New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes

OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care Jg. 30; H. 8; S. 1988 - 1994
Hauptverfasser: Beauvieux, Marie-Christine, Le Moigne, Françoise, Lasseur, Catherine, Raffaitin, Christelle, Perlemoine, Caroline, Barthe, Nicole, Chauveau, Philippe, Combe, Christian, Gin, Henri, Rigalleau, Vincent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria, VA American Diabetes Association 01.08.2007
Schlagworte:
ISSN:0149-5992, 1935-5548, 1935-5548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS--In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m² [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS:--The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m². GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS:--The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
AbstractList OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS--In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m² [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS:--The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m². GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS:--The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes Marie-Christine Beauvieux , PHD 1 , Françoise Le Moigne , PD 1 , Catherine Lasseur , MD 2 , Christelle Raffaitin , MD 2 , Caroline Perlemoine , MD 3 , Nicole Barthe , PD 4 , Philippe Chauveau , MD 2 , Christian Combe , PHD 2 , Henri Gin , PHD 3 and Vincent Rigalleau , PHD 3 1 Biochemistry Laboratory, Hôpital Haut-Lévêque, Pessac, France 2 Nephrology, Hôpital Pellegrin, Place Amélie Raba-Léon, Bordeaux, France 3 Nutrition and Diabetes, Hôpital Haut-Lévêque, Pessac, France 4 Nuclear Medicine Laboratory, Hôpital Haut-Lévêque, Pessac, France Address correspondence and reprint requests to Marie-Christine Beauvieux, Laboratoire de Biochimie, Hôpital Haut-Lévêque, Avenue de Magellan, 33604 Bordeaux Cedex, France. E-mail: marie-christine.beauvieux{at}chu-bordeaux.fr Abstract OBJECTIVE —The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C–based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS —In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m 2 [range 5–164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS —The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by −8.5 ± 17.9 ml/min per 1.73 m 2 . GFR changes estimated by the Cockcroft-Gault (−4.5 ± 6.8) and MDRD (−5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: −8.7 ± 9.4 ( r = 0.44, P < 0.05) and all four Cys-eGFRs: −6.2 ± 7.4 to −7.3 ± 8.4 ( r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C ( r = 0.61, P < 0.005). CONCLUSIONS —The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. CKD, chronic kidney disease Cys-eGFR, glomerular filtration rate estimated via cystatin formula GFR, glomerular filtration rate iGFR, isotopic GFR MCQ, Mayo Clinic Quadratic MDRD, Modification of Diet in Renal Disease rMDRD, reexpressed MDRD ROC, receiver-operating characteristic Footnotes Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/dc06-2637 . A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact. Accepted May 13, 2007. Received December 31, 2006. DIABETES CARE
The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes.OBJECTIVEThe Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes.In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later.RESEARCH DESIGN AND METHODSIn 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later.The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005).RESULTSThe Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005).The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.CONCLUSIONSThe new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m^sup 2^ [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m^sup 2^. GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
OBJECTIVE—The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C–based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS—In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m2 [range 5–164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS—The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by −8.5 ± 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (−4.5 ± 6.8) and MDRD (−5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: −8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: −6.2 ± 7.4 to −7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS—The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.
Audience Professional
Author Le Moigne, Françoise
Barthe, Nicole
Chauveau, Philippe
Perlemoine, Caroline
Lasseur, Catherine
Combe, Christian
Gin, Henri
Beauvieux, Marie-Christine
Rigalleau, Vincent
Raffaitin, Christelle
Author_xml – sequence: 1
  fullname: Beauvieux, Marie-Christine
– sequence: 2
  fullname: Le Moigne, Françoise
– sequence: 3
  fullname: Lasseur, Catherine
– sequence: 4
  fullname: Raffaitin, Christelle
– sequence: 5
  fullname: Perlemoine, Caroline
– sequence: 6
  fullname: Barthe, Nicole
– sequence: 7
  fullname: Chauveau, Philippe
– sequence: 8
  fullname: Combe, Christian
– sequence: 9
  fullname: Gin, Henri
– sequence: 10
  fullname: Rigalleau, Vincent
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18977180$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17536079$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFTEQxYNU7G31wS-gS0FBYdv82d0kj6W2WqxasKJvIZud3Juym7TJrqXf3qz3SqFckDxMGH5nOMOcPbTjgweEXhJ8SBnjR53BTUkbxp-gBZGsLuu6EjtogUkly1pKuov2UrrGGFeVEM_QLuE1azCXC_TrK9wVlxE6Z0b3G4rT20mPLvhUnA83MeTOl-DdGKLzyyLY4rPrPNwXZ5M3M1Y4X1xmAfgxFT_duCo-ON3CCOk5emp1n-DFpu6jq7PTq5NP5cW3j-cnxxelqSs6lhykoJ0mHBtNpLQSiCS6kra21kqmgXDgWMi2aWpW4da23DZddm80pq1g--jtemw2eztBGtXgkoG-1x7ClFQjKGeYyv-CFWeS1KLK4MEj8DpM0ecdFKV5FK8pzlC5hpa6B-W8DWPUZgkeou7zcazL7WPS8IbWDM82D7fw-XUwOLNV8GrjYmoH6NRNdIOO9-rf5TLwZgPoZHRvo_bGpQdOSM6JmJ2-W3MmhpQi2AcEqzk9ak6PmtOT2aNHrHHj3zhkt67fqni_VqzccnXnIqhuc__5Y3RuMKyEIlLMO71ew1YHpZcx2_3xnWLC8LxQ1TD2B6NX25g
CODEN DICAD2
CitedBy_id crossref_primary_10_1007_s00125_009_1379_7
crossref_primary_10_1016_j_diabet_2011_05_002
crossref_primary_10_1186_s12882_023_03450_5
crossref_primary_10_1515_cclm_2011_670
crossref_primary_10_1038_s41598_019_47559_w
crossref_primary_10_1186_s12902_022_01052_0
crossref_primary_10_1016_j_atherosclerosis_2010_02_028
crossref_primary_10_1093_ndt_gfs498
crossref_primary_10_1007_s00392_012_0515_4
crossref_primary_10_1002_jcph_1132
crossref_primary_10_1089_dia_2012_0089
crossref_primary_10_1038_s41581_018_0080_9
crossref_primary_10_1016_j_cca_2021_06_010
crossref_primary_10_1093_ndt_gfq695
crossref_primary_10_1093_ckj_sfs033
crossref_primary_10_1161_CIRCHEARTFAILURE_109_856393
crossref_primary_10_4065_84_2_170
crossref_primary_10_1016_j_anr_2013_11_001
crossref_primary_10_1093_ndt_gfae161
crossref_primary_10_1016_j_sleep_2007_10_013
crossref_primary_10_2146_ajhp140852
crossref_primary_10_1177_147323001103900624
crossref_primary_10_1007_s00330_011_2157_8
crossref_primary_10_1186_1471_2369_11_3
crossref_primary_10_2215_CJN_07610711
crossref_primary_10_3389_fendo_2022_824279
crossref_primary_10_1186_s13098_022_00874_1
crossref_primary_10_1515_CCLM_2008_336
crossref_primary_10_1016_j_diabres_2007_11_006
crossref_primary_10_3390_jcm8101543
crossref_primary_10_2337_dc10_1615
crossref_primary_10_1007_s11892_015_0633_2
crossref_primary_10_1002_dmrr_844
crossref_primary_10_1007_s00125_011_2307_1
crossref_primary_10_1016_j_metabol_2008_05_013
crossref_primary_10_1038_s41598_018_38286_9
crossref_primary_10_1186_s12872_020_01475_4
crossref_primary_10_1016_j_clinbiochem_2018_01_005
crossref_primary_10_1194_jlr_P800070_JLR200
crossref_primary_10_1016_j_jdiacomp_2011_03_003
crossref_primary_10_1111_j_1751_7176_2009_00170_x
crossref_primary_10_3109_0886022X_2012_672154
crossref_primary_10_1111_1753_0407_13393
crossref_primary_10_1111_j_1440_1797_2008_01045_x
crossref_primary_10_2478_v10011_008_0021_4
crossref_primary_10_1515_CCLM_2009_263
Cites_doi 10.1016/j.clinbiochem.2006.10.014
10.1681/ASN.2004080692
10.1016/j.metabol.2005.07.014
10.2337/dc06-0407
10.1681/ASN.2004100854
10.1053/j.ajkd.2006.07.001
10.7326/0003-4819-130-6-199903160-00002
10.2337/dc06-0940
10.1093/ndt/gfg349
10.1001/archinte.1916.00080130010002
10.7326/0003-4819-141-12-200412210-00009
10.1515/CCLM.2006.239
10.2337/diacare.25.11.2004
10.1161/CIRCULATIONAHA.106.644286
10.7326/0003-4819-139-2-200307150-00013
10.2337/diacare.28.4.838
10.1111/j.1365-2796.2004.01414.x
10.2337/diacare.29.s1.06.s4
10.1159/000180580
10.7326/0003-4819-145-4-200608150-00004
10.1681/ASN.2004070549
10.1681/ASN.2005111241
10.1007/s00125-006-0275-7
10.7326/0003-4819-144-1-200601030-00006
10.2337/dc05-2201
10.1093/ndt/gfl221
10.1038/sj.ki.5000073
10.1258/0004563021901847
10.2337/dc06-0887
10.1148/radiology.143.1.7063747
ContentType Journal Article
Copyright 2007 INIST-CNRS
COPYRIGHT 2007 American Diabetes Association
Copyright American Diabetes Association Aug 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 American Diabetes Association
– notice: Copyright American Diabetes Association Aug 2007
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X2
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AN0
ATCPS
AZQEC
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
M0K
M0R
M0S
M0T
M1P
M2O
M2P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
S0X
7S9
L.6
7X8
DOI 10.2337/dc06-2637
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Agriculture Science Database
ProQuest Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
PML(ProQuest Medical Library)
Research Library
Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Family Health
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
British Nursing Index with Full Text
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA

MEDLINE - Academic
Agricultural Science Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1935-5548
EndPage 1994
ExternalDocumentID 1313818851
A167625308
17536079
18977180
10_2337_dc06_2637
diacare_30_8_1988
US201300793463
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
-ET
..I
.55
.GJ
.XZ
08P
0R~
18M
29F
2WC
3O-
4.4
41~
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X2
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAIKC
AAKAS
AAMNW
AAQOH
AAQQT
AAWTL
AAYEP
AAYJJ
ABOCM
ABPPZ
ABUWG
ACGFO
ACGOD
ADBBV
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFKRA
AFOSN
AFRAH
AHMBA
AI.
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
AQUVI
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BNQBC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FBQ
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
J5H
K9-
KQ8
L7B
M0K
M0R
M0T
M1P
M2O
M2P
M2Q
M5~
N4W
NAPCQ
O5R
O5S
O9-
OK1
OVD
P2P
PCD
PEA
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
S0X
SJFOW
SV3
TDI
TEORI
TR2
TWZ
UKHRP
VH1
VVN
W8F
WH7
WHG
WOQ
WOW
X7M
YHG
YOC
ZCG
ZGI
ZXP
~KM
-
0R
1AW
3V.
55
AASXA
ABFLS
ABPTK
ACJLH
ACVYA
ADACO
ADBIT
AFDAS
BBAFP
ET
GJ
HZ
IGG
KM
M5
MBDVC
O0-
PADUT
PQEST
PQUKI
PRINS
RHF
XZ
ZA5
AAFWJ
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7XB
8FK
K9.
PKEHL
Q9U
7S9
L.6
7X8
ID FETCH-LOGICAL-c542t-7e982da170ca199f9e191a49f5fff93ae17e7089b665340bfb7f6d536ca02b83
IEDL.DBID 7RV
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248570200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0149-5992
1935-5548
IngestDate Tue Oct 21 14:08:01 EDT 2025
Sun Nov 09 11:48:46 EST 2025
Tue Oct 07 05:31:42 EDT 2025
Sat Nov 29 11:57:00 EST 2025
Tue Nov 04 18:40:41 EST 2025
Wed Feb 19 02:10:52 EST 2025
Mon Jul 21 09:16:54 EDT 2025
Tue Nov 18 19:47:19 EST 2025
Sat Nov 29 06:27:15 EST 2025
Fri Jan 15 19:48:06 EST 2021
Thu Apr 03 09:45:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Endocrinopathy
Human
Improvement
Renal function
Nutrition
Surveillance
Diabetes mellitus
Predictive value
Patient
Metabolic diseases
Mathematical model
Endocrinology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-7e982da170ca199f9e191a49f5fff93ae17e7089b665340bfb7f6d536ca02b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://diabetesjournals.org/care/article-pdf/30/8/1988/596552/zdc00807001988.pdf
PMID 17536079
PQID 223027520
PQPubID 47715
PageCount 7
ParticipantIDs gale_infotracgeneralonefile_A167625308
gale_infotracacademiconefile_A167625308
proquest_miscellaneous_68273029
proquest_journals_223027520
pubmed_primary_17536079
highwire_diabetes_diacare_30_8_1988
fao_agris_US201300793463
crossref_primary_10_2337_dc06_2637
proquest_miscellaneous_47391584
pascalfrancis_primary_18977180
crossref_citationtrail_10_2337_dc06_2637
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2007-08-01
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: Alexandria
PublicationTitle Diabetes care
PublicationTitleAlternate Diabetes Care
PublicationYear 2007
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031219230494000_R9
2022031219230494000_R19
2022031219230494000_R18
2022031219230494000_R22
2022031219230494000_R21
2022031219230494000_R24
2022031219230494000_R23
2022031219230494000_R26
2022031219230494000_R25
2022031219230494000_R28
2022031219230494000_R27
2022031219230494000_R20
2022031219230494000_R29
2022031219230494000_R11
2022031219230494000_R33
2022031219230494000_R10
2022031219230494000_R32
2022031219230494000_R13
2022031219230494000_R12
2022031219230494000_R15
2022031219230494000_R14
2022031219230494000_R17
2022031219230494000_R16
2022031219230494000_R1
2022031219230494000_R2
2022031219230494000_R3
2022031219230494000_R4
2022031219230494000_R5
2022031219230494000_R6
2022031219230494000_R7
2022031219230494000_R31
2022031219230494000_R8
2022031219230494000_R30
References_xml – ident: 2022031219230494000_R32
  doi: 10.1016/j.clinbiochem.2006.10.014
– ident: 2022031219230494000_R8
  doi: 10.1681/ASN.2004080692
– ident: 2022031219230494000_R1
– ident: 2022031219230494000_R5
  doi: 10.1016/j.metabol.2005.07.014
– ident: 2022031219230494000_R6
  doi: 10.2337/dc06-0407
– ident: 2022031219230494000_R14
  doi: 10.1681/ASN.2004100854
– ident: 2022031219230494000_R26
  doi: 10.1053/j.ajkd.2006.07.001
– ident: 2022031219230494000_R22
  doi: 10.7326/0003-4819-130-6-199903160-00002
– ident: 2022031219230494000_R17
– ident: 2022031219230494000_R28
  doi: 10.2337/dc06-0940
– ident: 2022031219230494000_R23
  doi: 10.1093/ndt/gfg349
– ident: 2022031219230494000_R24
  doi: 10.1001/archinte.1916.00080130010002
– ident: 2022031219230494000_R12
  doi: 10.7326/0003-4819-141-12-200412210-00009
– ident: 2022031219230494000_R16
  doi: 10.1515/CCLM.2006.239
– ident: 2022031219230494000_R18
  doi: 10.2337/diacare.25.11.2004
– ident: 2022031219230494000_R31
  doi: 10.1161/CIRCULATIONAHA.106.644286
– ident: 2022031219230494000_R2
  doi: 10.7326/0003-4819-139-2-200307150-00013
– ident: 2022031219230494000_R4
  doi: 10.2337/diacare.28.4.838
– ident: 2022031219230494000_R33
  doi: 10.1111/j.1365-2796.2004.01414.x
– ident: 2022031219230494000_R3
  doi: 10.2337/diacare.29.s1.06.s4
– ident: 2022031219230494000_R21
  doi: 10.1159/000180580
– ident: 2022031219230494000_R7
  doi: 10.7326/0003-4819-145-4-200608150-00004
– ident: 2022031219230494000_R9
  doi: 10.1681/ASN.2004070549
– ident: 2022031219230494000_R29
  doi: 10.1681/ASN.2005111241
– ident: 2022031219230494000_R19
  doi: 10.1007/s00125-006-0275-7
– ident: 2022031219230494000_R20
– ident: 2022031219230494000_R30
  doi: 10.7326/0003-4819-144-1-200601030-00006
– ident: 2022031219230494000_R10
  doi: 10.2337/dc05-2201
– ident: 2022031219230494000_R11
  doi: 10.1093/ndt/gfl221
– ident: 2022031219230494000_R15
  doi: 10.1038/sj.ki.5000073
– ident: 2022031219230494000_R13
  doi: 10.1258/0004563021901847
– ident: 2022031219230494000_R27
  doi: 10.2337/dc06-0887
– ident: 2022031219230494000_R25
  doi: 10.1148/radiology.143.1.7063747
SSID ssj0004488
Score 2.1511185
Snippet OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic...
New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes Marie-Christine Beauvieux , PHD 1 , Françoise Le Moigne , PD 1 ,...
OBJECTIVE—The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic...
The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1988
SubjectTerms Adult
African Americans
Aged
Aged, 80 and over
Albuminuria
Biological and medical sciences
blood
blood serum
Care and treatment
Changes
creatinine
Creatinine - blood
Cystatin C
Cystatins
Diabetes
Diabetes Mellitus
Diabetes Mellitus - physiopathology
Diabetes. Impaired glucose tolerance
Diabetic Nephropathies
Diabetic Nephropathies - physiopathology
Diabetic Nephropathies - prevention & control
Diet
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
equations
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Feeding. Feeding behavior
Female
Fundamental and applied biological sciences. Psychology
Glomerular Filtration Rate
Humans
Kidney diseases
Kidney Function Tests
Male
Medical sciences
Methods
Middle Aged
monitoring
Monitoring, Physiologic
Organized crime
patients
physiopathology
Predictive Value of Tests
prevention & control
Risk factors
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Vertebrates: endocrinology
Title New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes
URI http://care.diabetesjournals.org/content/30/8/1988.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17536079
https://www.proquest.com/docview/223027520
https://www.proquest.com/docview/47391584
https://www.proquest.com/docview/68273029
Volume 30
WOSCitedRecordID wos000248570200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: M0K
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: M0R
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: 7X7
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: M0T
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: 7RV
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: BENPR
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest Medical & Health Databases)
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: 8C1
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: M2O
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1935-5548
  dateEnd: 20130731
  omitProxy: false
  ssIdentifier: ssj0004488
  issn: 0149-5992
  databaseCode: M2P
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfMPCoFiAYC_RHDvxxxMa0yqksVKNMvpmuYk9KqF0azok_nvu4rRl0sYLL6dEOclJ7nLn-8jvCHkrcyO850XKQoEBSmVSXRRlWphSslCCl23Bqk8_q8FAj8dm2PXmNF1b5dImtoa6mpWYI98DN4YVNs4-nF-kODQKi6vdBI0NspWh6wZ1Vien698i83bsJAYBsLbhEViIC6H2qhICaS5x-vlf7mgjuNnaNC_xgrFd0jXwxkIcdXHzXrT1Sf37__k0D8i9bjNK96P2PCS3fP2I3Dnuyu2PyRhMIB3O8RytIj28iMDgDY25CE-jScDcIJ0FejStav-b9sFXIhud1nQYcVsb-n26-EG7_pvmCRn1D0cHn9JuFENaFjlfpMobzSuXKVa6zJhgPMR5LjehCCEY4XymvGLaTKQsRM4mYaKCrAohS8f4RIunZLOe1X6bUIhncpnJiTAVbIY4c8ppiLoKYTQLTuUJ2V0KxJYdTDlOy_hpIVxB2VmUnUXZJeT1ivU8YnNcx7QNUrXuDGym_faVY6UWQQFzKRLyHkVt8VOGJUrX_ZEAN4qgWHY_k-AqCsF0Qt5d4TyLkODXMb5Zqo1dJs_xANv4rGBW28xo4Opd0aj13WvYjmeaJWRnqTa2symNXelMQl6troIxwAqPq_3ssrG5Qrx_nd_MITXsVxk3CXkWNXe9NgSuEt7M83-uvUPuxuw2tkC-IJuL-aV_SW6XvxbTZt5rvz-kY9VSDVQfZD2y9fFwMDyBs2N21NJ4PELKv7R0-AeDZj0r
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2gYAX7rAw2CzuL9EcJ_HlAaEJVm1qV1VijL5ZbmKPSijdmg60_8SP5Jw6aZm08bYH3lLlqE7iz-fic_wdQl6LTKfO8TxmPscApdSxyvMiznUhmC_Ays7Jqo96st9Xw6EerJDf7VkYLKtsdeJcUZeTAvfIt8GMYYaNs48npzE2jcLkattBI6Ci685_QcRWf9j_DNP7hvPO7uGnvbhpKhAXecZnsXRa8dImkhU20dprBxGLzbTPvfc6tS6RTjKlR0LkacZGfiS9KPNUFJbxkUrhb1fJDdDiEgvI5FAuT2Fm8y6XGHPAq2oeeIx4msrtsoC4nQtstv6X9Vv1drK0BC09MVZn2homyIfOGle7vnMT2Ln3f328--Ru42rTnbA2HpAVVz0ktw6aYoJHZAgKng6m-Bt1Pt09DbTnNQ07LY4GhYc7n3TiaXdcVu6cdsATQDE6ruggsNLW9Nt49p021UX1Y3J4Ha_1hKxVk8qtEwrRWiYSMUp1Ca4eZ1ZaBTFlnmrFvJVZRN6382-KhoQde4H8MBCMIVQMQsUgVCLyciF6EphHLhNaBxAZewwWwXz9wjEPjZSHmUgj8g6RZVBRwRCFbc5bwIMi5ZfZSQQYwjxlKiJvL0geB8LzywRftSg1bWoAL7BI0aTMKJNoBVKbFwC8fHoFwUaiWEQ2WpSaRmPWZgHRiGwt7oKqw_yVrdzkrDaZxG4GKrtaQijwxhnXEXkaFspybAjLBXyZZ_8ce4vc3js86Jnefr-7Qe6EfXws9nxO1mbTM_eC3Cx-zsb1dHO-9Ckx17xa_gC2F5B0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbagiouvKFLobV4X1bx2rte-4BQRRtRpY0iEWhulrNrl0ho02ZTUP8ZP4-ZeLehUsutB26JMor38XnGn2f8DSGvZaqFczyLmc-QoJQ6VllWxJkuJPMFRNmFWPW3g7zfV6ORHqyQ3-1ZGCyrbH3iwlGX0wL3yDsQxjDDxlnHN1URg93ux5PTGBtIYaK17aYRENJz57-AvdUf9nfhVb_hvLs3_PQ5bhoMxEWW8nmcO614aZOcFTbR2msH7MWm2mfeey2sS3KXM6XHUmYiZWM_zr0sMyELy_hYCfjbVXIrTzOOxWSHbLg8kZkuOl4i_4Db1jxoGnEh8k5ZAIfnEhuv_xUJV72dLqNCK1WMlZq2hpflQ5eN65fBi3DYvff_Psj75G6zBKc7Yc48ICuuekjWD5sig0dkBI6fDmb4HWMB3TsNcug1DTswjgZHiDuidOppb1JW7px2YYWAZnRS0UFQq63p0WT-nTZVR_VjMryJ23pC1qpp5TYIBRaXykSOhS5hCciZza0CrpkJrZi3eRqR9y0WTNGIs2OPkB8GSBrCxiBsDMImIi8vTE-CIslVRhsAKGOPIVKYr1845qdRCjGVIiLvEGUGHRgMUdjmHAZcKEqBmZ1EQoDMBFMReXvJ8jgIoV9l-KpFrGlTBvgBixeNYEaZRCuw2roE5uXVKyAhiWIR2WwRaxpPWpsLuEZk--JXcIGY17KVm57VJs2xy4FKr7eQClbpjOuIPA2TZjk20HUJT-bZP8feJuswSczBfr-3Se6E7X2sAX1O1uazM_eC3C5-zif1bGvhBSgxNzxZ_gBzEplE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+predictive+equations+improve+monitoring+of+kidney+function+in+patients+with+diabetes&rft.jtitle=Diabetes+care&rft.au=BEAUVIEUX%2C+Marie-Christine&rft.au=LE+MOIGNE%2C+Francoise&rft.au=LASSEUR%2C+Catherine&rft.au=RAFFAITIN%2C+Christelle&rft.date=2007-08-01&rft.pub=American+Diabetes+Association&rft.issn=0149-5992&rft.volume=30&rft.issue=8&rft.spage=1988&rft.epage=1994&rft_id=info:doi/10.2337%2Fdc06-2637&rft.externalDBID=n%2Fa&rft.externalDocID=18977180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon