A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells
Actin is abundant in the nuclei of oocytes but its role has been unclear. Feric and Brangwynne find that actin forms a network that prevents the sedimentation of RNA and protein bodies caused by gravitational forces. The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell...
Uloženo v:
| Vydáno v: | Nature cell biology Ročník 15; číslo 10; s. 1253 - 1259 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.10.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1465-7392, 1476-4679, 1476-4679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Actin is abundant in the nuclei of oocytes but its role has been unclear. Feric and Brangwynne find that actin forms a network that prevents the sedimentation of RNA and protein bodies caused by gravitational forces.
The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog
Xenopus laevis
grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large
Xenopus
oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. |
|---|---|
| AbstractList | The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control.The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. Actin is abundant in the nuclei of oocytes but its role has been unclear. Feric and Brangwynne find that actin forms a network that prevents the sedimentation of RNA and protein bodies caused by gravitational forces. The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. The size of a typical eukaryotic cell is of the order of ~10 µm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter [greater than or equal to] 1 mm. They have a correspondingly large nucleus (germinal vesicle) of ~450 µm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ~10 µm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. The size of a typical eukaryotic cell is of the order of 10μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1mm. They have a correspondingly large nucleus (germinal vesicle) of 450μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than 10μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. |
| Audience | Academic |
| Author | Brangwynne, Clifford P. Feric, Marina |
| Author_xml | – sequence: 1 givenname: Marina surname: Feric fullname: Feric, Marina organization: Department of Chemical and Biological Engineering, Princeton University – sequence: 2 givenname: Clifford P. surname: Brangwynne fullname: Brangwynne, Clifford P. email: cbrangwy@princeton.edu organization: Department of Chemical and Biological Engineering, Princeton University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23995731$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0ltvFCEYBmBiamy7Gv-BmcQL9WIqDAwwl5vGapMmJh6uCQPfTGhYWIEx1l8va9fDbhouIMPDNy-Hc3QSYgCEnhN8QTCVb4MZO0nxI3RGmOAt42I42Y153wo6dKfoPOdbjAljWDxBpx0dhl5QcobUugmL8aBTc9VqU1xostHTFL1tctGj8-4n5Ca5Mf52cZtigapsilsPJTd61i7k0sxJf3flrqlzXqcZGgPe56fo8aR9hmf7foW-Xr37cvmhvfn4_vpyfdOannWlNYwPZJLMCDHySfa8l5KClV1nJB1HjqFjVmCpYegnIe1AtQVmGWgies4tXaHX93Vrvm8L5KI2Lu8S6ABxyarunNJBitqt0MsjehuXFGq6qqjERAg-_FOz9qBcmGJJ2uyKqjVlNaGUvazq4gFVm4WNM_WOJle_Hyx4c7CgmgI_yqyXnNX150-H9sU-6DJuwKptchud7tSf26vg1T0wKeacYPpLCFa7d6H276LK9kgaV3Rx9e9JO_-A3x9nrhXDDOm_MzqivwBKG8Q5 |
| CitedBy_id | crossref_primary_10_1002_bit_28787 crossref_primary_10_1016_j_mrfmmm_2020_111714 crossref_primary_10_3389_fphy_2019_00010 crossref_primary_10_1016_j_ceb_2023_102253 crossref_primary_10_1095_biolreprod_114_120188 crossref_primary_10_1016_j_tcb_2019_10_006 crossref_primary_10_1038_s41557_023_01267_1 crossref_primary_10_1038_s41467_019_11241_6 crossref_primary_10_1146_annurev_cellbio_100913_013325 crossref_primary_10_1016_j_jmb_2021_167348 crossref_primary_10_1016_j_tibs_2019_03_005 crossref_primary_10_1038_s41388_022_02195_z crossref_primary_10_1016_j_canlet_2025_217585 crossref_primary_10_1016_j_bpj_2024_07_043 crossref_primary_10_1038_s41589_021_00752_3 crossref_primary_10_1146_annurev_physiol_042222_025920 crossref_primary_10_1002_wdev_376 crossref_primary_10_1002_adma_201900514 crossref_primary_10_1038_srep16607 crossref_primary_10_1073_pnas_2407423122 crossref_primary_10_1016_j_yexcr_2022_113356 crossref_primary_10_1371_journal_pcbi_1007372 crossref_primary_10_3390_polym11060990 crossref_primary_10_1038_s41580_020_0272_6 crossref_primary_10_1073_pnas_1903870116 crossref_primary_10_1016_j_cell_2016_05_026 crossref_primary_10_1073_pnas_1504822112 crossref_primary_10_1016_j_devcel_2021_03_013 crossref_primary_10_1007_s12551_020_00696_3 crossref_primary_10_1038_s41556_019_0379_1 crossref_primary_10_1063_5_0187891 crossref_primary_10_1083_jcb_201308087 crossref_primary_10_1016_j_cis_2016_05_012 crossref_primary_10_1016_j_febslet_2014_11_028 crossref_primary_10_1002_ange_202425114 crossref_primary_10_1038_s42255_021_00384_w crossref_primary_10_1016_j_bpj_2019_10_026 crossref_primary_10_7554_eLife_60415 crossref_primary_10_1016_j_cub_2014_05_059 crossref_primary_10_1091_mbc_E24_01_0046 crossref_primary_10_1096_fj_201600897RR crossref_primary_10_3389_fgene_2017_00027 crossref_primary_10_1016_j_bpj_2022_03_032 crossref_primary_10_1242_jcs_261630 crossref_primary_10_3389_fmolb_2023_1155521 crossref_primary_10_1016_j_cell_2018_10_057 crossref_primary_10_1111_febs_14108 crossref_primary_10_1002_adma_202205649 crossref_primary_10_1128_MCB_00274_17 crossref_primary_10_1038_s41416_020_01176_x crossref_primary_10_1007_s00285_024_02160_2 crossref_primary_10_1002_anie_201907278 crossref_primary_10_1186_s12964_015_0125_7 crossref_primary_10_12688_f1000research_20867_1 crossref_primary_10_7554_eLife_07735 crossref_primary_10_1016_j_jmb_2019_11_022 crossref_primary_10_1038_s41567_023_01974_z crossref_primary_10_1242_bio_017384 crossref_primary_10_1007_s00412_015_0519_8 crossref_primary_10_1016_j_jmb_2018_07_006 crossref_primary_10_1371_journal_pbio_3000981 crossref_primary_10_1016_j_ceb_2014_01_003 crossref_primary_10_1016_j_cocis_2021_101457 crossref_primary_10_1002_bies_201700058 crossref_primary_10_1016_j_cell_2024_07_034 crossref_primary_10_1063_5_0083286 crossref_primary_10_7554_eLife_06807 crossref_primary_10_1016_j_bpj_2021_11_003 crossref_primary_10_1088_1361_6633_aaa61e crossref_primary_10_3390_ijms151223090 crossref_primary_10_1016_j_bpj_2014_07_008 crossref_primary_10_1242_jcs_226563 crossref_primary_10_1002_bies_202200001 crossref_primary_10_1038_s42003_021_02545_9 crossref_primary_10_1016_j_bbamcr_2021_118949 crossref_primary_10_1007_s00418_018_1693_6 crossref_primary_10_1126_science_aaf4382 crossref_primary_10_1016_j_molcel_2022_05_018 crossref_primary_10_1103_PhysRevX_8_011028 crossref_primary_10_1096_fj_202200586R crossref_primary_10_1038_nrm_2017_7 crossref_primary_10_1111_tra_12704 crossref_primary_10_1146_annurev_micro_090817_062814 crossref_primary_10_1002_wsbm_1407 crossref_primary_10_1073_pnas_1917569117 crossref_primary_10_1111_febs_15894 crossref_primary_10_1007_s10930_024_10207_y crossref_primary_10_1083_jcb_201404124 crossref_primary_10_1111_gtc_12483 crossref_primary_10_1146_annurev_biophys_062920_063704 crossref_primary_10_1016_j_bbamcr_2022_119251 crossref_primary_10_1016_j_sbi_2016_10_015 crossref_primary_10_1083_jcb_201908195 crossref_primary_10_3390_life14101307 crossref_primary_10_1016_j_cub_2015_01_012 crossref_primary_10_1016_j_cell_2016_11_054 crossref_primary_10_1111_gtc_12807 crossref_primary_10_1038_s41556_021_00659_0 crossref_primary_10_3389_fphys_2023_1213668 crossref_primary_10_1038_s41557_020_0465_9 crossref_primary_10_3390_molecules24183265 crossref_primary_10_1016_j_tcb_2016_03_009 crossref_primary_10_1073_pnas_1509317112 crossref_primary_10_1016_j_ceb_2017_06_001 crossref_primary_10_1016_j_tcb_2016_03_004 crossref_primary_10_1126_sciadv_adv7875 crossref_primary_10_26508_lsa_202101045 crossref_primary_10_3390_jdb11040044 crossref_primary_10_15252_embj_2020107165 crossref_primary_10_1016_j_molcel_2023_08_006 crossref_primary_10_1021_acscentsci_4c01617 crossref_primary_10_1038_s41598_023_27630_3 crossref_primary_10_1002_pmic_201700193 crossref_primary_10_1016_j_molcel_2016_07_010 crossref_primary_10_1016_j_ydbio_2017_06_029 crossref_primary_10_1038_s41467_024_54120_5 crossref_primary_10_3389_fcell_2023_1072456 crossref_primary_10_3390_ijms17010024 crossref_primary_10_1038_s41586_022_05138_6 crossref_primary_10_1080_00268976_2024_2425757 crossref_primary_10_1242_jcs_259807 crossref_primary_10_1016_j_bpj_2019_03_038 crossref_primary_10_1242_dev_178863 crossref_primary_10_3389_fbioe_2021_724101 crossref_primary_10_1038_s41467_021_21606_5 crossref_primary_10_1242_jcs_202192 crossref_primary_10_1002_ange_201907278 crossref_primary_10_1016_j_ceb_2014_04_003 crossref_primary_10_1007_s00018_018_2894_9 crossref_primary_10_1124_pharmrev_124_001113 crossref_primary_10_1002_ar_23964 crossref_primary_10_1038_s41467_022_35001_1 crossref_primary_10_1038_nphys3532 crossref_primary_10_1007_s12551_025_01326_6 crossref_primary_10_1073_pnas_1904587116 crossref_primary_10_1016_j_cis_2016_06_011 crossref_primary_10_1038_s41587_019_0341_6 crossref_primary_10_1016_j_molcel_2015_09_017 crossref_primary_10_1073_pnas_1513876112 crossref_primary_10_1038_s41467_023_41528_8 crossref_primary_10_1103_7sz2_2n6t crossref_primary_10_1016_j_ydbio_2021_12_003 crossref_primary_10_1007_s12274_023_6108_x crossref_primary_10_1242_jcs_195867 crossref_primary_10_1016_j_ceb_2020_08_004 crossref_primary_10_3390_biology10040304 crossref_primary_10_1002_ar_23959 crossref_primary_10_15252_embj_2023114106 crossref_primary_10_3389_fcimb_2023_1082622 crossref_primary_10_3390_biom9120842 crossref_primary_10_1088_0034_4885_79_7_074601 crossref_primary_10_1007_s10237_017_0954_y crossref_primary_10_1016_j_bbamem_2020_183399 crossref_primary_10_1002_anie_202425114 crossref_primary_10_1371_journal_pcbi_1009810 crossref_primary_10_3390_cells10092197 crossref_primary_10_1242_jcs_262039 crossref_primary_10_1016_j_biocel_2015_10_026 crossref_primary_10_3390_ncrna5040050 crossref_primary_10_1002_jcb_28767 crossref_primary_10_1016_j_ceb_2022_102100 crossref_primary_10_15252_embj_201796585 crossref_primary_10_1016_j_brainresbull_2023_01_009 crossref_primary_10_1016_j_devcel_2021_12_017 crossref_primary_10_3389_fmicb_2021_751880 crossref_primary_10_1140_epje_s10189_024_00425_8 crossref_primary_10_1016_j_ijbiomac_2018_06_030 crossref_primary_10_1016_j_tcb_2014_09_006 crossref_primary_10_1016_j_cub_2018_05_027 crossref_primary_10_1073_pnas_2109967118 crossref_primary_10_1126_science_abg7071 crossref_primary_10_1038_s41567_020_01125_8 crossref_primary_10_1016_j_tig_2020_01_011 crossref_primary_10_1016_j_cell_2016_04_047 crossref_primary_10_1016_j_ceb_2017_03_003 crossref_primary_10_1146_annurev_biophys_052118_115534 crossref_primary_10_1002_cm_21428 crossref_primary_10_1007_s11427_020_1702_x crossref_primary_10_1080_15548627_2017_1384889 crossref_primary_10_3390_ijms20215260 crossref_primary_10_1016_j_cell_2022_02_022 crossref_primary_10_1016_j_ceb_2020_01_012 crossref_primary_10_1016_j_ceb_2016_12_004 crossref_primary_10_1016_j_gene_2022_146607 crossref_primary_10_1016_j_cell_2019_05_052 crossref_primary_10_1038_s41586_024_07034_7 crossref_primary_10_1073_pnas_2102014118 crossref_primary_10_1088_1361_6633_ab052b crossref_primary_10_1103_PhysRevResearch_3_043081 crossref_primary_10_1242_jcs_241869 crossref_primary_10_3389_fphys_2016_00454 |
| Cites_doi | 10.1126/science.1235038 10.1529/biophysj.103.037812 10.1016/j.ymeth.2009.12.010 10.1103/PhysRevLett.92.178101 10.1038/323560a0 10.1038/nmeth.1220 10.1038/ncb0306-205 10.1007/BF02510480 10.1016/S0962-8924(99)01713-4 10.1073/pnas.1017150108 10.1091/mbc.e04-08-0742 10.1016/j.cell.2012.05.022 10.1016/0092-8674(77)90152-0 10.1016/j.tcb.2006.06.006 10.1126/science.1223539 10.1186/1741-7007-10-101 10.1146/annurev.micro.55.1.105 10.1242/jcs.01357 10.4161/nucl.20393 10.1093/emboj/cdg565 10.1006/jcis.1996.0217 10.1161/CIRCRESAHA.108.173989 10.1529/biophysj.105.080606 10.1083/jcb.200806149 10.1126/science.6681676 10.1126/science.1172046 10.1242/jcs.01098 10.1101/gad.455908 10.1083/jcb.200601095 10.1038/ncb1357 10.1002/jmor.1051360203 10.1091/mbc.e12-09-0685 10.1083/jcb.152.5.895 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Oct 2013 |
| Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Oct 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 |
| DOI | 10.1038/ncb2830 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1476-4679 |
| EndPage | 1259 |
| ExternalDocumentID | 3086115871 A348568858 23995731 10_1038_ncb2830 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: DP2 GM105437 – fundername: NCCDPHP CDC HHS grantid: 1DP2GM105437-01 |
| GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c542t-c4691f84c77b6f8565883ed822c83bb60e24d708ae95f78d93ade4d4ea17566d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 228 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325200300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1465-7392 1476-4679 |
| IngestDate | Thu Oct 02 18:18:37 EDT 2025 Mon Oct 06 18:27:48 EDT 2025 Tue Nov 11 09:56:48 EST 2025 Tue Nov 04 18:06:44 EST 2025 Thu Nov 13 14:26:38 EST 2025 Thu Apr 03 06:52:32 EDT 2025 Tue Nov 18 21:59:14 EST 2025 Sat Nov 29 01:36:13 EST 2025 Fri Feb 21 02:40:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c542t-c4691f84c77b6f8565883ed822c83bb60e24d708ae95f78d93ade4d4ea17566d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3789854 |
| PMID | 23995731 |
| PQID | 1438017769 |
| PQPubID | 45779 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1443398744 proquest_journals_1438017769 gale_infotracmisc_A348568858 gale_infotracacademiconefile_A348568858 gale_incontextgauss_ISR_A348568858 pubmed_primary_23995731 crossref_primary_10_1038_ncb2830 crossref_citationtrail_10_1038_ncb2830 springer_journals_10_1038_ncb2830 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature cell biology |
| PublicationTitleAbbrev | Nat Cell Biol |
| PublicationTitleAlternate | Nat Cell Biol |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Taylor (CR37) 1997 Bohnsack, Stuven, Kuhn, Cordes, Gorlich (CR8) 2006; 8 Riedl (CR15) 2008; 5 Crocker, David (CR36) 1996; 179 Hofmann (CR10) 2001; 152 Brangwynne, Mitchison, Hyman (CR23) 2011; 108 Jockusch, Schoenenberger, Stetefeld, Aebi (CR19) 2006; 16 Brangwynne (CR24) 2009; 324 Lammerding, Dahl, Discher, Kamm (CR2) 2007 Daniels, Masi, Wirtz (CR32) 2006; 90 Dahl, Kahn, Wilson, Discher (CR18) 2004; 117 Berg (CR26) 1983 Schulz, Jorgensen (CR30) 2001; 55 Wong (CR13) 2004; 92 Brangwynne, Koenderink, MacKintosh, Weitz (CR12) 2008; 183 Ye, Zhao, Hoffmann-Rohrer, Grummt (CR3) 2008; 22 Stuven, Hartmann, Gorlich (CR7) 2003; 22 Baarlink, Wang, Grosse (CR16) 2013; 340 Aebi, Cohn, Buhle, Gerace (CR17) 1986; 323 Nizami, Deryusheva, Gall (CR20) 2010; 2 Hofmann, de Lanerolle (CR4) 2006; 172 Clark, Merriam (CR9) 1977; 12 Wu, Gall (CR21) 1997; 105 Spector, Shochet, Kashman, Groweiss (CR14) 1983; 219 Gall (CR11) 2006; 8 Handwerger, Cordero, Gall (CR27) 2005; 16 Gall, Wu (CR34) 2010; 51 Marshall (CR31) 2012; 10 Valentine (CR33) 2004; 86 Dumont (CR29) 1972; 136 Kiseleva (CR35) 2004; 117 Rando, Zhao, Crabtree (CR5) 2000; 10 Maslova, Krasikova (CR22) 2012; 3 Weber, Brangwynne (CR25) 2012; 149 Dahl, Ribeiro, Lammerding (CR1) 2008; 102 Belin, Cimini, Blackburn, Mullins (CR6) 2013; 24 Chan, Marshall (CR28) 2012; 337 T Stuven (BFncb2830_CR7) 2003; 22 YHM Chan (BFncb2830_CR28) 2012; 337 I Spector (BFncb2830_CR14) 1983; 219 JG Gall (BFncb2830_CR34) 2010; 51 W Hofmann (BFncb2830_CR10) 2001; 152 A Maslova (BFncb2830_CR22) 2012; 3 Z Nizami (BFncb2830_CR20) 2010; 2 JN Dumont (BFncb2830_CR29) 1972; 136 BM Jockusch (BFncb2830_CR19) 2006; 16 WA Hofmann (BFncb2830_CR4) 2006; 172 J Riedl (BFncb2830_CR15) 2008; 5 BJ Belin (BFncb2830_CR6) 2013; 24 HC Berg (BFncb2830_CR26) 1983 MT Bohnsack (BFncb2830_CR8) 2006; 8 BR Daniels (BFncb2830_CR32) 2006; 90 JR Taylor (BFncb2830_CR37) 1997 JG Gall (BFncb2830_CR11) 2006; 8 Z Wu (BFncb2830_CR21) 1997; 105 J Ye (BFncb2830_CR3) 2008; 22 HN Schulz (BFncb2830_CR30) 2001; 55 C Baarlink (BFncb2830_CR16) 2013; 340 KN Dahl (BFncb2830_CR1) 2008; 102 J Lammerding (BFncb2830_CR2) 2007 MT Valentine (BFncb2830_CR33) 2004; 86 JCG Crocker (BFncb2830_CR36) 1996; 179 U Aebi (BFncb2830_CR17) 1986; 323 CP Brangwynne (BFncb2830_CR24) 2009; 324 TG Clark (BFncb2830_CR9) 1977; 12 SC Weber (BFncb2830_CR25) 2012; 149 OJ Rando (BFncb2830_CR5) 2000; 10 IY Wong (BFncb2830_CR13) 2004; 92 KN Dahl (BFncb2830_CR18) 2004; 117 E Kiseleva (BFncb2830_CR35) 2004; 117 KE Handwerger (BFncb2830_CR27) 2005; 16 WF Marshall (BFncb2830_CR31) 2012; 10 CP Brangwynne (BFncb2830_CR12) 2008; 183 CP Brangwynne (BFncb2830_CR23) 2011; 108 11238447 - J Cell Biol. 2001 Mar 5;152(5):895-910 18535268 - Circ Res. 2008 Jun 6;102(11):1307-18 21368180 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4334-9 3762708 - Nature. 1986 Oct 9-15;323(6088):560-4 22955827 - Science. 2012 Sep 7;337(6099):1186-9 4109871 - J Morphol. 1972 Feb;136(2):153-79 22572951 - Nucleus. 2012 May-Jun;3(3):300-11 23558171 - Science. 2013 May 17;340(6134):864-7 16508670 - Nat Cell Biol. 2006 Mar;8(3):205-7 563771 - Cell. 1977 Dec;12(4):883-91 15169197 - Phys Rev Lett. 2004 Apr 30;92(17):178101 15331638 - J Cell Sci. 2004 Sep 15;117(Pt 20):4779-86 18230700 - Genes Dev. 2008 Feb 1;22(3):322-30 14592989 - EMBO J. 2003 Nov 3;22(21):5928-40 6681676 - Science. 1983 Feb 4;219(4584):493-5 16828286 - Trends Cell Biol. 2006 Aug;16(8):391-6 20504965 - Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000653 18536722 - Nat Methods. 2008 Jul;5(7):605-7 19460965 - Science. 2009 Jun 26;324(5935):1729-32 23241366 - BMC Biol. 2012;10:101 10675902 - Trends Cell Biol. 2000 Mar;10(3):92-7 16476772 - J Cell Biol. 2006 Feb 13;172(4):495-6 17613312 - Methods Cell Biol. 2007;83:269-94 19001127 - J Cell Biol. 2008 Nov 17;183(4):583-7 16489345 - Nat Cell Biol. 2006 Mar;8(3):257-63 11544351 - Annu Rev Microbiol. 2001;55:105-37 9211971 - Chromosoma. 1997 Jun;105(7-8):438-43 23447706 - Mol Biol Cell. 2013 Apr;24(7):982-94 22682242 - Cell. 2012 Jun 8;149(6):1188-91 15509651 - Mol Biol Cell. 2005 Jan;16(1):202-11 |
| References_xml | – volume: 340 start-page: 864 year: 2013 end-page: 867 ident: CR16 article-title: Nuclear actin network assembly by formins regulates the SRF coactivator MAL publication-title: Science doi: 10.1126/science.1235038 – volume: 2 start-page: a000653 year: 2010 ident: CR20 article-title: The cajal body and histone locus body publication-title: Csh Perspect Biol. – volume: 86 start-page: 4004 year: 2004 end-page: 4014 ident: CR33 article-title: Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials publication-title: Biophys. J. doi: 10.1529/biophysj.103.037812 – volume: 51 start-page: 45 year: 2010 end-page: 51 ident: CR34 article-title: Examining the contents of isolated germinal vesicles publication-title: Methods doi: 10.1016/j.ymeth.2009.12.010 – volume: 92 start-page: 178101 year: 2004 ident: CR13 article-title: Anomalous diffusion probes microstructure dynamics of entangled F-actin networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.178101 – volume: 323 start-page: 560 year: 1986 end-page: 564 ident: CR17 article-title: The nuclear lamina is a meshwork of intermediate-type filaments publication-title: Nature doi: 10.1038/323560a0 – volume: 5 start-page: 605 year: 2008 end-page: 607 ident: CR15 article-title: Lifeact: a versatile marker to visualize F-actin publication-title: Nat. Methods doi: 10.1038/nmeth.1220 – volume: 8 start-page: 205 year: 2006 end-page: 207 ident: CR11 article-title: Exporting actin publication-title: Nat. Cell Biol. doi: 10.1038/ncb0306-205 – volume: 105 start-page: 438 year: 1997 end-page: 443 ident: CR21 article-title: ‘Micronucleoli’ in the germinal vesicle publication-title: Chromosoma doi: 10.1007/BF02510480 – volume: 10 start-page: 92 year: 2000 end-page: 97 ident: CR5 article-title: Searching for a function for nuclear actin publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(99)01713-4 – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: CR23 article-title: Active liquid-like behavior of nucleoli determines their size and shape in oocytes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 16 start-page: 202 year: 2005 end-page: 211 ident: CR27 article-title: Cajal bodies, nucleoli, and speckles in the oocyte nucleus have a low-density, sponge-like structure publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0742 – volume: 149 start-page: 1188 year: 2012 end-page: 1191 ident: CR25 article-title: Getting RNA and protein in phase publication-title: Cell doi: 10.1016/j.cell.2012.05.022 – volume: 12 start-page: 883 year: 1977 end-page: 891 ident: CR9 article-title: Diffusible and bound actin in nuclei of oocytes publication-title: Cell doi: 10.1016/0092-8674(77)90152-0 – volume: 16 start-page: 391 year: 2006 end-page: 396 ident: CR19 article-title: Tracking down the different forms of nuclear actin publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2006.06.006 – volume: 337 start-page: 1186 year: 2012 end-page: 1189 ident: CR28 article-title: How cells know the size of their organelles publication-title: Science doi: 10.1126/science.1223539 – year: 1983 ident: CR26 publication-title: Random Walks in Biology – volume: 10 start-page: 101 year: 2012 end-page: 123 ident: CR31 article-title: What determines cell size? publication-title: BMC Biol. doi: 10.1186/1741-7007-10-101 – volume: 55 start-page: 105 year: 2001 end-page: 137 ident: CR30 article-title: Big bacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.55.1.105 – volume: 117 start-page: 4779 year: 2004 end-page: 4786 ident: CR18 article-title: The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber publication-title: J. Cell Sci. doi: 10.1242/jcs.01357 – volume: 3 start-page: 300 year: 2012 end-page: 311 ident: CR22 article-title: Nuclear actin depolymerization in transcriptionally active avian and amphibian oocytes leads to collapse of intranuclear structures publication-title: Nucleus doi: 10.4161/nucl.20393 – volume: 22 start-page: 5928 year: 2003 end-page: 5940 ident: CR7 article-title: Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes publication-title: EMBO J. doi: 10.1093/emboj/cdg565 – volume: 179 start-page: 298 year: 1996 end-page: 310 ident: CR36 article-title: Methods of digital video microscopy for colloidal studies publication-title: J. Colloid Inter. Sci. doi: 10.1006/jcis.1996.0217 – volume: 102 start-page: 1307 year: 2008 end-page: 1318 ident: CR1 article-title: Nuclear shape, mechanics, and mechanotransduction publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.173989 – volume: 90 start-page: 4712 year: 2006 end-page: 4719 ident: CR32 article-title: Probing single-cell micromechanics : the microrheology of developing embryos publication-title: Biophys. J. doi: 10.1529/biophysj.105.080606 – year: 1997 ident: CR37 publication-title: An Introduction to Error Analysis – volume: 183 start-page: 583 year: 2008 end-page: 587 ident: CR12 article-title: Cytoplasmic diffusion: molecular motors mix it up publication-title: J. Cell Biol. doi: 10.1083/jcb.200806149 – volume: 219 start-page: 493 year: 1983 end-page: 495 ident: CR14 article-title: Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells publication-title: Science doi: 10.1126/science.6681676 – volume: 324 start-page: 1729 year: 2009 end-page: 1732 ident: CR24 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 117 start-page: 2481 year: 2004 end-page: 2490 ident: CR35 article-title: Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in oocyte nuclei publication-title: J. Cell Sci. doi: 10.1242/jcs.01098 – volume: 22 start-page: 322 year: 2008 end-page: 330 ident: CR3 article-title: Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription publication-title: Gene Dev. doi: 10.1101/gad.455908 – start-page: 269 year: 2007 end-page: 294 ident: CR2 publication-title: Methods in Cell Biology – volume: 172 start-page: 495 year: 2006 end-page: 496 ident: CR4 article-title: Nuclear actin: to polymerize or not to polymerize publication-title: J. Cell Biol. doi: 10.1083/jcb.200601095 – volume: 8 start-page: 257 year: 2006 end-page: 263 ident: CR8 article-title: A selective block of nuclear actin export stabilizes the giant nuclei of oocytes publication-title: Nat. Cell Biol. doi: 10.1038/ncb1357 – volume: 136 start-page: 153 year: 1972 end-page: 179 ident: CR29 article-title: Oogenesis in (Daudin). I. Stages of oocyte development in laboratory maintained animals publication-title: J. Morphol. doi: 10.1002/jmor.1051360203 – volume: 24 start-page: 982 year: 2013 end-page: 994 ident: CR6 article-title: Visualization of actin filaments and monomers in somatic cell nuclei publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-09-0685 – volume: 152 start-page: 895 year: 2001 end-page: 910 ident: CR10 article-title: Cofactor requirements for nuclear export of rev response element (Rre) and constitutive transport element (Cte) containing retroviral rnas: an unexpected role for actin publication-title: J. Cell Biol. doi: 10.1083/jcb.152.5.895 – volume: 8 start-page: 205 year: 2006 ident: BFncb2830_CR11 publication-title: Nat. Cell Biol. doi: 10.1038/ncb0306-205 – volume: 16 start-page: 202 year: 2005 ident: BFncb2830_CR27 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0742 – volume: 323 start-page: 560 year: 1986 ident: BFncb2830_CR17 publication-title: Nature doi: 10.1038/323560a0 – volume: 117 start-page: 4779 year: 2004 ident: BFncb2830_CR18 publication-title: J. Cell Sci. doi: 10.1242/jcs.01357 – volume: 10 start-page: 101 year: 2012 ident: BFncb2830_CR31 publication-title: BMC Biol. doi: 10.1186/1741-7007-10-101 – volume: 219 start-page: 493 year: 1983 ident: BFncb2830_CR14 publication-title: Science doi: 10.1126/science.6681676 – volume: 136 start-page: 153 year: 1972 ident: BFncb2830_CR29 publication-title: J. Morphol. doi: 10.1002/jmor.1051360203 – volume: 337 start-page: 1186 year: 2012 ident: BFncb2830_CR28 publication-title: Science doi: 10.1126/science.1223539 – volume: 22 start-page: 322 year: 2008 ident: BFncb2830_CR3 publication-title: Gene Dev. doi: 10.1101/gad.455908 – volume: 16 start-page: 391 year: 2006 ident: BFncb2830_CR19 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2006.06.006 – volume: 51 start-page: 45 year: 2010 ident: BFncb2830_CR34 publication-title: Methods doi: 10.1016/j.ymeth.2009.12.010 – volume: 92 start-page: 178101 year: 2004 ident: BFncb2830_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.178101 – volume: 340 start-page: 864 year: 2013 ident: BFncb2830_CR16 publication-title: Science doi: 10.1126/science.1235038 – volume: 152 start-page: 895 year: 2001 ident: BFncb2830_CR10 publication-title: J. Cell Biol. doi: 10.1083/jcb.152.5.895 – volume: 179 start-page: 298 year: 1996 ident: BFncb2830_CR36 publication-title: J. Colloid Inter. Sci. doi: 10.1006/jcis.1996.0217 – volume: 102 start-page: 1307 year: 2008 ident: BFncb2830_CR1 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.173989 – volume: 12 start-page: 883 year: 1977 ident: BFncb2830_CR9 publication-title: Cell doi: 10.1016/0092-8674(77)90152-0 – volume: 3 start-page: 300 year: 2012 ident: BFncb2830_CR22 publication-title: Nucleus doi: 10.4161/nucl.20393 – volume: 149 start-page: 1188 year: 2012 ident: BFncb2830_CR25 publication-title: Cell doi: 10.1016/j.cell.2012.05.022 – volume-title: Random Walks in Biology year: 1983 ident: BFncb2830_CR26 – volume: 90 start-page: 4712 year: 2006 ident: BFncb2830_CR32 publication-title: Biophys. J. doi: 10.1529/biophysj.105.080606 – volume: 10 start-page: 92 year: 2000 ident: BFncb2830_CR5 publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(99)01713-4 – volume: 55 start-page: 105 year: 2001 ident: BFncb2830_CR30 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.55.1.105 – volume: 105 start-page: 438 year: 1997 ident: BFncb2830_CR21 publication-title: Chromosoma doi: 10.1007/BF02510480 – volume: 172 start-page: 495 year: 2006 ident: BFncb2830_CR4 publication-title: J. Cell Biol. doi: 10.1083/jcb.200601095 – volume: 183 start-page: 583 year: 2008 ident: BFncb2830_CR12 publication-title: J. Cell Biol. doi: 10.1083/jcb.200806149 – volume: 5 start-page: 605 year: 2008 ident: BFncb2830_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.1220 – volume: 24 start-page: 982 year: 2013 ident: BFncb2830_CR6 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-09-0685 – volume: 117 start-page: 2481 year: 2004 ident: BFncb2830_CR35 publication-title: J. Cell Sci. doi: 10.1242/jcs.01098 – volume-title: An Introduction to Error Analysis year: 1997 ident: BFncb2830_CR37 – volume: 22 start-page: 5928 year: 2003 ident: BFncb2830_CR7 publication-title: EMBO J. doi: 10.1093/emboj/cdg565 – volume: 8 start-page: 257 year: 2006 ident: BFncb2830_CR8 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1357 – volume: 86 start-page: 4004 year: 2004 ident: BFncb2830_CR33 publication-title: Biophys. J. doi: 10.1529/biophysj.103.037812 – start-page: 269 volume-title: Methods in Cell Biology year: 2007 ident: BFncb2830_CR2 – volume: 324 start-page: 1729 year: 2009 ident: BFncb2830_CR24 publication-title: Science doi: 10.1126/science.1172046 – volume: 108 start-page: 4334 year: 2011 ident: BFncb2830_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 2 start-page: a000653 year: 2010 ident: BFncb2830_CR20 publication-title: Csh Perspect Biol. – reference: 23447706 - Mol Biol Cell. 2013 Apr;24(7):982-94 – reference: 23241366 - BMC Biol. 2012;10:101 – reference: 16476772 - J Cell Biol. 2006 Feb 13;172(4):495-6 – reference: 16489345 - Nat Cell Biol. 2006 Mar;8(3):257-63 – reference: 16508670 - Nat Cell Biol. 2006 Mar;8(3):205-7 – reference: 17613312 - Methods Cell Biol. 2007;83:269-94 – reference: 563771 - Cell. 1977 Dec;12(4):883-91 – reference: 18535268 - Circ Res. 2008 Jun 6;102(11):1307-18 – reference: 22682242 - Cell. 2012 Jun 8;149(6):1188-91 – reference: 3762708 - Nature. 1986 Oct 9-15;323(6088):560-4 – reference: 22572951 - Nucleus. 2012 May-Jun;3(3):300-11 – reference: 11544351 - Annu Rev Microbiol. 2001;55:105-37 – reference: 14592989 - EMBO J. 2003 Nov 3;22(21):5928-40 – reference: 21368180 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4334-9 – reference: 4109871 - J Morphol. 1972 Feb;136(2):153-79 – reference: 6681676 - Science. 1983 Feb 4;219(4584):493-5 – reference: 11238447 - J Cell Biol. 2001 Mar 5;152(5):895-910 – reference: 18230700 - Genes Dev. 2008 Feb 1;22(3):322-30 – reference: 15509651 - Mol Biol Cell. 2005 Jan;16(1):202-11 – reference: 22955827 - Science. 2012 Sep 7;337(6099):1186-9 – reference: 15331638 - J Cell Sci. 2004 Sep 15;117(Pt 20):4779-86 – reference: 23558171 - Science. 2013 May 17;340(6134):864-7 – reference: 10675902 - Trends Cell Biol. 2000 Mar;10(3):92-7 – reference: 20504965 - Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000653 – reference: 19460965 - Science. 2009 Jun 26;324(5935):1729-32 – reference: 9211971 - Chromosoma. 1997 Jun;105(7-8):438-43 – reference: 15169197 - Phys Rev Lett. 2004 Apr 30;92(17):178101 – reference: 18536722 - Nat Methods. 2008 Jul;5(7):605-7 – reference: 16828286 - Trends Cell Biol. 2006 Aug;16(8):391-6 – reference: 19001127 - J Cell Biol. 2008 Nov 17;183(4):583-7 |
| SSID | ssj0014407 |
| Score | 2.55196 |
| Snippet | Actin is abundant in the nuclei of oocytes but its role has been unclear. Feric and Brangwynne find that actin forms a network that prevents the sedimentation... The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of... The size of a typical eukaryotic cell is of the order of ~10 µm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of... The size of a typical eukaryotic cell is of the order of 10μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1253 |
| SubjectTerms | 631/136/2434/1706 631/80/128/1276 Actin Actins - metabolism Amphibians Animals Brownian motion Cancer Research Cell Biology Cell Nucleus - metabolism Cell Size Cells Developmental Biology Eggs Female Gravitation Humans letter Life Sciences Microscopy, Confocal Models, Biological Nuclear Matrix - metabolism Oocytes - cytology Oocytes - growth & development Oocytes - metabolism Physiological aspects Ribonucleoproteins Ribonucleoproteins - metabolism Stem Cells Xenopus - metabolism |
| Title | A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells |
| URI | https://link.springer.com/article/10.1038/ncb2830 https://www.ncbi.nlm.nih.gov/pubmed/23995731 https://www.proquest.com/docview/1438017769 https://www.proquest.com/docview/1443398744 |
| Volume | 15 |
| WOSCitedRecordID | wos000325200300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: M7P dateStart: 19990501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: 7X7 dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4679 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0014407 issn: 1465-7392 databaseCode: BENPR dateStart: 19990501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXZC48F4ILJVBCE7Rdm3Xdk6ooK3gUlULSL1FfmVVqUqWpEWCX8-M45bNInHhkovHia2xxxPPN_MR8kaHMQsVQ0xVEXJhpM_B5qkczn4ZrIU-zEayCTWf6-WyWKQLty7BKnc2MRpq3zi8Iz9Fmm5YPUoW76--58gahdHVRKFxQI6wSgKL0L3FPoogREyXBmMwyRU4An3SLJYEP62dxdJXg9Popk2-dijdiJLGw2d2_3-H_YDcS24nnfbr5CG5FepH5E5PRPnzMSmntMbCxqalsxxTHWraOVNVzdpTcB8RQPsrdLRd2SbKNbG8A0j5FgHom46aS7MCT5MinRE49hTa1ggypxgZ6J6Qb7Pzrx8_5Yl6IXcTwTa5g7_ms0oLp5SVlQavT2sePHgTTnNr5Tgw4dVYm1BMKqV9wY0PwotgwB2R0vNjclg3dXhGqJQOnCjGTaikKARCrbzxrGDGWGaFzMjbnQpKl-qSIz3Guozxca7LpKuM0L3gVV-K42-R16jDEgtb1IicuTTbris_f7kop1zANLSe6Iy8S0JVAx9yJiUiwHCxFtZA8mQgCTvPDZt3Oi_Tzu_KPwrPyKt9M_ZENFsdmi3KCM4LJB7IyNN-ie1nFHONFT-D3rs1d-3lw-k-__cAXpC7DMk7IvTwhBxu2m14SW67H5tV147IgVqq-NQjcvThfL64GMXt8xuqJR9f |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoILb4qhwIJ4nKym683u-oBQBESNWiIERcrNrHfXVaTIbu0EVH4Uv5EZP0JdJG49cN5ZxxuP5-H5Zj6AF9oPuM84YapiHwojXYg2T4Xo-6VPU9zD05psQk2nejaLP23Ar64XhmCVnU2sDbUrLH0j3yGabtQeJeO3xychsUZRdbWj0GjUYt-f_sCUrXozeY_P9yXn4w-H7_bCllUgtEPBl6HFhHA308IqlcpMY0CjdeQdOkqrozSVA8-FUwNtfDzMlHZxZJwXTniDnlZKF-F1L8FltOOKkj01Wyd4VCdVTTfTMFQYeDRNujSCfCe3KY3a6nm_8z7gjBM8V5Wtnd345v_2N92CG21YzUbNe3AbNnx-B642RJundyEZsZwGN5uSjUNq5chZZU2WFQvHMDwmgPBPX7Fynha1XFGPr0ApVxLAflkxc2TmGEkzomvCxIXh2oJA9IwqH9U9-Hohp7sPm3mR-wfApLQYJPLI-EyKWBCUzBnHY25MylMhA3jVPfLEtnPXif5jkdT1_0gnrW4EwNaCx82okb9FnpPOJDS4Iydk0JFZVVUy-fI5GUUCj6H1UAfwuhXKCvwha9pGC7xdmvXVk9zuSaJlsf3lTseS1rJVyR8FC-DZepl2Elov98WKZEQUxUSsEMBWo9LrE9W91Craxd2djp-5eP-4D_99A0_h2t7hx4PkYDLdfwTXORGV1DDLbdhcliv_GK7Y78t5VT6pX1MG3y5a4X8DPil4cw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxjE4xS167iOc0CosFtRLaqqBaS9Gcd2VpWqZEla0PLT-HXM5FG2i8RtD5w9TuP6y8wk_mY-gBfKD7jPOHGqEh8KI12IPi8OMfZLn6Y4h6e12EQ8naqjo2S2Bb-6WhiiVXY-sXbUrrD0jbxPMt2Inlgm_aylRcz2xm9PvoWkIEUnrZ2cRgORA3_6A1_fqjeTPdzrl5yP9z-__xC2CgOhHQq-DC2-HO5mStg4TmWmMLlRKvIOg6ZVUZrKgefCxQNlfDLMYuWSyDgvnPAGo66ULsLrXoLtGJMM0YPtd_vT2eH6DEOIulgbXdEwJIumZJcakvdzm1LjrY1YeD4inAmJ585o69A3vvE__2k34XqbcLNR84Tcgi2f34YrjQTn6R3QI5ZTS2dTsnFIRR45q6zJsmLhGCbORB3-6StWztOitivqxhZo5Uqi3i8rZo7NHHNsRkJO-ErDcGxB9HpGZyLVXfhyIau7B728yP0DYFJaTB95ZHwmRSKIZOaM4wk3JuWpkAG86rZf27YjOwmDLHTNDIiUbnESAFsbnjRNSP42eU740dTSI6d9PjarqtKTT4d6FAlchlJDFcDr1igr8IesaUsw8HapC9iG5c6GJfocuznc4U23Pq_Sf8AWwLP1MM0kHl_uixXZiChKSHIhgPsNvNcrqqus42gXZ3d4P3PxzeU-_PcNPIWriHP9cTI9eATXOCmY1PzLHegty5V_DJft9-W8Kp-0zyyDrxeN-N-s-YKT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nuclear+F-actin+scaffold+stabilizes+ribonucleoprotein+droplets+against+gravity+in+large+cells&rft.jtitle=Nature+cell+biology&rft.au=Feric%2C+Marina&rft.au=Brangwynne%2C+Clifford+P&rft.date=2013-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1465-7392&rft.volume=15&rft.issue=10&rft.spage=1253&rft_id=info:doi/10.1038%2Fncb2830&rft.externalDocID=A348568858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |