SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses

SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) Jg. 5; S. e4095
Hauptverfasser: Brown, Jason L., Bennett, Joseph R., French, Connor M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 05.12.2017
PeerJ Inc
Schlagworte:
ISSN:2167-8359, 2167-8359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model’s discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have ‘universal’ analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates—to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.
AbstractList SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model’s discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have ‘universal’ analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates—to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.
SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model's discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have 'universal' analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates-to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model's discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have 'universal' analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates-to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.
ArticleNumber e4095
Audience Academic
Author Bennett, Joseph R.
French, Connor M.
Brown, Jason L.
Author_xml – sequence: 1
  givenname: Jason L.
  surname: Brown
  fullname: Brown, Jason L.
  organization: Department of Zoology, Cooperative Wildlife Research Laboratory, Southern Illinois University at Carbondale, Carbondale, IL, USA
– sequence: 2
  givenname: Joseph R.
  surname: Bennett
  fullname: Bennett, Joseph R.
  organization: Department of Zoology, Cooperative Wildlife Research Laboratory, Southern Illinois University at Carbondale, Carbondale, IL, USA
– sequence: 3
  givenname: Connor M.
  surname: French
  fullname: French, Connor M.
  organization: Department of Zoology, Cooperative Wildlife Research Laboratory, Southern Illinois University at Carbondale, Carbondale, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29230356$$D View this record in MEDLINE/PubMed
BookMark eNptktFu0zAUhiM0xMbYDQ-ALCEhhGhx7DiOuUCaBoxKQyANri3HPklc0jizXbQ-Am-Nm46pRYsvYvl8_69z7P9pdjS4AbLseY7nnOf83Qjgl_MCC_YoOyF5yWcVZeJob3-cnYWwxOmrSIkr-iQ7JoJQTFl5kv25_vg1OtfX7haROX6PYgdogNuIWhjAq2jdgL5vYueGWa0CGHS5uEZbxS8bUeM86tVgglYjTIpo9VtUW9eCa70aO6tRqqMwgrYQkLEheluvJ9uVM9Cnsuo3AcKz7HGj-gBnd__T7OfnTz8uvsyuvl0uLs6vZpoVJM6aRjCjawWcaY0pFEYZo3WuqKh4VdXAakEaTAwTVSkqWjU1B6p0UzBtaE7oabbY-RqnlnL0dqX8Rjpl5XTgfCuVT2P0ILESpGSmqFghiqIRgnMjNOFVqTBwWiWvDzuvcV2vwGgYolf9gelhZbCdbN1vyTjJBebJ4PWdgXc3awhRrmzQ0KdLBbcOMhe8nF6OJvTlDm1Vas0OjUuOeovLc5bzgvGCbDuaP0ClZWBldYpOY9P5geDVnqAD1ccuuH56oXAIvtif9X7If1lKwJsdoL0LwUNzj-RYbrMqp6zKbVYTjP-DtY1T2lK_tn9I8hfqf-1Z
CitedBy_id crossref_primary_10_1007_s00704_025_05369_3
crossref_primary_10_1016_j_scienta_2024_113533
crossref_primary_10_1007_s42991_021_00112_7
crossref_primary_10_3390_insects13100883
crossref_primary_10_1002_ece3_10606
crossref_primary_10_1002_ece3_10848
crossref_primary_10_1111_jbi_13582
crossref_primary_10_3390_su13063526
crossref_primary_10_1016_j_indcrop_2021_113959
crossref_primary_10_7717_peerj_14019
crossref_primary_10_1007_s11756_024_01854_8
crossref_primary_10_1186_s12879_021_06908_9
crossref_primary_10_1016_j_cropro_2025_107334
crossref_primary_10_3390_rs15041047
crossref_primary_10_1177_1940082919854058
crossref_primary_10_1007_s12038_025_00553_z
crossref_primary_10_1016_j_ecolind_2021_107699
crossref_primary_10_1002_ece3_6700
crossref_primary_10_1111_ddi_13825
crossref_primary_10_1016_j_biocon_2022_109594
crossref_primary_10_1038_s41598_024_73248_4
crossref_primary_10_1016_j_pld_2020_09_001
crossref_primary_10_1038_s41598_023_42573_5
crossref_primary_10_3389_fevo_2021_667949
crossref_primary_10_1016_j_cropro_2024_107042
crossref_primary_10_1007_s40823_024_00104_6
crossref_primary_10_1038_s41598_025_15167_6
crossref_primary_10_1111_cobi_14310
crossref_primary_10_3390_f13071051
crossref_primary_10_3390_plants14050768
crossref_primary_10_1016_j_heliyon_2019_e03101
crossref_primary_10_3390_tropicalmed7120431
crossref_primary_10_1016_j_biocon_2025_111491
crossref_primary_10_1002_ece3_5866
crossref_primary_10_1016_j_pocean_2019_102123
crossref_primary_10_1016_j_soh_2025_100107
crossref_primary_10_3389_fpls_2025_1601956
crossref_primary_10_1016_j_hisbio_2025_100025
crossref_primary_10_1093_jmammal_gyae131
crossref_primary_10_1016_j_pld_2023_07_006
crossref_primary_10_1016_j_gecco_2024_e03122
crossref_primary_10_1007_s11629_021_6966_1
crossref_primary_10_1111_jbi_70024
crossref_primary_10_1111_2041_210X_13452
crossref_primary_10_1186_s12870_025_06466_1
crossref_primary_10_1111_aje_12908
crossref_primary_10_1002_ps_8250
crossref_primary_10_3390_rs15194685
crossref_primary_10_3724_ahr_2095_0357_2024_0061
crossref_primary_10_1088_2515_7620_ad277d
crossref_primary_10_7717_peerj_13260
crossref_primary_10_1016_j_ecolind_2023_111491
crossref_primary_10_3390_ani14091390
crossref_primary_10_7717_peerj_16533
crossref_primary_10_28979_jarnas_844850
crossref_primary_10_3389_fpls_2024_1364481
crossref_primary_10_1111_1749_4877_12713
crossref_primary_10_1111_2041_210X_13107
crossref_primary_10_1016_j_isci_2025_112909
crossref_primary_10_3390_biology13110902
crossref_primary_10_3390_insects15100820
crossref_primary_10_1002_aqc_70213
crossref_primary_10_1007_s10682_024_10290_8
crossref_primary_10_1016_j_scitotenv_2021_150782
crossref_primary_10_1007_s43388_023_00124_6
crossref_primary_10_1016_j_ecolind_2024_112694
crossref_primary_10_1007_s10530_022_02838_y
crossref_primary_10_1111_mec_16082
crossref_primary_10_3390_pathogens12050651
crossref_primary_10_3390_biology10111169
crossref_primary_10_1007_s11252_021_01136_0
crossref_primary_10_1080_17538947_2024_2346266
crossref_primary_10_3389_ffgc_2021_756678
crossref_primary_10_1002_ecs2_4391
crossref_primary_10_3390_rs14092168
crossref_primary_10_3390_f14051049
crossref_primary_10_1016_j_ecolmodel_2023_110409
crossref_primary_10_1016_j_sajb_2023_02_032
crossref_primary_10_7717_peerj_16111
crossref_primary_10_1186_s40850_022_00153_6
crossref_primary_10_3390_insects13100942
crossref_primary_10_3389_fpls_2025_1564278
crossref_primary_10_3389_fpls_2022_1003368
crossref_primary_10_3389_fpls_2023_1326207
crossref_primary_10_1016_j_actatropica_2019_105319
crossref_primary_10_3389_fevo_2023_1165968
crossref_primary_10_1007_s12595_023_00496_z
crossref_primary_10_1016_j_gecco_2025_e03573
crossref_primary_10_1080_10106049_2024_2421233
crossref_primary_10_1111_jbi_13651
crossref_primary_10_1093_aob_mcac142
crossref_primary_10_1002_ece3_10545
crossref_primary_10_1007_s11252_018_0778_2
crossref_primary_10_1016_j_ecolind_2023_111069
crossref_primary_10_3390_ani14203025
crossref_primary_10_3390_biology14030304
crossref_primary_10_3390_app122211449
crossref_primary_10_1038_s41598_024_78733_4
crossref_primary_10_1016_j_scitotenv_2020_142416
crossref_primary_10_1007_s13127_020_00454_z
crossref_primary_10_3389_fmars_2021_742209
crossref_primary_10_3390_plants12071559
crossref_primary_10_1007_s10336_020_01822_4
crossref_primary_10_1016_j_compenvurbsys_2024_102177
crossref_primary_10_3389_fpls_2024_1445764
crossref_primary_10_1080_14614103_2023_2266631
crossref_primary_10_3390_f15050883
crossref_primary_10_1111_ppa_13111
crossref_primary_10_1007_s11356_024_33391_x
crossref_primary_10_2989_00306525_2021_1998239
crossref_primary_10_3390_f15050766
crossref_primary_10_1111_jbi_14841
crossref_primary_10_1111_jbi_14962
crossref_primary_10_3389_fpls_2024_1413707
crossref_primary_10_1007_s10530_024_03290_w
crossref_primary_10_20935_AcadEnvSci7582
crossref_primary_10_1002_ajp_23493
crossref_primary_10_1016_j_ympev_2023_107781
crossref_primary_10_3389_fevo_2021_742524
crossref_primary_10_1016_j_scitotenv_2024_176854
crossref_primary_10_1007_s11355_023_00575_5
crossref_primary_10_1111_jbi_14828
crossref_primary_10_1093_pubmed_fdac125
crossref_primary_10_1111_oik_10283
crossref_primary_10_3389_fpls_2023_1141470
crossref_primary_10_1111_mms_12719
crossref_primary_10_1371_journal_pone_0229178
crossref_primary_10_1007_s10531_023_02749_x
crossref_primary_10_1007_s10661_025_14369_9
crossref_primary_10_1016_j_ufug_2023_128183
crossref_primary_10_1007_s10530_023_03016_4
crossref_primary_10_1038_s41598_022_11600_2
crossref_primary_10_1016_j_ecolind_2019_105930
crossref_primary_10_1111_geb_12979
crossref_primary_10_1007_s10530_021_02596_3
crossref_primary_10_1002_ece3_71390
crossref_primary_10_1002_ece3_8288
crossref_primary_10_1016_j_jnc_2023_126547
crossref_primary_10_1017_S0030605321000764
crossref_primary_10_1002_jwmg_22235
crossref_primary_10_3832_ifor4196_015
crossref_primary_10_3390_land12010221
crossref_primary_10_2179_0008_7475_86_2_173
