOfN1UhA4kQjjlQTIiEiPfMlqSPz0WvN04EAgwsd2DQiR-7116cnNf3Kz_veoOTF-ftdL2ZedqA2YQ1qky5HATGm_9d7sFk2bw9vTa366U5BPiSxPd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+utility+of+conserving+evolutionary+history&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=Tucker%2C+Caroline+M&rft.au=Aze%2C+Tracy&rft.au=Cadotte%2C+Marc+W&rft.au=Cantalapiedra%2C+Juan+L&rft.date=2019-10-01&rft.eissn=1469-185X&rft.volume=94&rft.issue=5&rft.spage=1740&rft_id=info:doi/10.1111%2Fbrv.12526&rft_id=info%3Apmid%2F31149769&rft.externalDocID=31149769 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon |