Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee
The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynam...
Gespeichert in:
| Veröffentlicht in: | Theoretical and applied mechanics letters Jg. 10; H. 6; S. 382 - 389 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2020
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan Elsevier |
| Schlagworte: | |
| ISSN: | 2095-0349 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs).
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio. |
|---|---|
| AbstractList | The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio. The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs). The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio. EDITOR'S RECOMMENDATION: The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs). ABSTRACT: The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio. |
| Author | Kolomenskiy, Dmitry Schneider, Kai Truong, Hung Engels, Thomas |
| AuthorAffiliation | Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan |
| AuthorAffiliation_xml | – name: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan |
| Author_xml | – sequence: 1 givenname: Hung surname: Truong fullname: Truong, Hung organization: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France – sequence: 2 givenname: Thomas surname: Engels fullname: Engels, Thomas organization: University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany – sequence: 3 givenname: Dmitry surname: Kolomenskiy fullname: Kolomenskiy, Dmitry organization: Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan – sequence: 4 givenname: Kai surname: Schneider fullname: Schneider, Kai email: kai.schneider@univ-amu.fr organization: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France |
| BackLink | https://hal.science/hal-03088632$$DView record in HAL |
| BookMark | eNp9kU9v1DAQxXMoEqX0C3DKDXHYZWznnyUuVQV0pZW4wBFZE3u8dUjsleNtu98eh5QDHDqXkUbv9zQz701x4YOnonjHYMuANR-HbcJp3HLgsAW2hbq5KC45yHoDopKvi-t5HiBXzRohxWXxc-fteCKvqQy2fHT-UNqRnlzvRpfOZfBluqcSKQZz9jg5XR4p2hAnfEawTJQlkUwG8XhcHPrT1I_UE70tXlkcZ7p-7lfFjy-fv9_ebfbfvu5ub_YbXVc8bSRhbaDmrRFCSEBjARtj8hHMmoYLrY1tqG07WVUarNZMcl71ZFvbNryS4qrYrb4m4KCO0U0YzyqgU38GIR4UxuT0SEoaLmRP0LZ9VRnTIuvJ8Laz0hqjWZ29Pqxe9zj-Y3V3s1fLDAR0XSP4A8va96v2Eb1Ff1BDOEWfL1Xj069e0RIDNAA8K7tVqWOY50hWaZcwueBTRDcqBmrJTw1qyU8toAKmcn4Z5f-hf7d6Efq0QpTf_uAoqlm7JWbjIumU_-Jewn8DHdW4TA |
| CitedBy_id | crossref_primary_10_1016_j_compag_2025_110021 crossref_primary_10_5802_crmeca_129 crossref_primary_10_1016_j_ast_2025_109989 |
| Cites_doi | 10.2514/1.J052262 10.1137/11082748X 10.1242/jeb.148.1.19 10.1016/j.compfluid.2020.104426 10.1016/j.asd.2004.05.006 10.1137/15M1026006 10.1242/jeb.040295 10.1098/rsif.2013.0361 10.1016/j.jfluidstructs.2019.03.021 10.1103/PhysRevFluids.4.013103 10.1103/PhysRevLett.116.028103 10.1242/jeb.174.1.45 10.1242/jeb.00663 10.1242/jeb.205.8.1087 10.1007/s002110050401 10.1126/science.284.5422.1954 10.1007/BF02510406 10.1016/j.jcp.2009.04.026 10.1098/rsif.2009.0200 10.1038/384626a0 10.1088/1748-3190/aaaac1 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ 1XC DOA |
| DOI | 10.1016/j.taml.2020.01.056 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EndPage | 389 |
| ExternalDocumentID | oai_doaj_org_article_9d239be077b44dd7a1bed278f9fddc15 oai:HAL:hal-03088632v1 lxkb_e202006002 10_1016_j_taml_2020_01_056 S2095034920300684 |
| GrantInformation_xml | – fundername: Financial support from the Agence Nationale de la Recher-che(ANR)(Grant 15-CE40-0019).and Deutsche Forschungsge-meinschaft(Grant SE 824/26-1).project AIFIT,is grate-fully acknowledged.The authors were granted access to the HPC resources of IDRIS under the allocation No.2018-91664 attrib-uted by; (and the Deutscher Akademischer Aus-tauschdienst funderid: (DFG)(Grant SE 824/26-1).project AIFIT,is grate-fully acknowledged.The authors were granted access to the HPC resources of IDRIS under the allocation No.2018-91664 attrib-uted by; (DAAD)within the French-German Procope project FIFIT.D.K.gratefully acknowledges financial support from the JSPS KAKENHI Grant ) |
| GroupedDBID | 0R~ 0SF 4.4 457 5VR 5VS 6I. 92E 92I 92Q 93N AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFTF ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CCVFK CHBEP CW9 EBS EJD FA0 FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG RNS ROL SSZ TCJ TGP Y7S -SA -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CAJEA CITATION Q-- U1G U5K 2B. 4A8 PSX 1XC |
| ID | FETCH-LOGICAL-c542t-9ea5d0527d33390adf0a6dd2021fd623ccdf6e778944c0fcc19224bef7f762493 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599498000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-0349 |
| IngestDate | Fri Oct 03 12:43:08 EDT 2025 Tue Oct 14 19:59:52 EDT 2025 Thu May 29 04:05:30 EDT 2025 Wed Nov 05 20:46:53 EST 2025 Tue Nov 18 22:26:11 EST 2025 Thu Jul 20 20:17:14 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Insect flight Volume penalization method Spectral method Wing elasticity Mass-spring model Fluid-structure interaction |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c542t-9ea5d0527d33390adf0a6dd2021fd623ccdf6e778944c0fcc19224bef7f762493 |
| ORCID | 0000-0003-1243-6621 0000-0003-0107-6894 |
| OpenAccessLink | https://doaj.org/article/9d239be077b44dd7a1bed278f9fddc15 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9d239be077b44dd7a1bed278f9fddc15 hal_primary_oai_HAL_hal_03088632v1 wanfang_journals_lxkb_e202006002 crossref_citationtrail_10_1016_j_taml_2020_01_056 crossref_primary_10_1016_j_taml_2020_01_056 elsevier_sciencedirect_doi_10_1016_j_taml_2020_01_056 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical and applied mechanics letters |
| PublicationTitle_FL | Theoretical & Applied Mechanics Letters |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan – name: Elsevier |
| References | Zhao, Huang, Deng (bib8) 2010; 7 Engels, Kolomenskiy, Schneider (bib15) 2016; 38 Du, Sun (bib5) 2010; 213 Sane (bib26) 2003; 206 Mountcastle, Combes (bib2) 2016; 280 Roccia, Preidikman, Massa (bib21) 2013; 51 Fu, Liu, Shyy (bib4) 2018; 13 Pekurovsky (bib17) 2012; 34 Vincent, Wegst (bib25) 2004; 33 Engels, Kolomenskiy, Schneider (bib11) 2016; 116 Ifju, Jenkins, Ettingers (bib28) 2002 Campos, Ukeiley, Bernal (bib3) 2012 Sane, Dickinson (bib27) 2002; 205 Ellington, van den Berg, Willmott (bib1) 1996; 384 Dickinson, Lehmann, Sane (bib19) 1999; 284 Kang, Shyy (bib7) 2013; 10 Engels (bib18) 2015 Truong, Engels, Kolomenskiy (bib6) 2020; 200 Truong, Engels, Kolomenskiy (bib10) 2020 Dudley, Ellington (bib9) 1990; 148 Kolomenskiy, Schneider (bib16) 2009; 228 Engels, Kolomenskiy, Schneider (bib22) 2019; 4 Berger (bib13) 1998; 38 Shyy, Aono, Kang (bib12) 2013 Volino, Magnenat-Thalmann (bib24) 2006 Kolomenskiy, Ravi, Xu (bib23) 2019; 91 Ifju, Peter, Stanford (bib29) 2006 Angot, Bruneau, Fabrie (bib14) 1999; 81 Dickinson, Gotz (bib20) 1993; 174 Kolomenskiy (10.1016/j.taml.2020.01.056_bib23) 2019; 91 Pekurovsky (10.1016/j.taml.2020.01.056_bib17) 2012; 34 Zhao (10.1016/j.taml.2020.01.056_bib8) 2010; 7 Vincent (10.1016/j.taml.2020.01.056_bib25) 2004; 33 Kolomenskiy (10.1016/j.taml.2020.01.056_bib16) 2009; 228 Volino (10.1016/j.taml.2020.01.056_bib24) 2006 Engels (10.1016/j.taml.2020.01.056_bib15) 2016; 38 Mountcastle (10.1016/j.taml.2020.01.056_bib2) 2016; 280 Kang (10.1016/j.taml.2020.01.056_bib7) 2013; 10 Dudley (10.1016/j.taml.2020.01.056_bib9) 1990; 148 Engels (10.1016/j.taml.2020.01.056_bib18) 2015 Campos (10.1016/j.taml.2020.01.056_bib3) 2012 Dickinson (10.1016/j.taml.2020.01.056_bib20) 1993; 174 Ellington (10.1016/j.taml.2020.01.056_bib1) 1996; 384 Roccia (10.1016/j.taml.2020.01.056_bib21) 2013; 51 Angot (10.1016/j.taml.2020.01.056_bib14) 1999; 81 Sane (10.1016/j.taml.2020.01.056_bib27) 2002; 205 Truong (10.1016/j.taml.2020.01.056_bib6) 2020; 200 Sane (10.1016/j.taml.2020.01.056_bib26) 2003; 206 Ifju (10.1016/j.taml.2020.01.056_bib28) 2002 Engels (10.1016/j.taml.2020.01.056_bib11) 2016; 116 Truong (10.1016/j.taml.2020.01.056_bib10) Engels (10.1016/j.taml.2020.01.056_bib22) 2019; 4 Berger (10.1016/j.taml.2020.01.056_bib13) 1998; 38 Dickinson (10.1016/j.taml.2020.01.056_bib19) 1999; 284 Fu (10.1016/j.taml.2020.01.056_bib4) 2018; 13 Ifju (10.1016/j.taml.2020.01.056_bib29) 2006 Shyy (10.1016/j.taml.2020.01.056_bib12) 2013 Du (10.1016/j.taml.2020.01.056_bib5) 2010; 213 |
| References_xml | – volume: 38 start-page: 644 year: 1998 end-page: 662 ident: bib13 article-title: A second order backward difference method with variable steps for a parabolic problem publication-title: BIT – year: 2006 ident: bib24 article-title: Simple linear bending stiffness in particle systems publication-title: Proceedings of the 2006 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation (SCA 06) Eurographics Association, Goslar, DEU – volume: 174 year: 1993 ident: bib20 article-title: Unsteady aerodynamic performance of model wings at low Reynolds numbers publication-title: J. Exp. Biol. – volume: 81 start-page: 497 year: 1999 end-page: 520 ident: bib14 article-title: A penalization method to take into account obstacles in incompressible viscous flows publication-title: Numer. Math. – year: 2013 ident: bib12 article-title: An Introduction to Flapping Wing Aerodynamics – year: 2015 ident: bib18 article-title: Numerical Modeling of Fluid-Structure Interaction in Bioinspired Propulsion – volume: 10 year: 2013 ident: bib7 article-title: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing publication-title: J. R. Soc. Interface – volume: 7 start-page: 485 year: 2010 end-page: 497 ident: bib8 article-title: Aerodynamic effects of flexibility in flapping wings publication-title: J. R. Soc. Interface – volume: 33 start-page: 187 year: 2004 end-page: 199 ident: bib25 article-title: Design and mechanical properties of insect cuticle publication-title: Arthropod Struct. Dev. – year: 2020 ident: bib10 article-title: Fluid-structure interaction using volume penalization and mass-spring models with application to flapping bumblebee flight – volume: 116 year: 2016 ident: bib11 article-title: Bumblebee flight in heavy turbulence publication-title: Phys. Rev. Lett. – volume: 148 year: 1990 ident: bib9 article-title: Mechanics of forward flight in bumblebees i. kinematics and morphology publication-title: J. Exp. Biol. – volume: 284 start-page: 1954 year: 1999 end-page: 1960 ident: bib19 article-title: Wing rotation and the aerodynamic basis of insect flight publication-title: Science – volume: 206 start-page: 4191 year: 2003 end-page: 4208 ident: bib26 article-title: The aerodynamics of insect flight publication-title: J. Exp. Biol. – volume: 213 start-page: 2273 year: 2010 end-page: 2283 ident: bib5 article-title: Effects of wing deformation on aerodynamic forces in hovering hoverflies publication-title: J. Exp. Biol. – volume: 384 start-page: 626 year: 1996 end-page: 630 ident: bib1 article-title: Leading-edge vortices in insect flight publication-title: Nature – volume: 280 year: 2016 ident: bib2 article-title: Wing flexibility enhances load-lifting capacity in bumblebees publication-title: Proc. R. Soc. B. – volume: 38 start-page: S03 year: 2016 end-page: S24 ident: bib15 article-title: Flusi: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization publication-title: SIAM J. Sci. Comput. – volume: 13 year: 2018 ident: bib4 article-title: Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings publication-title: Bioinspir. Biomim. – year: 2012 ident: bib3 article-title: Flow around flapping flexible flat plate wings publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition – volume: 4 year: 2019 ident: bib22 article-title: Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical experiments publication-title: Phys. Rev. Fluids – volume: 228 start-page: 5687 year: 2009 end-page: 5709 ident: bib16 article-title: A Fourier spectral method for the navierstokes equations with volume penalization for moving solid obstacles publication-title: J. Comput. Phys. – start-page: 14 year: 2002 end-page: 17 ident: bib28 article-title: Flexible-wingbased micro air vehicles publication-title: 40th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada – volume: 200 year: 2020 ident: bib6 article-title: A mass-spring fluid-structure interaction solver: application to flexible revolving wings publication-title: Comput. Fluids – volume: 51 start-page: 2628 year: 2013 end-page: 2642 ident: bib21 article-title: Modified unsteady vortex-lattice method to study flapping wings in hover flight publication-title: AIAA J. – volume: 34 start-page: C192 year: 2012 end-page: C209 ident: bib17 article-title: P3dfft: A framework for parallel computations of Fourier transforms in three dimensions publication-title: SIAM J. Sci. Comput. – volume: 205 start-page: 1087 year: 2002 end-page: 1096 ident: bib27 article-title: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight publication-title: J. Exp. Biol. – volume: 91 year: 2019 ident: bib23 article-title: The dynamics of passive feathering rotation in hovering flight of bumblebees publication-title: J. Fluids Struct. – start-page: 5 year: 2006 end-page: 8 ident: bib29 article-title: Analysis of a flexible wing micro air vehicle publication-title: Proc. 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, California – volume: 51 start-page: 2628 year: 2013 ident: 10.1016/j.taml.2020.01.056_bib21 article-title: Modified unsteady vortex-lattice method to study flapping wings in hover flight publication-title: AIAA J. doi: 10.2514/1.J052262 – volume: 34 start-page: C192 year: 2012 ident: 10.1016/j.taml.2020.01.056_bib17 article-title: P3dfft: A framework for parallel computations of Fourier transforms in three dimensions publication-title: SIAM J. Sci. Comput. doi: 10.1137/11082748X – volume: 148 year: 1990 ident: 10.1016/j.taml.2020.01.056_bib9 article-title: Mechanics of forward flight in bumblebees i. kinematics and morphology publication-title: J. Exp. Biol. doi: 10.1242/jeb.148.1.19 – start-page: 5 year: 2006 ident: 10.1016/j.taml.2020.01.056_bib29 article-title: Analysis of a flexible wing micro air vehicle – volume: 200 year: 2020 ident: 10.1016/j.taml.2020.01.056_bib6 article-title: A mass-spring fluid-structure interaction solver: application to flexible revolving wings publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2020.104426 – volume: 280 year: 2016 ident: 10.1016/j.taml.2020.01.056_bib2 article-title: Wing flexibility enhances load-lifting capacity in bumblebees publication-title: Proc. R. Soc. B. – volume: 33 start-page: 187 year: 2004 ident: 10.1016/j.taml.2020.01.056_bib25 article-title: Design and mechanical properties of insect cuticle publication-title: Arthropod Struct. Dev. doi: 10.1016/j.asd.2004.05.006 – volume: 38 start-page: S03 year: 2016 ident: 10.1016/j.taml.2020.01.056_bib15 article-title: Flusi: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1026006 – year: 2012 ident: 10.1016/j.taml.2020.01.056_bib3 article-title: Flow around flapping flexible flat plate wings – year: 2015 ident: 10.1016/j.taml.2020.01.056_bib18 – volume: 213 start-page: 2273 year: 2010 ident: 10.1016/j.taml.2020.01.056_bib5 article-title: Effects of wing deformation on aerodynamic forces in hovering hoverflies publication-title: J. Exp. Biol. doi: 10.1242/jeb.040295 – year: 2013 ident: 10.1016/j.taml.2020.01.056_bib12 – volume: 10 year: 2013 ident: 10.1016/j.taml.2020.01.056_bib7 article-title: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0361 – volume: 91 year: 2019 ident: 10.1016/j.taml.2020.01.056_bib23 article-title: The dynamics of passive feathering rotation in hovering flight of bumblebees publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.03.021 – volume: 4 year: 2019 ident: 10.1016/j.taml.2020.01.056_bib22 article-title: Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical experiments publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.013103 – volume: 116 year: 2016 ident: 10.1016/j.taml.2020.01.056_bib11 article-title: Bumblebee flight in heavy turbulence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.028103 – volume: 174 year: 1993 ident: 10.1016/j.taml.2020.01.056_bib20 article-title: Unsteady aerodynamic performance of model wings at low Reynolds numbers publication-title: J. Exp. Biol. doi: 10.1242/jeb.174.1.45 – year: 2006 ident: 10.1016/j.taml.2020.01.056_bib24 article-title: Simple linear bending stiffness in particle systems – volume: 206 start-page: 4191 year: 2003 ident: 10.1016/j.taml.2020.01.056_bib26 article-title: The aerodynamics of insect flight publication-title: J. Exp. Biol. doi: 10.1242/jeb.00663 – volume: 205 start-page: 1087 year: 2002 ident: 10.1016/j.taml.2020.01.056_bib27 article-title: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.8.1087 – volume: 81 start-page: 497 year: 1999 ident: 10.1016/j.taml.2020.01.056_bib14 article-title: A penalization method to take into account obstacles in incompressible viscous flows publication-title: Numer. Math. doi: 10.1007/s002110050401 – volume: 284 start-page: 1954 year: 1999 ident: 10.1016/j.taml.2020.01.056_bib19 article-title: Wing rotation and the aerodynamic basis of insect flight publication-title: Science doi: 10.1126/science.284.5422.1954 – volume: 38 start-page: 644 year: 1998 ident: 10.1016/j.taml.2020.01.056_bib13 article-title: A second order backward difference method with variable steps for a parabolic problem publication-title: BIT doi: 10.1007/BF02510406 – start-page: 14 year: 2002 ident: 10.1016/j.taml.2020.01.056_bib28 article-title: Flexible-wingbased micro air vehicles – volume: 228 start-page: 5687 year: 2009 ident: 10.1016/j.taml.2020.01.056_bib16 article-title: A Fourier spectral method for the navierstokes equations with volume penalization for moving solid obstacles publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.026 – ident: 10.1016/j.taml.2020.01.056_bib10 – volume: 7 start-page: 485 year: 2010 ident: 10.1016/j.taml.2020.01.056_bib8 article-title: Aerodynamic effects of flexibility in flapping wings publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0200 – volume: 384 start-page: 626 year: 1996 ident: 10.1016/j.taml.2020.01.056_bib1 article-title: Leading-edge vortices in insect flight publication-title: Nature doi: 10.1038/384626a0 – volume: 13 year: 2018 ident: 10.1016/j.taml.2020.01.056_bib4 article-title: Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/aaaac1 |
| SSID | ssj0000516393 |
| Score | 2.190666 |
| Snippet | The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight... The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring... EDITOR'S RECOMMENDATION: The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to... |
| SourceID | doaj hal wanfang crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 382 |
| SubjectTerms | Biomechanics Computational Engineering, Finance, and Science Computer Science Engineering Sciences Fluid-structure interaction Fluids mechanics Insect flight Mass-spring model Mathematics Mechanics Numerical Analysis Spectral method Volume penalization method Wing elasticity |
| Title | Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee |
| URI | https://dx.doi.org/10.1016/j.taml.2020.01.056 https://d.wanfangdata.com.cn/periodical/lxkb-e202006002 https://hal.science/hal-03088632 https://doaj.org/article/9d239be077b44dd7a1bed278f9fddc15 |
| Volume | 10 |
| WOSCitedRecordID | wos000599498000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2095-0349 databaseCode: DOA dateStart: 20150101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000516393 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEG-UaKIH4md8IqYx3szGbtt93R7BSDAxxIMmXEzTdlpEHvsILKD_PTO7fbBc8OK16cf212lnNjPzG8beRyvmPulcGZ9EpRXYyse6qaSVfg5tI_BKDcUmzN5eu79vv01KfVFM2EgPPAL30YJUNiRhTNAawPg6JJCmzTYDxCG9XApjJz9ThdUbVS-5l6WgFGSlbcmYGYO7en9MfgcpBs5Oql490UoDef8t5XT_F0VJPrz0XfbdwUQB7Txh68Vy5FvjFz9l91L3jD2e8Ak-Zz-_rEqO8GXml9jGMxFeDgGwf_my42jucZ_w0RwL0fOTm7wBGuJ5PyQAJ8CBnqgbDng4Pw4LPIT0gv3Y-fz9025V6idUsdGyr2zyDYhGGlBKWeEhC8QfcNt1BjR7YoQ8T8a0Vusocoxo7UkdUjYZn0ht1Uu21i279IpxTbx_qonBKqsDwp-MhVYA6nvftrqesXqFn4uFXJxqXCzcKorstyPMHWHuRO0Q8xn7cD3mZKTWuLP3Nh3LdU-ixR4aUFhcERb3L2GZsWZ1qK5YGKPlgFMd3rn4O5SAW2vvbn111EZ8P-1cyQvEgBcBceUdOHOLP0fBJZpJkAP09f_YxAZ7RBOOCZFv2Fp_ep422YN40R-enb4d7sEVZjcLSg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+wing+flexibility+on+the+aerodynamic+performance+of+a+tethered+flapping+bumblebee&rft.jtitle=Theoretical+and+applied+mechanics+letters&rft.au=Truong%2C+Hung&rft.au=Engels%2C+Thomas&rft.au=Kolomenskiy%2C+Dmitry&rft.au=Schneider%2C+Kai&rft.date=2020-11-01&rft.issn=2095-0349&rft.volume=10&rft.issue=6&rft.spage=382&rft.epage=389&rft_id=info:doi/10.1016%2Fj.taml.2020.01.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_taml_2020_01_056 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flxkb-e%2Flxkb-e.jpg |