crossref_primary_10_1016_j_pce_2025_103938
crossref_primary_10_1111_aec_70085
crossref_primary_10_3389_fpls_2025_1552770
crossref_primary_10_3390_plants12183254
crossref_primary_10_1038_s41598_025_06976_w
crossref_primary_10_3390_agronomy15020362
crossref_primary_10_1002_ece3_9382
crossref_primary_10_1016_j_rama_2021_06_007
crossref_primary_10_1111_jbi_13716
crossref_primary_10_1007_s10531_024_02831_y
crossref_primary_10_1016_j_scitotenv_2022_160962
crossref_primary_10_3390_plants13202846
crossref_primary_10_1016_j_ecoinf_2022_101813
crossref_primary_10_1002_ece3_70169
crossref_primary_10_1016_j_ecoinf_2022_101930
crossref_primary_10_3390_f16060900
crossref_primary_10_3390_su16145975
crossref_primary_10_1002_ece3_70160
crossref_primary_10_1007_s00343_025_4358_z
crossref_primary_10_1002_ps_8887
crossref_primary_10_1002_ps_7554
crossref_primary_10_1111_1462_2920_15799
crossref_primary_10_1007_s10531_024_02997_5
crossref_primary_10_3389_fenvs_2024_1429718
crossref_primary_10_1016_j_scitotenv_2021_146031
crossref_primary_10_3390_biology11040588
crossref_primary_10_1016_j_biocon_2021_109238
crossref_primary_10_1016_j_ecolind_2022_109311
crossref_primary_10_1080_21564574_2024_2337638
crossref_primary_10_3390_agriculture15111144
crossref_primary_10_3390_f15020272
crossref_primary_10_3989_pirineos_2022_177004
crossref_primary_10_7717_peerj_18799
crossref_primary_10_1002_ece3_70059
crossref_primary_10_1016_j_actatropica_2022_106382
crossref_primary_10_3390_w15112091
crossref_primary_10_1007_s10980_020_01125_2
crossref_primary_10_3390_f15081321
crossref_primary_10_1038_s41598_024_64760_8
crossref_primary_10_1186_s43088_024_00553_2
crossref_primary_10_3390_f15081449
crossref_primary_10_3390_f11060673
crossref_primary_10_3390_f13060859
crossref_primary_10_1002_jwmg_22204
crossref_primary_10_1002_jwmg_22325
crossref_primary_10_3389_fpls_2025_1561031
crossref_primary_10_1016_j_heliyon_2023_e20199
crossref_primary_10_1007_s00436_024_08284_0
crossref_primary_10_1134_S1995425520050030
crossref_primary_10_1515_mammalia_2020_0094
crossref_primary_10_3390_plants14162539
crossref_primary_10_3390_ani13233726
crossref_primary_10_1002_ps_6886
crossref_primary_10_1016_j_biocon_2024_110826
crossref_primary_10_1007_s10531_023_02727_3
crossref_primary_10_3390_insects14080714
crossref_primary_10_1002_ps_6891
crossref_primary_10_3390_f11060684
crossref_primary_10_1002_ece3_9054
crossref_primary_10_1016_j_pecon_2021_04_002
crossref_primary_10_3389_fmars_2021_776965
crossref_primary_10_3390_f12091263
crossref_primary_10_1007_s10661_025_14302_0
crossref_primary_10_1016_j_pocean_2019_04_007
crossref_primary_10_3390_f10070565
crossref_primary_10_1002_ps_7987
crossref_primary_10_1111_njb_04502
crossref_primary_10_7717_peerj_6128
crossref_primary_10_1038_s41598_023_36358_z
crossref_primary_10_1111_ddi_13116
crossref_primary_10_3389_fpls_2024_1470653
crossref_primary_10_1038_s41438_020_00376_z
crossref_primary_10_3390_ani15020235
crossref_primary_10_3390_plants11060731
crossref_primary_10_1002_ece3_72159
crossref_primary_10_1007_s10661_022_10524_8
crossref_primary_10_1016_j_jnc_2024_126791
crossref_primary_10_3389_fevo_2023_1218149
crossref_primary_10_1007_s11756_021_00936_1
crossref_primary_10_1002_ps_7753
crossref_primary_10_1111_maec_12706
crossref_primary_10_2989_16085914_2024_2421797
crossref_primary_10_1088_1755_1315_743_1_012027
crossref_primary_10_1002_ece3_71054
crossref_primary_10_1007_s11676_019_01009_5
crossref_primary_10_1016_j_jia_2023_06_022
crossref_primary_10_1016_j_scitotenv_2024_175794
crossref_primary_10_3390_su15065604
crossref_primary_10_1016_j_ecolind_2021_108489
crossref_primary_10_1088_1755_1315_1276_1_012054
crossref_primary_10_1093_biolinnean_blae094
crossref_primary_10_3389_fevo_2022_1095188
crossref_primary_10_3389_fpls_2025_1563127
crossref_primary_10_1007_s42995_023_00188_9
crossref_primary_10_3390_insects16020227
crossref_primary_10_1016_j_envsoft_2021_105234
crossref_primary_10_3390_insects13020145
crossref_primary_10_3390_biology11111659
crossref_primary_10_1016_j_heliyon_2024_e30273
crossref_primary_10_1002_ece3_9083
crossref_primary_10_3390_su14031638
crossref_primary_10_1111_ddi_13362
crossref_primary_10_1111_csp2_13266
crossref_primary_10_3390_d15121172
crossref_primary_10_1016_j_smallrumres_2024_107370
crossref_primary_10_1002_ece3_6492
crossref_primary_10_1007_s10531_023_02587_x
crossref_primary_10_1007_s10530_020_02332_3
crossref_primary_10_1002_ece3_11010
crossref_primary_10_1002_ece3_8798
crossref_primary_10_3390_d15101038
crossref_primary_10_1016_j_ecoinf_2024_102896
crossref_primary_10_3390_agriculture14091629
crossref_primary_10_7589_JWD_D_24_00099
crossref_primary_10_3390_plants14111669
crossref_primary_10_1007_s10336_020_01828_y
crossref_primary_10_3390_ijgi14010031
crossref_primary_10_1007_s10113_024_02185_9
crossref_primary_10_3390_su15065469
crossref_primary_10_1016_j_jnc_2025_127106
crossref_primary_10_1016_j_jaridenv_2025_105317
crossref_primary_10_1186_s13717_023_00423_2
crossref_primary_10_1111_1748_5967_12671
crossref_primary_10_3390_insects12030229
crossref_primary_10_1111_ddi_70058
crossref_primary_10_1016_j_scitotenv_2024_173616
crossref_primary_10_3390_ani15131907
crossref_primary_10_1007_s40808_024_01995_4
crossref_primary_10_1088_2515_7620_ad853c
crossref_primary_10_3390_insects11110805
crossref_primary_10_1002_ece3_71551
crossref_primary_10_3390_su15065349
crossref_primary_10_1016_j_biocontrol_2025_105754
crossref_primary_10_3390_ijerph16183416
crossref_primary_10_1002_ece3_70235
crossref_primary_10_1111_tbed_14113
crossref_primary_10_1002_ece3_70354
crossref_primary_10_1186_s12870_024_04830_1
crossref_primary_10_1007_s42965_024_00351_y
crossref_primary_10_3389_fpls_2024_1498229
crossref_primary_10_3390_f10030220
crossref_primary_10_3390_su151813669
crossref_primary_10_1007_s12145_024_01626_7
crossref_primary_10_1111_jzs_12519
crossref_primary_10_1371_journal_pone_0280922
crossref_primary_10_1111_1749_4877_13020
crossref_primary_10_1016_j_ocecoaman_2020_105328
crossref_primary_10_1016_j_heliyon_2023_e17241
crossref_primary_10_7717_peerj_19136
crossref_primary_10_1016_j_actatropica_2021_105950
crossref_primary_10_3390_insects12040299
crossref_primary_10_1016_j_actatropica_2021_105952
crossref_primary_10_1002_ece3_9302
crossref_primary_10_3390_ani15060896
crossref_primary_10_1002_ece3_9305
crossref_primary_10_3390_insects13060550
crossref_primary_10_3389_fpls_2024_1407867
crossref_primary_10_1016_j_jaridenv_2020_104153
crossref_primary_10_3356_jrr2451
crossref_primary_10_1007_s11295_023_01592_z
crossref_primary_10_1007_s40808_022_01661_7
crossref_primary_10_1038_s41598_023_37897_1
crossref_primary_10_1371_journal_pone_0265316
crossref_primary_10_1038_s41598_023_33856_y
crossref_primary_10_1093_ornithapp_duab006
crossref_primary_10_3390_f13101595
crossref_primary_10_1016_j_flora_2025_152827
crossref_primary_10_3390_insects14040316
crossref_primary_10_3390_insects14050476
crossref_primary_10_1002_ece3_8460
crossref_primary_10_1016_j_scitotenv_2024_172523
crossref_primary_10_1016_j_scitotenv_2021_148850
crossref_primary_10_1016_j_rse_2025_114804
crossref_primary_10_3390_genes11101114
crossref_primary_10_3390_f14102048
crossref_primary_10_1002_ece3_71530
crossref_primary_10_1016_j_aspen_2020_01_009
crossref_primary_10_3390_insects16050450
crossref_primary_10_1111_2041_210X_13902
crossref_primary_10_1676_21_00058
crossref_primary_10_3390_plants12010222
crossref_primary_10_3897_zookeys_1158_94152
crossref_primary_10_1007_s10584_020_02722_5
crossref_primary_10_1007_s13592_020_00753_6
crossref_primary_10_1002_ecs2_3870
crossref_primary_10_3390_f13091428
crossref_primary_10_3389_fmars_2020_542648
crossref_primary_10_1111_ddi_13297
crossref_primary_10_1016_j_avrs_2022_100009
crossref_primary_10_3390_agronomy15051165
crossref_primary_10_1016_j_lana_2021_100080
crossref_primary_10_1016_j_prevetmed_2021_105311
crossref_primary_10_1016_j_cell_2022_06_042
crossref_primary_10_1093_mollus_eyab003
crossref_primary_10_1111_acv_12696
crossref_primary_10_1007_s42991_021_00118_1
crossref_primary_10_3390_life15040589
crossref_primary_10_1111_1748_5967_12756
crossref_primary_10_1186_s12936_020_03187_8
crossref_primary_10_2478_foecol_2024_0020
crossref_primary_10_3389_fpls_2023_1184556
crossref_primary_10_1038_s41598_024_71782_9
crossref_primary_10_1080_03736687_2022_2126097
crossref_primary_10_1016_j_landurbplan_2020_103871
crossref_primary_10_1016_j_ocecoaman_2021_105555
crossref_primary_10_3390_d13020083
crossref_primary_10_3390_f13010126
crossref_primary_10_3390_su16093653
crossref_primary_10_1111_tbed_14669
crossref_primary_10_3390_d15070877
crossref_primary_10_1007_s11356_023_26351_4
crossref_primary_10_3390_d13060266
crossref_primary_10_1002_ece3_9210
crossref_primary_10_1016_j_jnc_2023_126505
crossref_primary_10_1111_geb_13108
crossref_primary_10_3390_d15101087
crossref_primary_10_1002_ecs2_3969
crossref_primary_10_1007_s40808_024_02005_3
crossref_primary_10_1016_j_indcrop_2022_115838
crossref_primary_10_1093_aobpla_plab009
crossref_primary_10_1016_j_biocon_2022_109711
crossref_primary_10_1016_j_heliyon_2023_e14927
crossref_primary_10_3390_f11101088
crossref_primary_10_3390_insects14100810
crossref_primary_10_3390_d13020072
crossref_primary_10_3390_plants12030473
crossref_primary_10_1002_ps_6932
crossref_primary_10_1111_geb_13103
crossref_primary_10_3390_biology12010084
crossref_primary_10_7717_peerj_12308
crossref_primary_10_1038_s41598_025_15546_z
crossref_primary_10_1016_j_fcr_2021_108069
crossref_primary_10_1016_j_jnc_2020_125918
crossref_primary_10_1007_s10340_022_01479_3
crossref_primary_10_1002_inc3_70019
crossref_primary_10_3390_biology14091221
crossref_primary_10_1007_s13364_025_00815_z
crossref_primary_10_1016_j_jaa_2019_101140
crossref_primary_10_1002_ece3_9228
crossref_primary_10_1093_jee_toae262
crossref_primary_10_1038_s41598_024_71816_2
crossref_primary_10_1016_j_jaridenv_2022_104725
crossref_primary_10_1007_s11756_023_01523_2
crossref_primary_10_1016_j_asr_2025_01_050
crossref_primary_10_1016_j_scitotenv_2020_139933
crossref_primary_10_3389_fpls_2019_01721
crossref_primary_10_1007_s11258_023_01312_6
crossref_primary_10_1088_2515_7620_adce5b
crossref_primary_10_1111_tbed_14404
crossref_primary_10_7717_peerj_6514
crossref_primary_10_1038_s41598_018_34854_1
crossref_primary_10_1186_s13717_025_00622_z
crossref_primary_10_1093_ornithapp_duab063
crossref_primary_10_1371_journal_pone_0242432
crossref_primary_10_1007_s10531_024_02802_3
crossref_primary_10_1038_s41437_024_00700_6
crossref_primary_10_1016_j_ecoinf_2021_101309
crossref_primary_10_1093_jee_toae255
crossref_primary_10_1007_s10661_018_7052_1
crossref_primary_10_1111_jse_12521
crossref_primary_10_1186_s12870_025_06590_y
crossref_primary_10_1007_s10750_024_05554_x
crossref_primary_10_1007_s11427_023_2448_x
crossref_primary_10_2989_00306525_2022_2061063
crossref_primary_10_3389_fpls_2022_921310
crossref_primary_10_1002_ps_7804
crossref_primary_10_3354_meps13880
crossref_primary_10_3389_fpls_2021_774232
crossref_primary_10_3390_f13091504
crossref_primary_10_1038_s41598_025_09800_7
crossref_primary_10_1111_1365_2664_70153
crossref_primary_10_1007_s10661_025_14308_8
crossref_primary_10_1093_zoolinnean_zlaa030
crossref_primary_10_3390_f12111449
crossref_primary_10_3390_su142114621
crossref_primary_10_3390_biology14030242
crossref_primary_10_1016_j_ecolind_2025_113181
crossref_primary_10_1016_j_marenvres_2025_107253
crossref_primary_10_1016_j_ecoinf_2023_102402
crossref_primary_10_1016_j_ecolind_2025_114150
crossref_primary_10_3390_f13101611
crossref_primary_10_1007_s00704_023_04627_6
crossref_primary_10_1007_s11356_024_32935_5
crossref_primary_10_3389_fcosc_2025_1470223
crossref_primary_10_1038_s41598_024_52668_2
crossref_primary_10_1007_s10344_024_01780_9
crossref_primary_10_1186_s12870_024_05355_3
crossref_primary_10_1007_s12517_022_10442_6
crossref_primary_10_3390_agriculture14060850
crossref_primary_10_1002_ece3_70517
crossref_primary_10_1093_biolinnean_blaa147
crossref_primary_10_3390_ecologies4040043
crossref_primary_10_1002_ece3_70636
crossref_primary_10_1038_s41598_024_66260_1
crossref_primary_10_1002_ece3_70633
crossref_primary_10_1016_j_ecoinf_2021_101324
crossref_primary_10_1093_aesa_saz049
crossref_primary_10_1525_elementa_2023_00018
crossref_primary_10_1038_s41598_025_90564_5
crossref_primary_10_1088_2515_7620_ac3906
crossref_primary_10_3389_ffgc_2023_1250651
crossref_primary_10_1016_j_ecolmodel_2022_110039
crossref_primary_10_1016_j_flora_2020_151607
crossref_primary_10_1007_s10661_023_12122_8
crossref_primary_10_1371_journal_pone_0317368
crossref_primary_10_3390_d17060403
crossref_primary_10_1016_j_gecco_2025_e03813
crossref_primary_10_3390_f12111464
crossref_primary_10_1016_j_pld_2023_05_001
crossref_primary_10_3390_plants9080957
crossref_primary_10_1007_s11676_022_01459_4
crossref_primary_10_1007_s11692_023_09613_4
crossref_primary_10_1111_jse_12558
crossref_primary_10_1002_ece3_6317
crossref_primary_10_3390_f15101693
crossref_primary_10_1016_j_scitotenv_2024_174095
crossref_primary_10_1016_j_mambio_2019_03_014
crossref_primary_10_3390_insects15060417
crossref_primary_10_3390_su17136078
crossref_primary_10_1093_jee_toz259
crossref_primary_10_1292_jvms_23_0146
crossref_primary_10_1093_jme_tjz244
crossref_primary_10_1016_j_ecolind_2023_110219
crossref_primary_10_1007_s11629_020_6560_y
crossref_primary_10_1007_s43388_023_00130_8
crossref_primary_10_3390_land13081156
crossref_primary_10_1093_jmammal_gyab133
crossref_primary_10_3389_fevo_2023_1277058
crossref_primary_10_3389_fvets_2021_678478
crossref_primary_10_1038_s41598_023_47535_5
crossref_primary_10_3390_ijms26020574
crossref_primary_10_1038_s41598_024_66490_3
crossref_primary_10_3390_insects16060642
crossref_primary_10_1002_ece3_6200
crossref_primary_10_1007_s10661_021_09547_4
crossref_primary_10_1016_j_cj_2023_11_011
crossref_primary_10_1111_jzs_12372
crossref_primary_10_1002_ece3_8629
crossref_primary_10_3390_biology12070998
crossref_primary_10_1007_s10668_020_00819_6
crossref_primary_10_1016_j_ecolind_2025_113077
crossref_primary_10_1016_j_pecon_2021_01_001
crossref_primary_10_7717_peerj_4647
crossref_primary_10_3390_land12101907
crossref_primary_10_3390_plants14182827
crossref_primary_10_1002_ps_7297
crossref_primary_10_1051_alr_2024002
crossref_primary_10_1007_s40808_022_01378_7
crossref_primary_10_1186_s13717_020_00259_0
crossref_primary_10_1007_s10661_023_12003_0
crossref_primary_10_3390_biology13030198
crossref_primary_10_1371_journal_pone_0238126
crossref_primary_10_1007_s10336_024_02214_8
crossref_primary_10_1002_ece3_8632
crossref_primary_10_1007_s10530_020_02372_9
crossref_primary_10_1515_mammalia_2021_0130
crossref_primary_10_1016_j_jenvman_2019_02_031
crossref_primary_10_3390_plants13081082
crossref_primary_10_1016_j_actatropica_2024_107367
crossref_primary_10_1016_j_ecoinf_2021_101478
crossref_primary_10_1002_ece3_71406
crossref_primary_10_1016_j_scitotenv_2023_162893
crossref_primary_10_3389_fgene_2024_1322285
crossref_primary_10_3390_ani14071124
crossref_primary_10_1093_ee_nvab001
crossref_primary_10_1007_s11356_021_17171_5
crossref_primary_10_3390_plants10030460
crossref_primary_10_7717_peerj_18932
crossref_primary_10_7717_peerj_17968
crossref_primary_10_1186_s12870_023_04284_x
crossref_primary_10_1038_s41598_022_09953_9
crossref_primary_10_1002_ece3_10252
crossref_primary_10_1002_ece3_71754
crossref_primary_10_1111_ecog_06852
crossref_primary_10_3390_d14100840
crossref_primary_10_3389_fpls_2024_1430576
crossref_primary_10_3390_f13122108
crossref_primary_10_1111_jbi_14224
crossref_primary_10_1111_jbi_14345
crossref_primary_10_1111_jbi_14587
crossref_primary_10_1051_parasite_2021030
crossref_primary_10_1134_S1062359025601041
crossref_primary_10_1038_s41598_025_02231_4
crossref_primary_10_7717_peerj_12387
crossref_primary_10_1016_j_ympev_2024_108216
crossref_primary_10_1002_ece3_70528
crossref_primary_10_1111_mec_16223
crossref_primary_10_1002_ece3_70403
crossref_primary_10_1002_ece3_11594
crossref_primary_10_1002_ece3_6117
crossref_primary_10_1016_j_landurbplan_2024_105039
crossref_primary_10_1016_j_funbio_2022_10_004
crossref_primary_10_1016_j_ecoinf_2022_101693
crossref_primary_10_3389_ffgc_2023_1143208
crossref_primary_10_1007_s10661_023_12232_3
crossref_primary_10_1111_rec_14232
crossref_primary_10_1007_s10336_024_02239_z
crossref_primary_10_1007_s42991_020_00056_4
crossref_primary_10_1111_plb_12925
crossref_primary_10_1016_j_heliyon_2023_e19867
crossref_primary_10_1016_j_ecolind_2023_110001
crossref_primary_10_3390_biology11010110
crossref_primary_10_1007_s10344_024_01806_2
crossref_primary_10_1007_s40415_024_00993_1
crossref_primary_10_1016_j_ecolind_2019_106009
crossref_primary_10_1002_ece3_9516
crossref_primary_10_1016_j_ecolind_2021_107950
crossref_primary_10_1371_journal_pntd_0013464
crossref_primary_10_1371_journal_pone_0320598
crossref_primary_10_3390_f14061150
crossref_primary_10_3389_fmars_2021_608867
Cites_doi 10.1111/j.1600-0587.2010.06237.x
10.1016/j.ecolmodel.2011.02.011
10.1111/j.0906-7590.2008.5203.x
10.1111/j.1471-8286.2004.00843.x
10.1111/j.2041-210X.2011.00172.x
10.1890/10-1171.1
10.1111/2041-210X.12200
10.1073/pnas.0706568104
10.1111/j.1600-0587.2013.07872.x
10.1016/j.ecolmodel.2011.04.011
10.1016/j.ecolmodel.2005.03.026
10.1111/j.1466-8238.2007.00358.x
10.23943/princeton/9780691136868.001.0001
10.1038/ncomms5473
10.1890/11-0826.1
10.1016/j.ecolmodel.2013.08.011
10.1111/j.1365-2699.2009.02174.x
10.1111/jbi.12227
10.1111/j.1365-2699.2010.02290.x
10.1016/j.ecolmodel.2013.12.012
10.1046/j.1365-2699.2003.00867.x
ContentType Journal Article
Copyright COPYRIGHT 2017 PeerJ. Ltd.
2017 Brown et al. 2017 Brown et al.
Copyright_xml – notice: COPYRIGHT 2017 PeerJ. Ltd.
– notice: 2017 Brown et al. 2017 Brown et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.7717/peerj.4095
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_0a9265d4854944f9977d9c2786a0e738
PMC5721907
A517457428
29230356
10_7717_peerj_4095
Genre Journal Article
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
W2D
YAO
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c542t-ff95dcbae75cc03e4daddcc1a398788be5b92f02d59869838fb7e3acf45cd3123
IEDL.DBID DOA
ISICitedReferencesCount 640
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417100100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2167-8359
IngestDate Mon Nov 10 04:29:33 EST 2025
Tue Nov 04 01:59:24 EST 2025
Thu Oct 02 11:58:29 EDT 2025
Tue Nov 11 10:19:28 EST 2025
Tue Nov 04 17:58:22 EST 2025
Thu May 22 21:21:59 EDT 2025
Thu Apr 03 07:01:43 EDT 2025
Sat Nov 29 05:38:27 EST 2025
Tue Nov 18 22:22:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ArcGIS
CANAPE categorization
Ecological niche models
Rarefy occurrences
Spatial jackknifing
MaxEnt bias files
Geographic information systems
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-ff95dcbae75cc03e4daddcc1a398788be5b92f02d59869838fb7e3acf45cd3123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/0a9265d4854944f9977d9c2786a0e738
PMID 29230356
PQID 1976000083
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0a9265d4854944f9977d9c2786a0e738
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5721907
proquest_miscellaneous_1976000083
gale_infotracmisc_A517457428
gale_infotracacademiconefile_A517457428
gale_healthsolutions_A517457428
pubmed_primary_29230356
crossref_primary_10_7717_peerj_4095
crossref_citationtrail_10_7717_peerj_4095
PublicationCentury 2000
PublicationDate 2017-12-05
PublicationDateYYYYMMDD 2017-12-05
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2017
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Anderson (10.7717/peerj.4095/ref-2) 2011; 222
Anderson (10.7717/peerj.4095/ref-3) 2010; 37
Ray (10.7717/peerj.4095/ref-20) 2005; 5
Barve (10.7717/peerj.4095/ref-5) 2011; 222
McRae (10.7717/peerj.4095/ref-12) 2007; 104
ESRI (10.7717/peerj.4095/ref-8) 2017
Lobo (10.7717/peerj.4095/ref-11) 2008; 17
Veloz (10.7717/peerj.4095/ref-22) 2009; 36
Phillips (10.7717/peerj.4095/ref-17) 2008; 31
Brown (10.7717/peerj.4095/ref-7) 2014; 5
Warren (10.7717/peerj.4095/ref-23) 2011; 21
Boria (10.7717/peerj.4095/ref-6) 2014; 275
Radosavljevic (10.7717/peerj.4095/ref-19) 2014; 41
Laffan (10.7717/peerj.4095/ref-10) 2010; 33
Anderson (10.7717/peerj.4095/ref-1) 2003; 30
Barbet-Massin (10.7717/peerj.4095/ref-4) 2012; 3
Phillips (10.7717/peerj.4095/ref-18) 2017
Mishler (10.7717/peerj.4095/ref-14) 2014; 5
Merow (10.7717/peerj.4095/ref-13) 2013; 36
Peterson (10.7717/peerj.4095/ref-15) 2011; 49
Phillips (10.7717/peerj.4095/ref-16) 2006; 190
Shcheglovitova (10.7717/peerj.4095/ref-21) 2013; 269
Hijmans (10.7717/peerj.4095/ref-9) 2012; 93
References_xml – year: 2017
  ident: 10.7717/peerj.4095/ref-18
  article-title: MaxEnt software for modeling species niches and distributions
– volume: 33
  start-page: 643
  year: 2010
  ident: 10.7717/peerj.4095/ref-10
  article-title: Biodiverse, a tool for the spatial analysis of biological and related diversity
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2010.06237.x
– volume: 222
  start-page: 1810
  issue: 11
  year: 2011
  ident: 10.7717/peerj.4095/ref-5
  article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2011.02.011
– volume: 31
  start-page: 161
  year: 2008
  ident: 10.7717/peerj.4095/ref-17
  article-title: Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2008.5203.x
– volume: 5
  start-page: 177
  issue: 1
  year: 2005
  ident: 10.7717/peerj.4095/ref-20
  article-title: PATHMATRIX: a geographical information system tool to compute effective distances among samples
  publication-title: Molecular Ecology Notes
  doi: 10.1111/j.1471-8286.2004.00843.x
– volume: 3
  start-page: 327
  year: 2012
  ident: 10.7717/peerj.4095/ref-4
  article-title: Selecting pseudo-absences for species distribution models: how, where and how many?
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2011.00172.x
– volume: 21
  start-page: 335
  year: 2011
  ident: 10.7717/peerj.4095/ref-23
  article-title: Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria
  publication-title: Ecological Applications
  doi: 10.1890/10-1171.1
– volume: 5
  start-page: 694
  issue: 7
  year: 2014
  ident: 10.7717/peerj.4095/ref-7
  article-title: SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12200
– volume: 104
  start-page: 19885
  issue: 50
  year: 2007
  ident: 10.7717/peerj.4095/ref-12
  article-title: Circuit theory predicts gene flow in plant and animal populations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0706568104
– volume: 36
  start-page: 1058
  year: 2013
  ident: 10.7717/peerj.4095/ref-13
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.07872.x
– volume: 222
  start-page: 2796
  year: 2011
  ident: 10.7717/peerj.4095/ref-2
  article-title: Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with MaxEnt
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2011.04.011
– volume: 190
  start-page: 231
  year: 2006
  ident: 10.7717/peerj.4095/ref-16
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume-title: ArcGIS desktop and spatial analyst extension: release 10.5
  year: 2017
  ident: 10.7717/peerj.4095/ref-8
– volume: 17
  start-page: 145
  year: 2008
  ident: 10.7717/peerj.4095/ref-11
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology & Biogeography
  doi: 10.1111/j.1466-8238.2007.00358.x
– volume: 49
  volume-title: Ecological niches and geographic distributions
  year: 2011
  ident: 10.7717/peerj.4095/ref-15
  doi: 10.23943/princeton/9780691136868.001.0001
– volume: 5
  start-page: 4473
  year: 2014
  ident: 10.7717/peerj.4095/ref-14
  article-title: Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia
  publication-title: Nature Communications
  doi: 10.1038/ncomms5473
– volume: 93
  start-page: 679
  year: 2012
  ident: 10.7717/peerj.4095/ref-9
  article-title: Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model
  publication-title: Ecology
  doi: 10.1890/11-0826.1
– volume: 269
  start-page: 9
  year: 2013
  ident: 10.7717/peerj.4095/ref-21
  article-title: Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes
  publication-title: Ecological Modeling
  doi: 10.1016/j.ecolmodel.2013.08.011
– volume: 36
  start-page: 2290
  year: 2009
  ident: 10.7717/peerj.4095/ref-22
  article-title: Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2009.02174.x
– volume: 41
  start-page: 629
  year: 2014
  ident: 10.7717/peerj.4095/ref-19
  article-title: Making better MaxEnt models of species distributions: complexity, overfitting and evaluation
  publication-title: Journal of Biogeography
  doi: 10.1111/jbi.12227
– volume: 37
  start-page: 1378
  year: 2010
  ident: 10.7717/peerj.4095/ref-3
  article-title: The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2010.02290.x
– volume: 275
  start-page: 73
  year: 2014
  ident: 10.7717/peerj.4095/ref-6
  article-title: Spatial filtering to reduce sampling bias can improve the performance of ecological niche models
  publication-title: Ecological Modeling
  doi: 10.1016/j.ecolmodel.2013.12.012
– volume: 30
  start-page: 591
  year: 2003
  ident: 10.7717/peerj.4095/ref-1
  article-title: Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela
  publication-title: Journal of Biogeography
  doi: 10.1046/j.1365-2699.2003.00867.x
SSID ssj0000826083
Score 2.6196663
Snippet SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e4095
SubjectTerms Analysis
Animal behavior
Animal populations
ArcGIS
Biodiversity
Biogeography
Bioinformatics
Conservation Biology
Ecological niche models
Geographic information systems
Graphical user interfaces
MaxEnt bias files
Python (Programming language)
Rarefy occurrences
Spatial jackknifing
Technology application
Title SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses
URI https://www.ncbi.nlm.nih.gov/pubmed/29230356
https://www.proquest.com/docview/1976000083
https://pubmed.ncbi.nlm.nih.gov/PMC5721907
https://doaj.org/article/0a9265d4854944f9977d9c2786a0e738
Volume 5
WOSCitedRecordID wos000417100100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological science database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M7P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: PIMPY
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M2P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRYgL4k2gLEYgISTSep04jrm10EIldhVRkLanyPGjXaiSajdF8BP418w46WojkLhwsZTMRIntGfsbZfwNIS8ym7HE-yrWmfVxmmgX52O4dBI8zzhrlQ9VSz7K6TSfzVSxVuoLc8I6euBu4HaYVjwTNs0hkElTrwCvWGW4zDPNnEzCMV8m1VowFdZgQM0ALjo-Ugkhy865c4uv2xDNiMEOFIj6_1yO1_ajYa7k2uZzcIvc7FEj3e2-9ja54uo75Pqk_y9-l_w6ejdpm-asan5Qvs3eUIB1tIZ1l54EWmkcfVr8RJ6AGPctS98fHlF84tu8pYBbaTjyi8lQ4Ql4zWtazZuTrkT66dxQkFM8lgmRNbXIttsXyqKhlg6IkdzELe-RLwf7n99-iPsiC7ERKW9j75WwptJOCmNY4lILK54xY52oHMLjyolKcc-4RSJ3lSe5r6RLtPGpMDaBfe8-2aib2j0kFFYHpwGxZCnTqXGgnTObcyMqxg3TIiKvLge-ND0DORbCOCshEsFJKsMklThJEXm-0j3veDf-qrWH87fSQK7scAMsqOwtqPyXBUXkKc5-2R08XXl8uYsk3kJCfBaRl0EDfR4-2Oj-6AJ0G9mzBppbA03wVTMQP7u0sBJFmOBWu-ZiWY4V_iFFQByRB53FrXrFAYSzRGQRkQNbHHR7KKnnp4EqXECAr5h89D_G6TG5wRHTYC6P2CIb7eLCPSHXzPd2vlyMyFU5y0dkc29_WnwaBW-EdsILbCW0m8XhpDj-DSetPlM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDMtoolbox+2.0%3A+the+next+generation+Python-based+GIS+toolkit+for+landscape+genetic%2C+biogeographic+and+species+distribution+model+analyses&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Brown%2C+Jason+L.&rft.au=Bennett%2C+Joseph+R.&rft.au=French%2C+Connor+M.&rft.date=2017-12-05&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=5&rft_id=info:doi/10.7717%2Fpeerj.4095&rft_id=info%3Apmid%2F29230356&rft.externalDocID=PMC5721907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon