EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation
Rondinelli et al. show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2 contributes to PARPi resistance in BRCA2-deficient tumours. The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat...
Uloženo v:
| Vydáno v: | Nature cell biology Ročník 19; číslo 11; s. 1371 - 1378 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.11.2017
Nature Publishing Group |
| Témata: | |
| ISSN: | 1465-7392, 1476-4679, 1476-4679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rondinelli
et al.
show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2 contributes to PARPi resistance in BRCA2-deficient tumours.
The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours
1
. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers
2
. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low
EZH2
or
MUS81
expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine
Brca2
−/−
breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify
EZH2
expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. |
|---|---|
| AbstractList | The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy.The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2 breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. Rondinelli et al. show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2 contributes to PARPi resistance in BRCA2-deficient tumours. The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours 1 . Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers 2 . Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2 −/− breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. Rondinelli et al. show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2 contributes to PARPi resistance in BRCA2-deficient tumours. The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours.sup.1. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers.sup.2. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2.sup.-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. Rondinelli et al. show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2 contributes to PARPi resistance in BRCA2-deficient tumours. The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2-/- breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy. |
| Audience | Academic |
| Author | Ceccaldi, Raphaël Yücel, Hatice Jonkers, Jos Rottenberg, Sven Gogola, Ewa Konstantinopoulos, Panagiotis A. D’Andrea, Alan D. Duarte, Alexandra A. Rondinelli, Beatrice van der Sluijs, Roxanne van de Ven, Marieke |
| Author_xml | – sequence: 1 givenname: Beatrice surname: Rondinelli fullname: Rondinelli, Beatrice organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 2 givenname: Ewa surname: Gogola fullname: Gogola, Ewa organization: Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute – sequence: 3 givenname: Hatice surname: Yücel fullname: Yücel, Hatice organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 4 givenname: Alexandra A. surname: Duarte fullname: Duarte, Alexandra A. organization: Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute – sequence: 5 givenname: Marieke surname: van de Ven fullname: van de Ven, Marieke organization: Mouse Clinic for Cancer and Aging (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute – sequence: 6 givenname: Roxanne surname: van der Sluijs fullname: van der Sluijs, Roxanne organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, University of Amsterdam – sequence: 7 givenname: Panagiotis A. surname: Konstantinopoulos fullname: Konstantinopoulos, Panagiotis A. organization: Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 8 givenname: Jos surname: Jonkers fullname: Jonkers, Jos organization: Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute – sequence: 9 givenname: Raphaël surname: Ceccaldi fullname: Ceccaldi, Raphaël organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 10 givenname: Sven surname: Rottenberg fullname: Rottenberg, Sven organization: Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern – sequence: 11 givenname: Alan D. orcidid: 0000-0001-6168-6294 surname: D’Andrea fullname: D’Andrea, Alan D. email: alan_dandrea@dfci.harvard.edu organization: Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29035360$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1rFDEUhoNU7IfiP5CAF-rF1HxP5rKU6hYqgrU33gyZTDKbmplskwy4_95sd_3YpQSSw-E5hzfvOafgaAqTAeA1RucYUflx0h0VRDwDJ5jVomKibo42seBVTRtyDE5TukcIM4bqF-CYNIhyKtAJ8Fc_FgSuYhhDNgn2ZoiqV9mFCQYLU1bemx5Gs_JOb9M2xJ8JduuS1HF22U0D_HJ3KzHMyxjmYQmXLuUiDy4ozNGNJi_X_rH2JXhulU_m1e49A3efrr5fLqqbr5-vLy9uKs0ZyeWu687aHveYdaTHylKpLTUW64YjIpSSRFPJTKMstlISq7jBVHHadYJ0iJ6B99u-5V8Ps0m5HV3Sxns1mTCnFjccc8GxpAV9e4DehzlORd2GkqRpOOP_qEF507rJhhyV3jRtLwQlNWNENIU6f4Iqpzej08UR60p-r-DDXkFhsvmVBzWn1F7ffttn3-yEzt1o-nZVnFVx3f4ZZQHebQEdQ0rR2L8IRu1mSdrdkhSyOiC1y48DKnqdf4Lf2ZlKx2kw8T-PDtDf60_JGA |
