Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee

The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied mechanics letters Jg. 10; H. 6; S. 382 - 389
Hauptverfasser: Truong, Hung, Engels, Thomas, Kolomenskiy, Dmitry, Schneider, Kai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2020
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
Elsevier
Schlagworte:
ISSN:2095-0349
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs). The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.
AbstractList The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.
The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs). The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.
EDITOR'S RECOMMENDATION: The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs). ABSTRACT: The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.
Author Kolomenskiy, Dmitry
Schneider, Kai
Truong, Hung
Engels, Thomas
AuthorAffiliation Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
AuthorAffiliation_xml – name: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
Author_xml – sequence: 1
  givenname: Hung
  surname: Truong
  fullname: Truong, Hung
  organization: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
– sequence: 2
  givenname: Thomas
  surname: Engels
  fullname: Engels, Thomas
  organization: University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany
– sequence: 3
  givenname: Dmitry
  surname: Kolomenskiy
  fullname: Kolomenskiy, Dmitry
  organization: Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
– sequence: 4
  givenname: Kai
  surname: Schneider
  fullname: Schneider, Kai
  email: kai.schneider@univ-amu.fr
  organization: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
BackLink https://hal.science/hal-03088632$$DView record in HAL
BookMark eNp9kU9v1DAQxXMoEqX0C3DKDXHYZWznnyUuVQV0pZW4wBFZE3u8dUjsleNtu98eh5QDHDqXkUbv9zQz701x4YOnonjHYMuANR-HbcJp3HLgsAW2hbq5KC45yHoDopKvi-t5HiBXzRohxWXxc-fteCKvqQy2fHT-UNqRnlzvRpfOZfBluqcSKQZz9jg5XR4p2hAnfEawTJQlkUwG8XhcHPrT1I_UE70tXlkcZ7p-7lfFjy-fv9_ebfbfvu5ub_YbXVc8bSRhbaDmrRFCSEBjARtj8hHMmoYLrY1tqG07WVUarNZMcl71ZFvbNryS4qrYrb4m4KCO0U0YzyqgU38GIR4UxuT0SEoaLmRP0LZ9VRnTIuvJ8Laz0hqjWZ29Pqxe9zj-Y3V3s1fLDAR0XSP4A8va96v2Eb1Ff1BDOEWfL1Xj069e0RIDNAA8K7tVqWOY50hWaZcwueBTRDcqBmrJTw1qyU8toAKmcn4Z5f-hf7d6Efq0QpTf_uAoqlm7JWbjIumU_-Jewn8DHdW4TA
CitedBy_id crossref_primary_10_1016_j_compag_2025_110021
crossref_primary_10_5802_crmeca_129
crossref_primary_10_1016_j_ast_2025_109989
Cites_doi 10.2514/1.J052262
10.1137/11082748X
10.1242/jeb.148.1.19
10.1016/j.compfluid.2020.104426
10.1016/j.asd.2004.05.006
10.1137/15M1026006
10.1242/jeb.040295
10.1098/rsif.2013.0361
10.1016/j.jfluidstructs.2019.03.021
10.1103/PhysRevFluids.4.013103
10.1103/PhysRevLett.116.028103
10.1242/jeb.174.1.45
10.1242/jeb.00663
10.1242/jeb.205.8.1087
10.1007/s002110050401
10.1126/science.284.5422.1954
10.1007/BF02510406
10.1016/j.jcp.2009.04.026
10.1098/rsif.2009.0200
10.1038/384626a0
10.1088/1748-3190/aaaac1
ContentType Journal Article
Copyright 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
1XC
DOA
DOI 10.1016/j.taml.2020.01.056
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EndPage 389
ExternalDocumentID oai_doaj_org_article_9d239be077b44dd7a1bed278f9fddc15
oai:HAL:hal-03088632v1
lxkb_e202006002
10_1016_j_taml_2020_01_056
S2095034920300684
GrantInformation_xml – fundername: Financial support from the Agence Nationale de la Recher-che(ANR)(Grant 15-CE40-0019).and Deutsche Forschungsge-meinschaft(Grant SE 824/26-1).project AIFIT,is grate-fully acknowledged.The authors were granted access to the HPC resources of IDRIS under the allocation No.2018-91664 attrib-uted by; (and the Deutscher Akademischer Aus-tauschdienst
  funderid: (DFG)(Grant SE 824/26-1).project AIFIT,is grate-fully acknowledged.The authors were granted access to the HPC resources of IDRIS under the allocation No.2018-91664 attrib-uted by; (DAAD)within the French-German Procope project FIFIT.D.K.gratefully acknowledges financial support from the JSPS KAKENHI Grant )
GroupedDBID 0R~
0SF
4.4
457
5VR
5VS
6I.
92E
92I
92Q
93N
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFTF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CCVFK
CHBEP
CW9
EBS
EJD
FA0
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
RNS
ROL
SSZ
TCJ
TGP
Y7S
-SA
-S~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CAJEA
CITATION
Q--
U1G
U5K
2B.
4A8
PSX
1XC
ID FETCH-LOGICAL-c542t-9ea5d0527d33390adf0a6dd2021fd623ccdf6e778944c0fcc19224bef7f762493
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599498000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-0349
IngestDate Fri Oct 03 12:43:08 EDT 2025
Tue Oct 14 19:59:52 EDT 2025
Thu May 29 04:05:30 EDT 2025
Wed Nov 05 20:46:53 EST 2025
Tue Nov 18 22:26:11 EST 2025
Thu Jul 20 20:17:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Insect flight
Volume penalization method
Spectral method
Wing elasticity
Mass-spring model
Fluid-structure interaction
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-9ea5d0527d33390adf0a6dd2021fd623ccdf6e778944c0fcc19224bef7f762493
ORCID 0000-0003-1243-6621
0000-0003-0107-6894
OpenAccessLink https://doaj.org/article/9d239be077b44dd7a1bed278f9fddc15
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_9d239be077b44dd7a1bed278f9fddc15
hal_primary_oai_HAL_hal_03088632v1
wanfang_journals_lxkb_e202006002
crossref_citationtrail_10_1016_j_taml_2020_01_056
crossref_primary_10_1016_j_taml_2020_01_056
elsevier_sciencedirect_doi_10_1016_j_taml_2020_01_056
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Theoretical and applied mechanics letters
PublicationTitle_FL Theoretical & Applied Mechanics Letters
PublicationYear 2020
Publisher Elsevier Ltd
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France%University of Rostock, Institute of Biosciences, Animal Physiology, Rostock, Germany%Global Scientific Information and Computing Center, Tokyo Institute of Technology, Meguroku, Tokyo, Japan
– name: Elsevier
References Zhao, Huang, Deng (bib8) 2010; 7
Engels, Kolomenskiy, Schneider (bib15) 2016; 38
Du, Sun (bib5) 2010; 213
Sane (bib26) 2003; 206
Mountcastle, Combes (bib2) 2016; 280
Roccia, Preidikman, Massa (bib21) 2013; 51
Fu, Liu, Shyy (bib4) 2018; 13
Pekurovsky (bib17) 2012; 34
Vincent, Wegst (bib25) 2004; 33
Engels, Kolomenskiy, Schneider (bib11) 2016; 116
Ifju, Jenkins, Ettingers (bib28) 2002
Campos, Ukeiley, Bernal (bib3) 2012
Sane, Dickinson (bib27) 2002; 205
Ellington, van den Berg, Willmott (bib1) 1996; 384
Dickinson, Lehmann, Sane (bib19) 1999; 284
Kang, Shyy (bib7) 2013; 10
Engels (bib18) 2015
Truong, Engels, Kolomenskiy (bib6) 2020; 200
Truong, Engels, Kolomenskiy (bib10) 2020
Dudley, Ellington (bib9) 1990; 148
Kolomenskiy, Schneider (bib16) 2009; 228
Engels, Kolomenskiy, Schneider (bib22) 2019; 4
Berger (bib13) 1998; 38
Shyy, Aono, Kang (bib12) 2013
Volino, Magnenat-Thalmann (bib24) 2006
Kolomenskiy, Ravi, Xu (bib23) 2019; 91
Ifju, Peter, Stanford (bib29) 2006
Angot, Bruneau, Fabrie (bib14) 1999; 81
Dickinson, Gotz (bib20) 1993; 174
Kolomenskiy (10.1016/j.taml.2020.01.056_bib23) 2019; 91
Pekurovsky (10.1016/j.taml.2020.01.056_bib17) 2012; 34
Zhao (10.1016/j.taml.2020.01.056_bib8) 2010; 7
Vincent (10.1016/j.taml.2020.01.056_bib25) 2004; 33
Kolomenskiy (10.1016/j.taml.2020.01.056_bib16) 2009; 228
Volino (10.1016/j.taml.2020.01.056_bib24) 2006
Engels (10.1016/j.taml.2020.01.056_bib15) 2016; 38
Mountcastle (10.1016/j.taml.2020.01.056_bib2) 2016; 280
Kang (10.1016/j.taml.2020.01.056_bib7) 2013; 10
Dudley (10.1016/j.taml.2020.01.056_bib9) 1990; 148
Engels (10.1016/j.taml.2020.01.056_bib18) 2015
Campos (10.1016/j.taml.2020.01.056_bib3) 2012
Dickinson (10.1016/j.taml.2020.01.056_bib20) 1993; 174
Ellington (10.1016/j.taml.2020.01.056_bib1) 1996; 384
Roccia (10.1016/j.taml.2020.01.056_bib21) 2013; 51
Angot (10.1016/j.taml.2020.01.056_bib14) 1999; 81
Sane (10.1016/j.taml.2020.01.056_bib27) 2002; 205
Truong (10.1016/j.taml.2020.01.056_bib6) 2020; 200
Sane (10.1016/j.taml.2020.01.056_bib26) 2003; 206
Ifju (10.1016/j.taml.2020.01.056_bib28) 2002
Engels (10.1016/j.taml.2020.01.056_bib11) 2016; 116
Truong (10.1016/j.taml.2020.01.056_bib10)
Engels (10.1016/j.taml.2020.01.056_bib22) 2019; 4
Berger (10.1016/j.taml.2020.01.056_bib13) 1998; 38
Dickinson (10.1016/j.taml.2020.01.056_bib19) 1999; 284
Fu (10.1016/j.taml.2020.01.056_bib4) 2018; 13
Ifju (10.1016/j.taml.2020.01.056_bib29) 2006
Shyy (10.1016/j.taml.2020.01.056_bib12) 2013
Du (10.1016/j.taml.2020.01.056_bib5) 2010; 213
References_xml – volume: 38
  start-page: 644
  year: 1998
  end-page: 662
  ident: bib13
  article-title: A second order backward difference method with variable steps for a parabolic problem
  publication-title: BIT
– year: 2006
  ident: bib24
  article-title: Simple linear bending stiffness in particle systems
  publication-title: Proceedings of the 2006 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation (SCA 06) Eurographics Association, Goslar, DEU
– volume: 174
  year: 1993
  ident: bib20
  article-title: Unsteady aerodynamic performance of model wings at low Reynolds numbers
  publication-title: J. Exp. Biol.
– volume: 81
  start-page: 497
  year: 1999
  end-page: 520
  ident: bib14
  article-title: A penalization method to take into account obstacles in incompressible viscous flows
  publication-title: Numer. Math.
– year: 2013
  ident: bib12
  article-title: An Introduction to Flapping Wing Aerodynamics
– year: 2015
  ident: bib18
  article-title: Numerical Modeling of Fluid-Structure Interaction in Bioinspired Propulsion
– volume: 10
  year: 2013
  ident: bib7
  article-title: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
  publication-title: J. R. Soc. Interface
– volume: 7
  start-page: 485
  year: 2010
  end-page: 497
  ident: bib8
  article-title: Aerodynamic effects of flexibility in flapping wings
  publication-title: J. R. Soc. Interface
– volume: 33
  start-page: 187
  year: 2004
  end-page: 199
  ident: bib25
  article-title: Design and mechanical properties of insect cuticle
  publication-title: Arthropod Struct. Dev.
– year: 2020
  ident: bib10
  article-title: Fluid-structure interaction using volume penalization and mass-spring models with application to flapping bumblebee flight
– volume: 116
  year: 2016
  ident: bib11
  article-title: Bumblebee flight in heavy turbulence
  publication-title: Phys. Rev. Lett.
– volume: 148
  year: 1990
  ident: bib9
  article-title: Mechanics of forward flight in bumblebees i. kinematics and morphology
  publication-title: J. Exp. Biol.
– volume: 284
  start-page: 1954
  year: 1999
  end-page: 1960
  ident: bib19
  article-title: Wing rotation and the aerodynamic basis of insect flight
  publication-title: Science
– volume: 206
  start-page: 4191
  year: 2003
  end-page: 4208
  ident: bib26
  article-title: The aerodynamics of insect flight
  publication-title: J. Exp. Biol.
– volume: 213
  start-page: 2273
  year: 2010
  end-page: 2283
  ident: bib5
  article-title: Effects of wing deformation on aerodynamic forces in hovering hoverflies
  publication-title: J. Exp. Biol.
– volume: 384
  start-page: 626
  year: 1996
  end-page: 630
  ident: bib1
  article-title: Leading-edge vortices in insect flight
  publication-title: Nature
– volume: 280
  year: 2016
  ident: bib2
  article-title: Wing flexibility enhances load-lifting capacity in bumblebees
  publication-title: Proc. R. Soc. B.
– volume: 38
  start-page: S03
  year: 2016
  end-page: S24
  ident: bib15
  article-title: Flusi: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization
  publication-title: SIAM J. Sci. Comput.
– volume: 13
  year: 2018
  ident: bib4
  article-title: Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings
  publication-title: Bioinspir. Biomim.
– year: 2012
  ident: bib3
  article-title: Flow around flapping flexible flat plate wings
  publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
– volume: 4
  year: 2019
  ident: bib22
  article-title: Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical experiments
  publication-title: Phys. Rev. Fluids
– volume: 228
  start-page: 5687
  year: 2009
  end-page: 5709
  ident: bib16
  article-title: A Fourier spectral method for the navierstokes equations with volume penalization for moving solid obstacles
  publication-title: J. Comput. Phys.
– start-page: 14
  year: 2002
  end-page: 17
  ident: bib28
  article-title: Flexible-wingbased micro air vehicles
  publication-title: 40th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada
– volume: 200
  year: 2020
  ident: bib6
  article-title: A mass-spring fluid-structure interaction solver: application to flexible revolving wings
  publication-title: Comput. Fluids
– volume: 51
  start-page: 2628
  year: 2013
  end-page: 2642
  ident: bib21
  article-title: Modified unsteady vortex-lattice method to study flapping wings in hover flight
  publication-title: AIAA J.
– volume: 34
  start-page: C192
  year: 2012
  end-page: C209
  ident: bib17
  article-title: P3dfft: A framework for parallel computations of Fourier transforms in three dimensions
  publication-title: SIAM J. Sci. Comput.
– volume: 205
  start-page: 1087
  year: 2002
  end-page: 1096
  ident: bib27
  article-title: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
  publication-title: J. Exp. Biol.
– volume: 91
  year: 2019
  ident: bib23
  article-title: The dynamics of passive feathering rotation in hovering flight of bumblebees
  publication-title: J. Fluids Struct.
– start-page: 5
  year: 2006
  end-page: 8
  ident: bib29
  article-title: Analysis of a flexible wing micro air vehicle
  publication-title: Proc. 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, California
– volume: 51
  start-page: 2628
  year: 2013
  ident: 10.1016/j.taml.2020.01.056_bib21
  article-title: Modified unsteady vortex-lattice method to study flapping wings in hover flight
  publication-title: AIAA J.
  doi: 10.2514/1.J052262
– volume: 34
  start-page: C192
  year: 2012
  ident: 10.1016/j.taml.2020.01.056_bib17
  article-title: P3dfft: A framework for parallel computations of Fourier transforms in three dimensions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/11082748X
– volume: 148
  year: 1990
  ident: 10.1016/j.taml.2020.01.056_bib9
  article-title: Mechanics of forward flight in bumblebees i. kinematics and morphology
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.148.1.19
– start-page: 5
  year: 2006
  ident: 10.1016/j.taml.2020.01.056_bib29
  article-title: Analysis of a flexible wing micro air vehicle
– volume: 200
  year: 2020
  ident: 10.1016/j.taml.2020.01.056_bib6
  article-title: A mass-spring fluid-structure interaction solver: application to flexible revolving wings
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104426
– volume: 280
  year: 2016
  ident: 10.1016/j.taml.2020.01.056_bib2
  article-title: Wing flexibility enhances load-lifting capacity in bumblebees
  publication-title: Proc. R. Soc. B.
– volume: 33
  start-page: 187
  year: 2004
  ident: 10.1016/j.taml.2020.01.056_bib25
  article-title: Design and mechanical properties of insect cuticle
  publication-title: Arthropod Struct. Dev.
  doi: 10.1016/j.asd.2004.05.006
– volume: 38
  start-page: S03
  year: 2016
  ident: 10.1016/j.taml.2020.01.056_bib15
  article-title: Flusi: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1026006
– year: 2012
  ident: 10.1016/j.taml.2020.01.056_bib3
  article-title: Flow around flapping flexible flat plate wings
– year: 2015
  ident: 10.1016/j.taml.2020.01.056_bib18
– volume: 213
  start-page: 2273
  year: 2010
  ident: 10.1016/j.taml.2020.01.056_bib5
  article-title: Effects of wing deformation on aerodynamic forces in hovering hoverflies
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.040295
– year: 2013
  ident: 10.1016/j.taml.2020.01.056_bib12
– volume: 10
  year: 2013
  ident: 10.1016/j.taml.2020.01.056_bib7
  article-title: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0361
– volume: 91
  year: 2019
  ident: 10.1016/j.taml.2020.01.056_bib23
  article-title: The dynamics of passive feathering rotation in hovering flight of bumblebees
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.03.021
– volume: 4
  year: 2019
  ident: 10.1016/j.taml.2020.01.056_bib22
  article-title: Impact of turbulence on flying insects in tethered and free flight: high-resolution numerical experiments
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.013103
– volume: 116
  year: 2016
  ident: 10.1016/j.taml.2020.01.056_bib11
  article-title: Bumblebee flight in heavy turbulence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.028103
– volume: 174
  year: 1993
  ident: 10.1016/j.taml.2020.01.056_bib20
  article-title: Unsteady aerodynamic performance of model wings at low Reynolds numbers
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.174.1.45
– year: 2006
  ident: 10.1016/j.taml.2020.01.056_bib24
  article-title: Simple linear bending stiffness in particle systems
– volume: 206
  start-page: 4191
  year: 2003
  ident: 10.1016/j.taml.2020.01.056_bib26
  article-title: The aerodynamics of insect flight
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00663
– volume: 205
  start-page: 1087
  year: 2002
  ident: 10.1016/j.taml.2020.01.056_bib27
  article-title: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.8.1087
– volume: 81
  start-page: 497
  year: 1999
  ident: 10.1016/j.taml.2020.01.056_bib14
  article-title: A penalization method to take into account obstacles in incompressible viscous flows
  publication-title: Numer. Math.
  doi: 10.1007/s002110050401
– volume: 284
  start-page: 1954
  year: 1999
  ident: 10.1016/j.taml.2020.01.056_bib19
  article-title: Wing rotation and the aerodynamic basis of insect flight
  publication-title: Science
  doi: 10.1126/science.284.5422.1954
– volume: 38
  start-page: 644
  year: 1998
  ident: 10.1016/j.taml.2020.01.056_bib13
  article-title: A second order backward difference method with variable steps for a parabolic problem
  publication-title: BIT
  doi: 10.1007/BF02510406
– start-page: 14
  year: 2002
  ident: 10.1016/j.taml.2020.01.056_bib28
  article-title: Flexible-wingbased micro air vehicles
– volume: 228
  start-page: 5687
  year: 2009
  ident: 10.1016/j.taml.2020.01.056_bib16
  article-title: A Fourier spectral method for the navierstokes equations with volume penalization for moving solid obstacles
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.026
– ident: 10.1016/j.taml.2020.01.056_bib10
– volume: 7
  start-page: 485
  year: 2010
  ident: 10.1016/j.taml.2020.01.056_bib8
  article-title: Aerodynamic effects of flexibility in flapping wings
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0200
– volume: 384
  start-page: 626
  year: 1996
  ident: 10.1016/j.taml.2020.01.056_bib1
  article-title: Leading-edge vortices in insect flight
  publication-title: Nature
  doi: 10.1038/384626a0
– volume: 13
  year: 2018
  ident: 10.1016/j.taml.2020.01.056_bib4
  article-title: Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/aaaac1
SSID ssj0000516393
Score 2.190666
Snippet The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their flight...
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring...
EDITOR'S RECOMMENDATION: The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to...
SourceID doaj
hal
wanfang
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Biomechanics
Computational Engineering, Finance, and Science
Computer Science
Engineering Sciences
Fluid-structure interaction
Fluids mechanics
Insect flight
Mass-spring model
Mathematics
Mechanics
Numerical Analysis
Spectral method
Volume penalization method
Wing elasticity
Title Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee
URI https://dx.doi.org/10.1016/j.taml.2020.01.056
https://d.wanfangdata.com.cn/periodical/lxkb-e202006002
https://hal.science/hal-03088632
https://doaj.org/article/9d239be077b44dd7a1bed278f9fddc15
Volume 10
WOSCitedRecordID wos000599498000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2095-0349
  databaseCode: DOA
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000516393
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEG-UaKIH4md8IqYx3szGbtt93R7BSDAxxIMmXEzTdlpEHvsILKD_PTO7fbBc8OK16cf212lnNjPzG8beRyvmPulcGZ9EpRXYyse6qaSVfg5tI_BKDcUmzN5eu79vv01KfVFM2EgPPAL30YJUNiRhTNAawPg6JJCmzTYDxCG9XApjJz9ThdUbVS-5l6WgFGSlbcmYGYO7en9MfgcpBs5Oql490UoDef8t5XT_F0VJPrz0XfbdwUQB7Txh68Vy5FvjFz9l91L3jD2e8Ak-Zz-_rEqO8GXml9jGMxFeDgGwf_my42jucZ_w0RwL0fOTm7wBGuJ5PyQAJ8CBnqgbDng4Pw4LPIT0gv3Y-fz9025V6idUsdGyr2zyDYhGGlBKWeEhC8QfcNt1BjR7YoQ8T8a0Vusocoxo7UkdUjYZn0ht1Uu21i279IpxTbx_qonBKqsDwp-MhVYA6nvftrqesXqFn4uFXJxqXCzcKorstyPMHWHuRO0Q8xn7cD3mZKTWuLP3Nh3LdU-ixR4aUFhcERb3L2GZsWZ1qK5YGKPlgFMd3rn4O5SAW2vvbn111EZ8P-1cyQvEgBcBceUdOHOLP0fBJZpJkAP09f_YxAZ7RBOOCZFv2Fp_ep422YN40R-enb4d7sEVZjcLSg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+wing+flexibility+on+the+aerodynamic+performance+of+a+tethered+flapping+bumblebee&rft.jtitle=Theoretical+and+applied+mechanics+letters&rft.au=Truong%2C+Hung&rft.au=Engels%2C+Thomas&rft.au=Kolomenskiy%2C+Dmitry&rft.au=Schneider%2C+Kai&rft.date=2020-11-01&rft.issn=2095-0349&rft.volume=10&rft.issue=6&rft.spage=382&rft.epage=389&rft_id=info:doi/10.1016%2Fj.taml.2020.01.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_taml_2020_01_056
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flxkb-e%2Flxkb-e.jpg