| CitedBy_id | crossref_primary_10_1093_jxb_eraa551 crossref_primary_10_3390_jpm11080808 crossref_primary_10_1016_j_drup_2024_101173 crossref_primary_10_1016_j_dnarep_2019_03_016 crossref_primary_10_1073_pnas_2011278118 crossref_primary_10_3389_fphar_2022_965244 crossref_primary_10_1093_nar_gkac948 crossref_primary_10_1038_s41388_021_01982_4 crossref_primary_10_1186_s13045_020_0844_0 crossref_primary_10_3390_molecules24213870 crossref_primary_10_1038_s41467_023_37537_2 crossref_primary_10_3390_cancers15010006 crossref_primary_10_1002_1878_0261_12573 crossref_primary_10_1016_j_bbcan_2019_08_002 crossref_primary_10_1016_j_canlet_2025_217505 crossref_primary_10_2217_fon_2021_0072 crossref_primary_10_1177_17588359231157644 crossref_primary_10_1016_j_molcel_2020_04_035 crossref_primary_10_1083_jcb_201809012 crossref_primary_10_1093_nar_gkac160 crossref_primary_10_1016_j_molcel_2020_08_018 crossref_primary_10_1016_j_dnarep_2018_08_017 crossref_primary_10_1016_j_ccell_2019_12_015 crossref_primary_10_1080_10409238_2018_1488803 crossref_primary_10_1038_s41467_022_32861_5 crossref_primary_10_1042_BST20241633 crossref_primary_10_3390_cancers12082054 crossref_primary_10_1186_s12943_025_02355_1 crossref_primary_10_1038_s41467_020_16096_w crossref_primary_10_1016_j_ejps_2025_107193 crossref_primary_10_3389_fonc_2019_01189 crossref_primary_10_3390_genes9120622 crossref_primary_10_1016_j_bbcan_2021_188633 crossref_primary_10_3390_cancers14194621 crossref_primary_10_1042_EBC20200007 crossref_primary_10_1016_j_prp_2020_153041 crossref_primary_10_1016_j_dnarep_2018_08_021 crossref_primary_10_1038_s41589_024_01611_7 crossref_primary_10_1097_GCO_0000000000000600 crossref_primary_10_3390_genes12091415 crossref_primary_10_1016_j_heliyon_2020_e03841 crossref_primary_10_3389_fgene_2021_773426 crossref_primary_10_3390_cancers13184716 crossref_primary_10_1093_nar_gkad470 crossref_primary_10_1016_j_gendis_2025_101817 crossref_primary_10_3390_cancers15041346 crossref_primary_10_1007_s42764_023_00100_w crossref_primary_10_1186_s13045_022_01360_x crossref_primary_10_1016_j_ctrv_2020_102090 crossref_primary_10_1038_s41598_024_80768_6 crossref_primary_10_4103_ijc_IJC_53_21 crossref_primary_10_1093_nar_gkae563 crossref_primary_10_3390_genes9120634 crossref_primary_10_1016_j_semcdb_2020_10_001 crossref_primary_10_1093_nar_gkae251 crossref_primary_10_3390_cancers14235795 crossref_primary_10_3390_cancers12051206 crossref_primary_10_1016_j_semcancer_2020_08_005 crossref_primary_10_3389_fcell_2020_574466 crossref_primary_10_1016_j_molcel_2018_10_045 crossref_primary_10_1038_s41416_018_0017_x crossref_primary_10_2478_fco_2021_0002 crossref_primary_10_1172_JCI181062 crossref_primary_10_3390_ijms222312628 crossref_primary_10_1002_gcc_23243 crossref_primary_10_1038_s41568_022_00518_6 crossref_primary_10_1016_j_coph_2025_102505 crossref_primary_10_1101_gad_351408_123 crossref_primary_10_1146_annurev_cancerbio_030617_050232 crossref_primary_10_1016_j_jid_2024_02_009 crossref_primary_10_1016_j_semcdb_2020_07_004 crossref_primary_10_3390_diagnostics13111896 crossref_primary_10_1038_s41467_020_19961_w crossref_primary_10_1016_j_celrep_2024_115066 crossref_primary_10_1111_febs_15636 crossref_primary_10_1097_CCO_0000000000000660 crossref_primary_10_3390_ijms22157884 crossref_primary_10_3389_fonc_2023_1159557 crossref_primary_10_1146_annurev_genet_071719_020312 crossref_primary_10_1038_d41586_018_07188_1 crossref_primary_10_3390_ijerph19148577 crossref_primary_10_3390_cancers13030381 crossref_primary_10_1158_1078_0432_CCR_21_1367 crossref_primary_10_1002_1878_0261_13272 crossref_primary_10_1016_j_molcel_2022_08_014 crossref_primary_10_1016_j_devcel_2021_01_011 crossref_primary_10_1038_s41467_019_11246_1 crossref_primary_10_1016_j_ygyno_2020_08_035 crossref_primary_10_1073_pnas_1809592115 crossref_primary_10_1111_cas_13530 crossref_primary_10_1158_2159_8290_CD_18_0474 crossref_primary_10_1093_nar_gkad940 crossref_primary_10_3390_cancers15143642 crossref_primary_10_3389_fgene_2021_746380 crossref_primary_10_1172_JCI120388 crossref_primary_10_1038_s41388_020_1332_2 crossref_primary_10_1038_s41467_023_42653_0 crossref_primary_10_1038_s41586_018_0670_5 crossref_primary_10_1007_s42764_024_00129_5 crossref_primary_10_1111_febs_15730 crossref_primary_10_1097_GCO_0000000000000517 crossref_primary_10_1038_s41467_019_12297_0 crossref_primary_10_1016_j_omtn_2020_03_017 crossref_primary_10_1093_nar_gkae487 crossref_primary_10_3390_ijms25020952 crossref_primary_10_1038_s41389_020_0214_3 crossref_primary_10_1016_j_devcel_2024_05_010 crossref_primary_10_3390_biom11050722 crossref_primary_10_1038_s41467_020_17127_2 crossref_primary_10_3389_fmolb_2020_00191 crossref_primary_10_1016_j_ctrv_2018_09_003 crossref_primary_10_1016_j_molcel_2021_04_023 crossref_primary_10_3390_ijms242316903 crossref_primary_10_1016_j_dnarep_2019_102668 crossref_primary_10_1038_s41580_020_0257_5 crossref_primary_10_1007_s11864_025_01347_z crossref_primary_10_1016_j_drup_2025_101287 crossref_primary_10_1111_febs_17064 crossref_primary_10_1002_bies_70025 crossref_primary_10_1093_jnci_djy085 crossref_primary_10_1016_j_jbc_2022_102215 crossref_primary_10_1038_s41571_021_00532_x crossref_primary_10_1038_s41388_022_02491_8 crossref_primary_10_3390_genes12091350 crossref_primary_10_1016_j_celrep_2023_112538 crossref_primary_10_3390_cancers13164132 crossref_primary_10_1016_j_ctrv_2022_102359 crossref_primary_10_3390_cancers12061502 crossref_primary_10_1101_gad_334516_119 crossref_primary_10_1186_s12967_025_06502_6 crossref_primary_10_1016_j_jid_2020_01_008 crossref_primary_10_1038_s12276_021_00557_3 crossref_primary_10_1242_jcs_214932 crossref_primary_10_1016_j_dnarep_2022_103418 crossref_primary_10_3390_biom13101480 crossref_primary_10_1016_j_molmed_2021_04_010 crossref_primary_10_3390_ijms232314672 crossref_primary_10_1016_j_dnarep_2019_102657 crossref_primary_10_1038_s41467_024_48715_1 crossref_primary_10_1002_advs_202105539 crossref_primary_10_1016_j_drup_2021_100744 crossref_primary_10_3389_fcell_2020_564601 crossref_primary_10_1038_ncb3638 crossref_primary_10_1016_j_lfs_2021_120047 crossref_primary_10_1016_j_dnarep_2024_103786 crossref_primary_10_1016_j_tcb_2019_07_008 crossref_primary_10_1042_BST20180308 crossref_primary_10_1038_s41416_023_02326_7 crossref_primary_10_1002_1878_0261_13224 crossref_primary_10_1016_j_mrrev_2020_108362 crossref_primary_10_1016_j_ejmech_2024_116535 crossref_primary_10_1093_pcmedi_pbaa030 crossref_primary_10_1016_j_molcel_2024_11_034 crossref_primary_10_3390_ijms241713454 crossref_primary_10_1016_j_biopha_2019_109661 crossref_primary_10_1016_j_jbc_2024_107312 crossref_primary_10_1016_j_mrrev_2020_108346 crossref_primary_10_1007_s40259_019_00347_4 crossref_primary_10_1093_nar_gky519 crossref_primary_10_1007_s00018_020_03522_x crossref_primary_10_1038_s41594_018_0075_z crossref_primary_10_3390_cancers17020194 crossref_primary_10_1098_rsob_220118 crossref_primary_10_1042_BST20180418 crossref_primary_10_1038_s41416_025_02963_0 crossref_primary_10_1186_s12943_020_01227_0 crossref_primary_10_1093_nar_gkab1173 crossref_primary_10_3389_fphar_2022_939570 crossref_primary_10_3389_fgene_2021_639602 crossref_primary_10_1007_s11033_024_10034_5 crossref_primary_10_1038_s41388_024_03227_6 crossref_primary_10_1016_j_molcel_2020_09_031 crossref_primary_10_1080_14737140_2024_2393251 crossref_primary_10_1016_j_tranon_2021_101012 crossref_primary_10_1186_s13072_018_0213_1 crossref_primary_10_1016_j_phrs_2022_106232 crossref_primary_10_1158_1078_0432_CCR_22_3715 crossref_primary_10_1016_j_dnarep_2025_103847 crossref_primary_10_1016_j_dnarep_2021_103209 crossref_primary_10_1016_j_bbcan_2024_189221 crossref_primary_10_1053_j_seminoncol_2023_08_001 crossref_primary_10_1016_j_jbc_2025_110393 crossref_primary_10_1158_0008_5472_CAN_20_1602 crossref_primary_10_1158_1078_0432_CCR_19_0448 crossref_primary_10_1158_1078_0432_CCR_21_1656 crossref_primary_10_3390_cancers13061296 crossref_primary_10_3390_cells12141904 crossref_primary_10_1002_ijc_32323 crossref_primary_10_1016_j_molcel_2018_05_018 crossref_primary_10_3390_cancers14163877 crossref_primary_10_3892_ol_2022_13512 crossref_primary_10_1101_gad_349207_121 crossref_primary_10_3389_fphar_2022_967633 crossref_primary_10_1016_j_yexcr_2021_112614 crossref_primary_10_1007_s40265_023_01934_0 crossref_primary_10_1016_j_molcel_2025_06_004 crossref_primary_10_3389_fonc_2020_00670 crossref_primary_10_3389_fonc_2022_819714 crossref_primary_10_1093_nar_gkab151 crossref_primary_10_3389_fmolb_2022_1048726 crossref_primary_10_3390_cancers15030997 crossref_primary_10_3390_jcm8040435 crossref_primary_10_1016_j_ejmech_2025_117937 crossref_primary_10_15252_embr_201846263 crossref_primary_10_2217_epi_2022_0320 crossref_primary_10_1016_j_mrrev_2025_108557 crossref_primary_10_1146_annurev_cancerbio_030617_050422 crossref_primary_10_1016_j_canlet_2025_217599 crossref_primary_10_1111_jcmm_17037 crossref_primary_10_1016_j_bcp_2023_115594 crossref_primary_10_1097_SPC_0000000000000358 crossref_primary_10_1016_j_celrep_2024_114464 crossref_primary_10_1158_0008_5472_CAN_20_2912 crossref_primary_10_1007_s42764_022_00087_w crossref_primary_10_1016_j_tcb_2019_06_005 crossref_primary_10_3390_cancers12071769 crossref_primary_10_1186_s13046_021_02139_7 crossref_primary_10_3390_ijms23073871 crossref_primary_10_1016_j_molcel_2022_02_021 crossref_primary_10_1186_s12943_024_01967_3 crossref_primary_10_1126_scitranslmed_abc7211 crossref_primary_10_1186_s12929_021_00743_5 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_1042_BST20240177 crossref_primary_10_3390_cancers17010008 crossref_primary_10_1146_annurev_cancerbio_030518_055914 crossref_primary_10_1097_PPO_0000000000000562 crossref_primary_10_3390_cancers12061607 crossref_primary_10_1371_journal_pgen_1009868 crossref_primary_10_1002_INMD_20220013 crossref_primary_10_1080_14737140_2024_2398494 crossref_primary_10_1002_1878_0261_12467 crossref_primary_10_1093_nar_gkac583 |
| Cites_doi | 10.1038/nrm2852 10.1158/2159-8290.CD-15-0714 10.1038/nm.4247 10.1038/ng747 10.1038/nsmb.1831 10.1242/jcs.053702 10.1038/ncomms4649 10.1038/nrm2974 10.1093/emboj/cdg542 10.1038/nature10166 10.1016/j.celrep.2016.05.031 10.1101/gad.256354.114 10.1038/nrm3288 10.1073/pnas.1012946107 10.1074/jbc.M809158200 10.1016/j.celrep.2014.12.028 10.1073/pnas.0702955104 10.1038/nature10833 10.1038/embor.2009.67 10.1038/nature12113 10.1038/nature03445 10.1016/j.tibs.2010.02.009 10.1038/nm.3369 10.1038/nature18325 10.1038/ncb2918 10.1038/nm.4036 10.1016/j.dnarep.2015.04.026 10.1038/nsmb1313 10.1038/ncb1787 10.1038/nature11606 10.4161/cc.25795 10.1073/pnas.1503331112 10.1038/nature14184 10.1016/j.cell.2011.03.041 10.1016/j.molcel.2010.01.021 10.2144/000114089 10.1038/nature11412 10.1083/jcb.201406100 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Nov 2017 |
| Copyright_xml | – notice: Springer Nature Limited 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 |
| DOI | 10.1038/ncb3626 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1476-4679 |
| EndPage | 1378 |
| ExternalDocumentID | A632744269 29035360 10_1038_ncb3626 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 123 29M 36B 39C 4.4 53G 5RE 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABCQX ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACSTC ADBBV AENEX AEUYN AFANA AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DU5 EAP EBS EE. EJD EMB ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC L7B LK8 M1P M7P N9A NNMJJ O9- P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP ~02 AAYXX AFFHD AGSTI CITATION .55 .GJ 3V. 5BI 88A AAEEF AAZLF ABAWZ ABDBF ABEFU ABNNU ACRPL ACUHS ADNMO ADQMX AFBBN AGGDT AGHTU AIYXT ALIPV B0M CGR CUY CVF DB5 EAD EBC EBD ECM EIF EMK EMOBN EPL J5H L-9 M0L NPM ODYON QF4 QM4 QN7 QO4 SKT SV3 TUS X7M Y6R ZGI ~8M 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 |
| ID | FETCH-LOGICAL-c542t-c577bffd1d14b2d1af38cf3ef1c95026aa82c384e9af1f882fa5e13a53bb62b03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 277 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415069100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-7392 1476-4679 |
| IngestDate | Thu Oct 02 15:55:18 EDT 2025 Tue Oct 07 05:20:09 EDT 2025 Tue Nov 11 10:57:25 EST 2025 Tue Nov 04 18:17:18 EST 2025 Thu Nov 13 16:23:52 EST 2025 Wed Feb 19 02:43:53 EST 2025 Tue Nov 18 21:02:59 EST 2025 Sat Nov 29 01:36:17 EST 2025 Sun Aug 31 08:58:47 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c542t-c577bffd1d14b2d1af38cf3ef1c95026aa82c384e9af1f882fa5e13a53bb62b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6168-6294 |
| OpenAccessLink | https://zenodo.org/record/3451031 |
| PMID | 29035360 |
| PQID | 1958299545 |
| PQPubID | 45779 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1951565183 proquest_journals_1958299545 gale_infotracmisc_A632744269 gale_infotracacademiconefile_A632744269 gale_incontextgauss_ISR_A632744269 pubmed_primary_29035360 crossref_primary_10_1038_ncb3626 crossref_citationtrail_10_1038_ncb3626 springer_journals_10_1038_ncb3626 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature cell biology |
| PublicationTitleAbbrev | Nat Cell Biol |
| PublicationTitleAlternate | Nat Cell Biol |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Morey, Helin (CR12) 2010; 35 Chou (CR15) 2010; 107 Hanada (CR34) 2007; 14 Alabert, Groth (CR8) 2012; 13 Cortez (CR29) 2015; 32 Campbell, Ismail, Young, Poirier, Hendzel (CR14) 2013; 12 CR36 Göllner (CR10) 2016; 23 Jonkers (CR32) 2001; 29 de Vries (CR11) 2015; 10 Piunti (CR24) 2014; 5 Schlacher (CR6) 2011; 145 Clemente-Ruiz, Prado (CR9) 2009; 10 Cancer, Atlas (CR19) 2011; 474 Lord, Ashworth (CR1) 2013; 19 Thangavel (CR38) 2015; 208 Vassin, Anantha, Sokolova, Kanner, Borowiec (CR27) 2009; 122 Schwartzentruber, Korshunov, Liu (CR33) 2012; 482 Hansen (CR16) 2008; 10 Petermann, Orta, Issaeva, Schultz, Helleday (CR30) 2010; 37 Chen (CR35) 2015; 112 Farmer (CR3) 2005; 434 Branzei, Foiani (CR22) 2010; 11 Ray Chaudhuri (CR2) 2016; 535 Bouwman (CR7) 2010; 17 Petermann, Helleday (CR28) 2010; 11 Kais (CR18) 2016; 15 Ceccaldi (CR17) 2015; 518 Moynahan, Cui, Jasin (CR5) 2001; 61 Mirzoeva, Petrini (CR31) 2003; 1 Levine (CR40) 2013; 497 McCabe (CR20) 2012; 492 Alabert (CR25) 2015; 29 Konstantinopoulos, Ceccaldi, Shapiro, D’Andrea (CR4) 2015; 5 Thomas Leung, El Hassan, Bremner (CR26) 2013; 55 Bracken (CR13) 2003; 22 Rottenberg (CR37) 2007; 104 Kim, Roberts (CR21) 2016; 22 Alabert (CR23) 2014; 16 Gong, Cho, Kim, Ge, Chen (CR39) 2009; 284 KH Thomas Leung (BFncb3626_CR26) 2013; 55 NA de Vries (BFncb3626_CR11) 2015; 10 KH Kim (BFncb3626_CR21) 2016; 22 P Bouwman (BFncb3626_CR7) 2010; 17 KH Hansen (BFncb3626_CR16) 2008; 10 K Schlacher (BFncb3626_CR6) 2011; 145 ME Moynahan (BFncb3626_CR5) 2001; 61 C Alabert (BFncb3626_CR8) 2012; 13 VM Vassin (BFncb3626_CR27) 2009; 122 A Ray Chaudhuri (BFncb3626_CR2) 2016; 535 AP Bracken (BFncb3626_CR13) 2003; 22 Z Kais (BFncb3626_CR18) 2016; 15 PA Konstantinopoulos (BFncb3626_CR4) 2015; 5 MT McCabe (BFncb3626_CR20) 2012; 492 S Rottenberg (BFncb3626_CR37) 2007; 104 A Piunti (BFncb3626_CR24) 2014; 5 D Cortez (BFncb3626_CR29) 2015; 32 M Clemente-Ruiz (BFncb3626_CR9) 2009; 10 H Farmer (BFncb3626_CR3) 2005; 434 Z Gong (BFncb3626_CR39) 2009; 284 L Morey (BFncb3626_CR12) 2010; 35 K Hanada (BFncb3626_CR34) 2007; 14 D Branzei (BFncb3626_CR22) 2010; 11 E Petermann (BFncb3626_CR28) 2010; 11 S Thangavel (BFncb3626_CR38) 2015; 208 H Chen (BFncb3626_CR35) 2015; 112 OK Mirzoeva (BFncb3626_CR31) 2003; 1 S Göllner (BFncb3626_CR10) 2016; 23 S Campbell (BFncb3626_CR14) 2013; 12 J Jonkers (BFncb3626_CR32) 2001; 29 R Ceccaldi (BFncb3626_CR17) 2015; 518 J Schwartzentruber (BFncb3626_CR33) 2012; 482 CJ Lord (BFncb3626_CR1) 2013; 19 T Cancer (BFncb3626_CR19) 2011; 474 Douglas A. Levine (BFncb3626_CR40) 2013; 497 E Petermann (BFncb3626_CR30) 2010; 37 DM Chou (BFncb3626_CR15) 2010; 107 C Alabert (BFncb3626_CR23) 2014; 16 C Alabert (BFncb3626_CR25) 2015; 29 BFncb3626_CR36 20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19 14532106 - EMBO J. 2003 Oct 15;22(20):5323-35 22286061 - Nature. 2012 Jan 29;482(7384):226-31 11406561 - Cancer Res. 2001 Jun 15;61(12):4842-50 25600873 - Cell Rep. 2015 Jan 14;:null 24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93 25642963 - Nature. 2015 Feb 12;518(7538):258-62 25792596 - Genes Dev. 2015 Mar 15;29(6):585-90 20453858 - Nat Struct Mol Biol. 2010 Jun;17 (6):688-95 17626183 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12117-22 24728135 - Nat Commun. 2014 Apr 14;5:3649 26463832 - Cancer Discov. 2015 Nov;5(11):1137-54 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 22358331 - Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):153-67 23051747 - Nature. 2012 Dec 6;492(7427):108-12 20937877 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18475-80 18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300 17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104 27443740 - Nature. 2016 Jul 20;535(7612):382-7 21565612 - Cell. 2011 May 13;145(4):529-42 24107252 - Biotechniques. 2013 Oct;55(4):204-6 23907130 - Cell Cycle. 2013 Aug 15;12 (16):2675-83 12556560 - Mol Cancer Res. 2003 Jan;1(3):207-18 25957489 - DNA Repair (Amst). 2015 Aug;32:149-57 15829967 - Nature. 2005 Apr 14;434(7035):917-21 21720365 - Nature. 2011 Jun 29;474(7353):609-15 26845405 - Nat Med. 2016 Feb;22(2):128-34 27941792 - Nat Med. 2017 Jan;23 (1):69-78 11694875 - Nat Genet. 2001 Dec;29(4):418-25 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 25831494 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1880-7 24202391 - Nat Med. 2013 Nov;19(11):1381-8 27264184 - Cell Rep. 2016 Jun 14;15(11):2488-99 23000897 - Nature. 2012 Oct 4;490(7418):61-70 19843584 - J Cell Sci. 2009 Nov 15;122(Pt 22):4070-80 23636398 - Nature. 2013 May 2;497(7447):67-73 19124460 - J Biol Chem. 2009 Mar 13;284(11):7284-93 20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7 20346678 - Trends Biochem Sci. 2010 Jun;35(6):323-32 19465889 - EMBO Rep. 2009 Jul;10(7):790-6 |
| References_xml | – volume: 11 start-page: 208 year: 2010 end-page: 219 ident: CR22 article-title: Maintaining genome stability at the replication fork publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2852 – volume: 5 start-page: 1137 year: 2015 end-page: 1154 ident: CR4 article-title: Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0714 – volume: 208 start-page: 545 year: 2015 end-page: 562 ident: CR38 article-title: DNA2 drives processing and restart of reversed replication forks in human cells publication-title: J. Cell Biol. – volume: 23 start-page: 69 year: 2016 end-page: 78 ident: CR10 article-title: Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/nm.4247 – volume: 29 start-page: 418 year: 2001 end-page: 425 ident: CR32 article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer publication-title: Nat. Genet. doi: 10.1038/ng747 – volume: 17 start-page: 688 year: 2010 end-page: 695 ident: CR7 article-title: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1831 – volume: 122 start-page: 4070 year: 2009 end-page: 4080 ident: CR27 article-title: Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress publication-title: J. Cell Sci. doi: 10.1242/jcs.053702 – volume: 5 start-page: 3649 year: 2014 ident: CR24 article-title: Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication publication-title: Nat. Commun. doi: 10.1038/ncomms4649 – volume: 11 start-page: 683 year: 2010 end-page: 687 ident: CR28 article-title: Pathways of mammalian replication fork restart publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2974 – volume: 22 start-page: 5323 year: 2003 end-page: 5335 ident: CR13 article-title: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer publication-title: EMBO J. doi: 10.1093/emboj/cdg542 – volume: 474 start-page: 609 year: 2011 end-page: 615 ident: CR19 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature doi: 10.1038/nature10166 – volume: 55 start-page: 204 year: 2013 end-page: 206 ident: CR26 article-title: A rapid and efficient method to purify proteins at replication forks under native conditions publication-title: Biotechniques – volume: 15 start-page: 2488 year: 2016 end-page: 2499 ident: CR18 article-title: FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.031 – volume: 29 start-page: 585 year: 2015 end-page: 590 ident: CR25 article-title: Two distinct modes for propagation of histone PTMs across the cell cycle publication-title: Genes Dev. doi: 10.1101/gad.256354.114 – volume: 13 start-page: 153 year: 2012 end-page: 167 ident: CR8 article-title: Chromatin replication and epigenome maintenance publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3288 – volume: 107 start-page: 18475 year: 2010 end-page: 18480 ident: CR15 article-title: A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1012946107 – volume: 284 start-page: 7284 year: 2009 end-page: 7293 ident: CR39 article-title: Accumulation of Pax2 transactivation domain interaction protein (PTIP) at sites of DNA breaks via RNF8-dependent pathway is required for cell survival after DNA damage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809158200 – volume: 10 start-page: 383 year: 2015 end-page: 397 ident: CR11 article-title: Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.028 – volume: 104 start-page: 12117 year: 2007 end-page: 12122 ident: CR37 article-title: Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0702955104 – volume: 482 start-page: 226 year: 2012 end-page: 231 ident: CR33 article-title: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma publication-title: Nature doi: 10.1038/nature10833 – volume: 10 start-page: 790 year: 2009 end-page: 796 ident: CR9 article-title: Chromatin assembly controls replication fork stability publication-title: EMBO Rep. doi: 10.1038/embor.2009.67 – volume: 497 start-page: 67 issue: 7447 year: 2013 end-page: 73 ident: CR40 article-title: Integrated genomic characterization of endometrial carcinoma publication-title: Nature doi: 10.1038/nature12113 – volume: 434 start-page: 917 year: 2005 end-page: 921 ident: CR3 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature doi: 10.1038/nature03445 – volume: 35 start-page: 323 year: 2010 end-page: 332 ident: CR12 article-title: Polycomb group protein-mediated repression of transcription publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.02.009 – volume: 19 start-page: 1381 year: 2013 end-page: 1388 ident: CR1 article-title: Mechanisms of resistance to therapies targeting BRCA-mutant cancers publication-title: Nat. Med. doi: 10.1038/nm.3369 – volume: 535 start-page: 382 year: 2016 end-page: 387 ident: CR2 article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells publication-title: Nature doi: 10.1038/nature18325 – volume: 16 start-page: 281 year: 2014 end-page: 293 ident: CR23 article-title: Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components publication-title: Nat. Cell Biol. doi: 10.1038/ncb2918 – volume: 22 start-page: 128 year: 2016 end-page: 134 ident: CR21 article-title: Targeting EZH2 in cancer publication-title: Nat. Med. doi: 10.1038/nm.4036 – volume: 32 start-page: 149 year: 2015 end-page: 157 ident: CR29 article-title: Preventing replication fork collapse to maintain genome integrity publication-title: DNA Repair doi: 10.1016/j.dnarep.2015.04.026 – volume: 14 start-page: 1096 year: 2007 end-page: 1104 ident: CR34 article-title: The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1313 – volume: 10 start-page: 1291 year: 2008 end-page: 300 ident: CR16 article-title: A model for transmission of the H3K27me3 epigenetic mark publication-title: Nat. Cell Biol. doi: 10.1038/ncb1787 – volume: 61 start-page: 4842 year: 2001 end-page: 4850 ident: CR5 article-title: Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a mutation publication-title: Cancer Res. – volume: 492 start-page: 108 year: 2012 end-page: 112 ident: CR20 article-title: EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations publication-title: Nature doi: 10.1038/nature11606 – volume: 12 start-page: 2675 year: 2013 end-page: 2683 ident: CR14 article-title: Polycomb repressive complex 2 contributes to DNA double-strand break repair publication-title: Cell Cycle doi: 10.4161/cc.25795 – volume: 112 start-page: E1880 year: 2015 end-page: E1887 ident: CR35 article-title: Sae2 promotes DNA damage resistance by removing the Mre11–Rad50–Xrs2 complex from DNA and attenuating Rad53 signaling publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503331112 – volume: 1 start-page: 207 year: 2003 end-page: 218 ident: CR31 article-title: DNA replication-dependent nuclear dynamics of the Mre11 complex publication-title: Mol. Cancer Res. – ident: CR36 – volume: 518 start-page: 258 year: 2015 end-page: 262 ident: CR17 article-title: Homologous-recombination-deficient tumours are dependent on Polh-mediated repair publication-title: Nature doi: 10.1038/nature14184 – volume: 145 start-page: 529 year: 2011 end-page: 542 ident: CR6 article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11 publication-title: Cell doi: 10.1016/j.cell.2011.03.041 – volume: 37 start-page: 492 year: 2010 end-page: 502 ident: CR30 article-title: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.021 – volume: 29 start-page: 418 year: 2001 ident: BFncb3626_CR32 publication-title: Nat. Genet. doi: 10.1038/ng747 – volume: 107 start-page: 18475 year: 2010 ident: BFncb3626_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1012946107 – volume: 535 start-page: 382 year: 2016 ident: BFncb3626_CR2 publication-title: Nature doi: 10.1038/nature18325 – volume: 55 start-page: 204 year: 2013 ident: BFncb3626_CR26 publication-title: Biotechniques doi: 10.2144/000114089 – volume: 492 start-page: 108 year: 2012 ident: BFncb3626_CR20 publication-title: Nature doi: 10.1038/nature11606 – volume: 11 start-page: 683 year: 2010 ident: BFncb3626_CR28 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2974 – volume: 10 start-page: 790 year: 2009 ident: BFncb3626_CR9 publication-title: EMBO Rep. doi: 10.1038/embor.2009.67 – volume: 5 start-page: 1137 year: 2015 ident: BFncb3626_CR4 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0714 – volume: 145 start-page: 529 year: 2011 ident: BFncb3626_CR6 publication-title: Cell doi: 10.1016/j.cell.2011.03.041 – volume: 474 start-page: 609 year: 2011 ident: BFncb3626_CR19 publication-title: Nature doi: 10.1038/nature10166 – volume: 22 start-page: 128 year: 2016 ident: BFncb3626_CR21 publication-title: Nat. Med. doi: 10.1038/nm.4036 – ident: BFncb3626_CR36 doi: 10.1038/nature11412 – volume: 16 start-page: 281 year: 2014 ident: BFncb3626_CR23 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2918 – volume: 122 start-page: 4070 year: 2009 ident: BFncb3626_CR27 publication-title: J. Cell Sci. doi: 10.1242/jcs.053702 – volume: 497 start-page: 67 issue: 7447 year: 2013 ident: BFncb3626_CR40 publication-title: Nature doi: 10.1038/nature12113 – volume: 15 start-page: 2488 year: 2016 ident: BFncb3626_CR18 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.031 – volume: 482 start-page: 226 year: 2012 ident: BFncb3626_CR33 publication-title: Nature doi: 10.1038/nature10833 – volume: 284 start-page: 7284 year: 2009 ident: BFncb3626_CR39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809158200 – volume: 37 start-page: 492 year: 2010 ident: BFncb3626_CR30 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.021 – volume: 5 start-page: 3649 year: 2014 ident: BFncb3626_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms4649 – volume: 13 start-page: 153 year: 2012 ident: BFncb3626_CR8 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3288 – volume: 29 start-page: 585 year: 2015 ident: BFncb3626_CR25 publication-title: Genes Dev. doi: 10.1101/gad.256354.114 – volume: 22 start-page: 5323 year: 2003 ident: BFncb3626_CR13 publication-title: EMBO J. doi: 10.1093/emboj/cdg542 – volume: 32 start-page: 149 year: 2015 ident: BFncb3626_CR29 publication-title: DNA Repair doi: 10.1016/j.dnarep.2015.04.026 – volume: 518 start-page: 258 year: 2015 ident: BFncb3626_CR17 publication-title: Nature doi: 10.1038/nature14184 – volume: 434 start-page: 917 year: 2005 ident: BFncb3626_CR3 publication-title: Nature doi: 10.1038/nature03445 – volume: 112 start-page: E1880 year: 2015 ident: BFncb3626_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503331112 – volume: 14 start-page: 1096 year: 2007 ident: BFncb3626_CR34 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1313 – volume: 61 start-page: 4842 year: 2001 ident: BFncb3626_CR5 publication-title: Cancer Res. – volume: 35 start-page: 323 year: 2010 ident: BFncb3626_CR12 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.02.009 – volume: 17 start-page: 688 year: 2010 ident: BFncb3626_CR7 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1831 – volume: 208 start-page: 545 year: 2015 ident: BFncb3626_CR38 publication-title: J. Cell Biol. doi: 10.1083/jcb.201406100 – volume: 12 start-page: 2675 year: 2013 ident: BFncb3626_CR14 publication-title: Cell Cycle doi: 10.4161/cc.25795 – volume: 19 start-page: 1381 year: 2013 ident: BFncb3626_CR1 publication-title: Nat. Med. doi: 10.1038/nm.3369 – volume: 10 start-page: 383 year: 2015 ident: BFncb3626_CR11 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.028 – volume: 11 start-page: 208 year: 2010 ident: BFncb3626_CR22 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2852 – volume: 23 start-page: 69 year: 2016 ident: BFncb3626_CR10 publication-title: Nat. Med. doi: 10.1038/nm.4247 – volume: 104 start-page: 12117 year: 2007 ident: BFncb3626_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0702955104 – volume: 10 start-page: 1291 year: 2008 ident: BFncb3626_CR16 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1787 – volume: 1 start-page: 207 year: 2003 ident: BFncb3626_CR31 publication-title: Mol. Cancer Res. – reference: 21565612 - Cell. 2011 May 13;145(4):529-42 – reference: 18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300 – reference: 12556560 - Mol Cancer Res. 2003 Jan;1(3):207-18 – reference: 11406561 - Cancer Res. 2001 Jun 15;61(12):4842-50 – reference: 25831494 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1880-7 – reference: 26845405 - Nat Med. 2016 Feb;22(2):128-34 – reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21 – reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 – reference: 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 – reference: 21720365 - Nature. 2011 Jun 29;474(7353):609-15 – reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70 – reference: 27941792 - Nat Med. 2017 Jan;23 (1):69-78 – reference: 20346678 - Trends Biochem Sci. 2010 Jun;35(6):323-32 – reference: 26463832 - Cancer Discov. 2015 Nov;5(11):1137-54 – reference: 25792596 - Genes Dev. 2015 Mar 15;29(6):585-90 – reference: 20177396 - Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19 – reference: 23907130 - Cell Cycle. 2013 Aug 15;12 (16):2675-83 – reference: 19843584 - J Cell Sci. 2009 Nov 15;122(Pt 22):4070-80 – reference: 27264184 - Cell Rep. 2016 Jun 14;15(11):2488-99 – reference: 24107252 - Biotechniques. 2013 Oct;55(4):204-6 – reference: 11694875 - Nat Genet. 2001 Dec;29(4):418-25 – reference: 17934473 - Nat Struct Mol Biol. 2007 Nov;14(11):1096-104 – reference: 27443740 - Nature. 2016 Jul 20;535(7612):382-7 – reference: 19124460 - J Biol Chem. 2009 Mar 13;284(11):7284-93 – reference: 25642963 - Nature. 2015 Feb 12;518(7538):258-62 – reference: 24728135 - Nat Commun. 2014 Apr 14;5:3649 – reference: 25957489 - DNA Repair (Amst). 2015 Aug;32:149-57 – reference: 22286061 - Nature. 2012 Jan 29;482(7384):226-31 – reference: 22358331 - Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):153-67 – reference: 14532106 - EMBO J. 2003 Oct 15;22(20):5323-35 – reference: 20937877 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18475-80 – reference: 20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7 – reference: 17626183 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12117-22 – reference: 24202391 - Nat Med. 2013 Nov;19(11):1381-8 – reference: 20453858 - Nat Struct Mol Biol. 2010 Jun;17 (6):688-95 – reference: 19465889 - EMBO Rep. 2009 Jul;10(7):790-6 – reference: 23051747 - Nature. 2012 Dec 6;492(7427):108-12 – reference: 24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93 – reference: 25600873 - Cell Rep. 2015 Jan 14;:null – reference: 23636398 - Nature. 2013 May 2;497(7447):67-73 |
| SSID | ssj0014407 |
| Score | 2.6455429 |
| Snippet | Rondinelli
et al.
show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2... The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours.... Rondinelli et al. show that EZH2-mediated H3K27me3 at stalled replication forks recruits MUS81 nuclease to facilitate fork degradation. Loss of EZH2... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1371 |
| SubjectTerms | 42/89 45/61 631/337/100/2285 631/337/1427 631/67 64/60 82/29 96/1 Adenosine diphosphate Analysis Animals Biomarkers Biomarkers, Tumor - metabolism BRCA mutations BRCA1 protein BRCA1 Protein - metabolism BRCA2 protein BRCA2 Protein - metabolism Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Cancer Cancer Research Cell Biology Cell Line Cell Line, Tumor Chemoresistance Chemotherapy Control stability Deoxyribonucleic acid Developmental Biology DNA DNA biosynthesis DNA damage DNA replication DNA Replication - drug effects DNA Replication - genetics DNA-Binding Proteins - metabolism Drug Resistance, Neoplasm - genetics Endonucleases - metabolism Enhancer of Zeste Homolog 2 Protein - metabolism Female Genetic aspects Genomic Instability - drug effects Genomic Instability - genetics Genomics HEK293 Cells HeLa Cells Histone H3 Histones Histones - metabolism Humans letter Life Sciences Methylation Methylation - drug effects Mice Mice, Nude Nuclease Patient outcomes Physiological aspects Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Recruitment Replication Replication forks Ribose Stabilization Stem Cells Tumors |
| Title | EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation |
| URI | https://link.springer.com/article/10.1038/ncb3626 https://www.ncbi.nlm.nih.gov/pubmed/29035360 https://www.proquest.com/docview/1958299545 https://www.proquest.com/docview/1951565183 |
| Volume | 19 |
| WOSCitedRecordID | wos000415069100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: M7P dateStart: 19990501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: 7X7 dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: BENPR dateStart: 19990501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B4ERmUQgqdoiS9OnCc0UKciQVVtTKp4iWzHRhNVWpoWaf89tuOGZUi88OKH5PylO5_PvvPvAN5wy2S7xtK4lJTFGUMTS8kxxtxITJFltfCQ-Z-L6ZTP5-UsXLi1IaxypxO9oq6Xyt2RHztQFOrAy9j71c_YZY1y3tWQQmMPDhxKAvrQvVnvRcgy_1zaKgMWF9YQ6B7NOkjw40ZJB8Qy2I1u6uRrm9INL6nffE7v_--wH8C9YHaSk05OHsIt3TyCO10iyqvHsBh_m1Cy8qF5uiW1Q5Doki2RpSHWgFwsdE3Wund2E2vr_miJvLIf1Xp76YKnyZeLc56SkPmHeCTjRpMJko3LIWAloou7ewIXp-OvHydxyMMQK5bRjS2LQhpTp3WaSVqnwiBXBrVJVcnsGU4IThXyTJfCpMaa7EYwnaJgKGVOZYKHsN_YDp8BYQI18kILrpMsrZkoRS6sEVTzxLaLOoK3O35UKoCUu1wZi8o7y5FXgXERkJ5w1eFy_E3y2jG0cigXjQuj-S62bVt9Oj-rTnJ0yIg0LyN4F4jM0nakRHiVYIfrgLEGlEcDSrsM1fD3TgCqoAba6g_3I3jV_3Y1XWhbo5dbT2PP0Myq1giedvLWz4iWCTLME1t7J4DXGh9O9_m_B_AC7lJnkfhnlEewv1lv9Uu4rX5tLtv1CPaKeeFLPoKDD-Pp7Gzk19JvAFgj6g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAZUL78dCAYN4nKKu7ThxDghV0GpX3a4QbaUVl2A7dlWxyi6bXdD-KX4jM3nRFIlbD1xySCZOHH-eGccz3xDySsEgwxxjQWK4DEIpfGCMEoGIvBFMyDDTJWX-KB6P1WSSfNogv5pcGAyrbHRiqaizmcV_5DtIisKRvEy-n38PsGoU7q42JTQqWBy49U9YshXvhh9hfF9zvr93_GEQ1FUFAitDvoRjHBvvM5ax0PCMaS-U9cJ5ZhMJKxKtFbdChS7RnnlwQL2WjgkthTERN30B7V4hV0GPxxhCFk_aBR7uk8ZVNpMMYnA8qiRdpCDfya1B4peO9btoA84ZwQu7sqWx27_1v32m2-Rm7VbT3Woe3CEbLr9LrleFNtf3yHTvy4DTeRl66AqaIUNGVUyKzjwFB3k6dRlduHYzn4Iv_62gZg0n7WJ1hsHh9PDkSDFaVzaiJVNz7uhA0CXWSADEV3GF98nJpXT1AdnM4YGPCJVaOKFip5XrhyyTOtGRBicvU31oV7geedOMf2prEnasBTJNy2AAodIaKD1CW8F5xTvyt8hLBFCKLB45hgmd6lVRpMOjz-luJJD5kUdJj7ythfwMHmR1nXUBr4vEXx3J7Y4kqBnbvdwALq3VXJH-QVuPvGgv450Yupe72aqUYbBqANPRIw8rfLc94klfSBH14e4G8Oca73b38b9f4DnZGhwfjtLRcHzwhNzg6H2VKaPbZHO5WLmn5Jr9sTwrFs_KOUvJ18tG_2_BC3-w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8KCxjE4xS1tuPEOSC0YrdqtUtVsay04hJsx0YrqrQ0Lah_jV_H2EnKdpG47YFLDsnEiePPM-N45huAlxIHGecYjTLNRBQL7iKtJY944jSnXMSFCpT5h-loJE9OsvEW_GpzYXxYZasTg6Iupsb_I-96UhTmyctE1zVhEeO9_rvZ98hXkPI7rW05jRoiB3b1E5dv1dvhHo71K8b6-5_eD6KmwkBkRMwWeExT7VxBCxprVlDluDSOW0dNJnB1opRkhsvYZspRh86oU8JSrgTXOmG6x7HdS3A59aTlIWxwvN7BiOOQqo2KSEQpOiF1wq6nI--WRnsSmA1LeN4enDGI53Zog-Hr3_yfP9ktuNG422S3nh-3YcuWd-BqXYBzdRcm-58HjMxCSKKtSOGZM-oiU2TqCDrOk4ktyNyuN_kJ-vjfKqJXeNLMl6c-aJx8OD6SlDQVj0hgcC4tGXCy8LUTcCbU8Yb34PhCunoftkt84EMgQnHLZWqVtL2YFkJlKlHo_BWyh-1y24HXLRZy05Cz-xohkzwECXCZN6DpAFkLzmo-kr9FXngw5Z7do_SD_lUtqyofHn3MdxPuGSFZknXgTSPkpvggo5psDHxdTwi2IbmzIYnqx2xebsGXN-qvyv8grwPP15f9nT6kr7TTZZChuJpAk9KBBzXW1z1iWY8LnvTw7hb8Zxrf7O6jf7_AM7iGoM8Ph6ODx3CdeacsZJLuwPZivrRP4Ir5sTit5k_D9CXw5aLB_xsuqoh- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EZH2+promotes+degradation+of+stalled+replication+forks+by+recruiting+MUS81+through+histone+H3+trimethylation&rft.jtitle=Nature+cell+biology&rft.au=Rondinelli%2C+Beatrice&rft.au=Gogola%2C+Ewa&rft.au=Y%C3%BCcel%2C+Hatice&rft.au=Duarte%2C+Alexandra+A&rft.date=2017-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1465-7392&rft.eissn=1476-4679&rft.volume=19&rft.issue=11&rft.spage=1371&rft_id=info:doi/10.1038%2Fncb3626&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |