New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes
OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equation...
Gespeichert in:
| Veröffentlicht in: | Diabetes care Jg. 30; H. 8; S. 1988 - 1994 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria, VA
American Diabetes Association
01.08.2007
|
| Schlagworte: | |
| ISSN: | 0149-5992, 1935-5548, 1935-5548 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS--In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m² [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS:--The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m². GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS:--The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. |
|---|---|
| AbstractList | OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS--In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m² [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS:--The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m². GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS:--The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes Marie-Christine Beauvieux , PHD 1 , Françoise Le Moigne , PD 1 , Catherine Lasseur , MD 2 , Christelle Raffaitin , MD 2 , Caroline Perlemoine , MD 3 , Nicole Barthe , PD 4 , Philippe Chauveau , MD 2 , Christian Combe , PHD 2 , Henri Gin , PHD 3 and Vincent Rigalleau , PHD 3 1 Biochemistry Laboratory, Hôpital Haut-Lévêque, Pessac, France 2 Nephrology, Hôpital Pellegrin, Place Amélie Raba-Léon, Bordeaux, France 3 Nutrition and Diabetes, Hôpital Haut-Lévêque, Pessac, France 4 Nuclear Medicine Laboratory, Hôpital Haut-Lévêque, Pessac, France Address correspondence and reprint requests to Marie-Christine Beauvieux, Laboratoire de Biochimie, Hôpital Haut-Lévêque, Avenue de Magellan, 33604 Bordeaux Cedex, France. E-mail: marie-christine.beauvieux{at}chu-bordeaux.fr Abstract OBJECTIVE —The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C–based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS —In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m 2 [range 5–164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS —The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by −8.5 ± 17.9 ml/min per 1.73 m 2 . GFR changes estimated by the Cockcroft-Gault (−4.5 ± 6.8) and MDRD (−5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: −8.7 ± 9.4 ( r = 0.44, P < 0.05) and all four Cys-eGFRs: −6.2 ± 7.4 to −7.3 ± 8.4 ( r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C ( r = 0.61, P < 0.005). CONCLUSIONS —The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. CKD, chronic kidney disease Cys-eGFR, glomerular filtration rate estimated via cystatin formula GFR, glomerular filtration rate iGFR, isotopic GFR MCQ, Mayo Clinic Quadratic MDRD, Modification of Diet in Renal Disease rMDRD, reexpressed MDRD ROC, receiver-operating characteristic Footnotes Additional information for this article can be found in an online appendix at http://dx.doi.org/10.2337/dc06-2637 . A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C Section 1734 solely to indicate this fact. Accepted May 13, 2007. Received December 31, 2006. DIABETES CARE The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes.OBJECTIVEThe Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes.In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later.RESEARCH DESIGN AND METHODSIn 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later.The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005).RESULTSThe Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005).The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes.CONCLUSIONSThe new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m^sup 2^ [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 ± 17.9 ml/min per 1.73 m^sup 2^. GFR changes estimated by the Cockcroft-Gault (-4.5 ± 6.8) and MDRD (-5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 ± 7.4 to -7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. OBJECTIVE—The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C–based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. RESEARCH DESIGN AND METHODS—In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 ± 35.3 ml/min per 1.73 m2 [range 5–164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. RESULTS—The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by −8.5 ± 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (−4.5 ± 6.8) and MDRD (−5.7 ± 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: −8.7 ± 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: −6.2 ± 7.4 to −7.3 ± 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). CONCLUSIONS—The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We sought to discover whether new equations based on serum creatinine (the Mayo Clinic Quadratic [MCQ] or reexpressed MDRD equations) or four cystatin C-based equations (glomerular filtration rate estimated via cystatin formula [Cys-eGFR]) were less biased and better predicted GFR changes. In 124 diabetic patients with a large range of isotopic GFR (iGFR) (56.1 +/- 35.3 ml/min per 1.73 m2 [range 5-164]), we compared the performances of the equations before and after categorization in GFR tertiles. A total of 20 patients had a second determination 2 years later. The Cockcroft-Gault equation was the least precise. The MDRD equation was the most precise but the most biased according to the Bland-Altman procedure. By contrast with the MDRD and, to a lesser extent, the MCQ, three of the four Cys-eGFRs were not biased. All equations overestimated the low GFRs, whereas only the MDRD and Rule's Cys-eGFR equations underestimated the high GFRs. For the subjects studied twice, iGFR changed by -8.5 +/- 17.9 ml/min per 1.73 m2. GFR changes estimated by the Cockcroft-Gault (-4.5 +/- 6.8) and MDRD (-5.7 +/- 6.2) equations did not correlate with the isotopic changes, whereas new equation-predicted changes did: MCQ: -8.7 +/- 9.4 (r = 0.44, P < 0.05) and all four Cys-eGFRs: -6.2 +/- 7.4 to -7.3 +/- 8.4 (r = 0.60 to 0.62, all P < 0.005), such as 100/cystatin-C (r = 0.61, P < 0.005). The new predictive equations better estimate GFR than the Cockcroft-Gault equation. Although the MDRD equation remains the most accurate, it poorly predicts GFR decline, as it overestimates low and underestimates high GFRs. This bias is lesser with the MCQ and Cys-eGFR equations, so they better predict GFR changes. |
| Audience | Professional |
| Author | Le Moigne, Françoise Barthe, Nicole Chauveau, Philippe Perlemoine, Caroline Lasseur, Catherine Combe, Christian Gin, Henri Beauvieux, Marie-Christine Rigalleau, Vincent Raffaitin, Christelle |
| Author_xml | – sequence: 1 fullname: Beauvieux, Marie-Christine – sequence: 2 fullname: Le Moigne, Françoise – sequence: 3 fullname: Lasseur, Catherine – sequence: 4 fullname: Raffaitin, Christelle – sequence: 5 fullname: Perlemoine, Caroline – sequence: 6 fullname: Barthe, Nicole – sequence: 7 fullname: Chauveau, Philippe – sequence: 8 fullname: Combe, Christian – sequence: 9 fullname: Gin, Henri – sequence: 10 fullname: Rigalleau, Vincent |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18977180$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17536079$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl9rFTEQxYNU7G31wS-gS0FBYdv82d0kj6W2WqxasKJvIZud3Juym7TJrqXf3qz3SqFckDxMGH5nOMOcPbTjgweEXhJ8SBnjR53BTUkbxp-gBZGsLuu6EjtogUkly1pKuov2UrrGGFeVEM_QLuE1azCXC_TrK9wVlxE6Z0b3G4rT20mPLvhUnA83MeTOl-DdGKLzyyLY4rPrPNwXZ5M3M1Y4X1xmAfgxFT_duCo-ON3CCOk5emp1n-DFpu6jq7PTq5NP5cW3j-cnxxelqSs6lhykoJ0mHBtNpLQSiCS6kra21kqmgXDgWMi2aWpW4da23DZddm80pq1g--jtemw2eztBGtXgkoG-1x7ClFQjKGeYyv-CFWeS1KLK4MEj8DpM0ecdFKV5FK8pzlC5hpa6B-W8DWPUZgkeou7zcazL7WPS8IbWDM82D7fw-XUwOLNV8GrjYmoH6NRNdIOO9-rf5TLwZgPoZHRvo_bGpQdOSM6JmJ2-W3MmhpQi2AcEqzk9ak6PmtOT2aNHrHHj3zhkt67fqni_VqzccnXnIqhuc__5Y3RuMKyEIlLMO71ew1YHpZcx2_3xnWLC8LxQ1TD2B6NX25g |
| CODEN | DICAD2 |
| CitedBy_id | crossref_primary_10_1007_s00125_009_1379_7 crossref_primary_10_1016_j_diabet_2011_05_002 crossref_primary_10_1186_s12882_023_03450_5 crossref_primary_10_1515_cclm_2011_670 crossref_primary_10_1038_s41598_019_47559_w crossref_primary_10_1186_s12902_022_01052_0 crossref_primary_10_1016_j_atherosclerosis_2010_02_028 crossref_primary_10_1093_ndt_gfs498 crossref_primary_10_1007_s00392_012_0515_4 crossref_primary_10_1002_jcph_1132 crossref_primary_10_1089_dia_2012_0089 crossref_primary_10_1038_s41581_018_0080_9 crossref_primary_10_1016_j_cca_2021_06_010 crossref_primary_10_1093_ndt_gfq695 crossref_primary_10_1093_ckj_sfs033 crossref_primary_10_1161_CIRCHEARTFAILURE_109_856393 crossref_primary_10_4065_84_2_170 crossref_primary_10_1016_j_anr_2013_11_001 crossref_primary_10_1093_ndt_gfae161 crossref_primary_10_1016_j_sleep_2007_10_013 crossref_primary_10_2146_ajhp140852 crossref_primary_10_1177_147323001103900624 crossref_primary_10_1007_s00330_011_2157_8 crossref_primary_10_1186_1471_2369_11_3 crossref_primary_10_2215_CJN_07610711 crossref_primary_10_3389_fendo_2022_824279 crossref_primary_10_1186_s13098_022_00874_1 crossref_primary_10_1515_CCLM_2008_336 crossref_primary_10_1016_j_diabres_2007_11_006 crossref_primary_10_3390_jcm8101543 crossref_primary_10_2337_dc10_1615 crossref_primary_10_1007_s11892_015_0633_2 crossref_primary_10_1002_dmrr_844 crossref_primary_10_1007_s00125_011_2307_1 crossref_primary_10_1016_j_metabol_2008_05_013 crossref_primary_10_1038_s41598_018_38286_9 crossref_primary_10_1186_s12872_020_01475_4 crossref_primary_10_1016_j_clinbiochem_2018_01_005 crossref_primary_10_1194_jlr_P800070_JLR200 crossref_primary_10_1016_j_jdiacomp_2011_03_003 crossref_primary_10_1111_j_1751_7176_2009_00170_x crossref_primary_10_3109_0886022X_2012_672154 crossref_primary_10_1111_1753_0407_13393 crossref_primary_10_1111_j_1440_1797_2008_01045_x crossref_primary_10_2478_v10011_008_0021_4 crossref_primary_10_1515_CCLM_2009_263 |
| Cites_doi | 10.1016/j.clinbiochem.2006.10.014 10.1681/ASN.2004080692 10.1016/j.metabol.2005.07.014 10.2337/dc06-0407 10.1681/ASN.2004100854 10.1053/j.ajkd.2006.07.001 10.7326/0003-4819-130-6-199903160-00002 10.2337/dc06-0940 10.1093/ndt/gfg349 10.1001/archinte.1916.00080130010002 10.7326/0003-4819-141-12-200412210-00009 10.1515/CCLM.2006.239 10.2337/diacare.25.11.2004 10.1161/CIRCULATIONAHA.106.644286 10.7326/0003-4819-139-2-200307150-00013 10.2337/diacare.28.4.838 10.1111/j.1365-2796.2004.01414.x 10.2337/diacare.29.s1.06.s4 10.1159/000180580 10.7326/0003-4819-145-4-200608150-00004 10.1681/ASN.2004070549 10.1681/ASN.2005111241 10.1007/s00125-006-0275-7 10.7326/0003-4819-144-1-200601030-00006 10.2337/dc05-2201 10.1093/ndt/gfl221 10.1038/sj.ki.5000073 10.1258/0004563021901847 10.2337/dc06-0887 10.1148/radiology.143.1.7063747 |
| ContentType | Journal Article |
| Copyright | 2007 INIST-CNRS COPYRIGHT 2007 American Diabetes Association Copyright American Diabetes Association Aug 2007 |
| Copyright_xml | – notice: 2007 INIST-CNRS – notice: COPYRIGHT 2007 American Diabetes Association – notice: Copyright American Diabetes Association Aug 2007 |
| DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7RV 7X2 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AN0 ATCPS AZQEC BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 M0K M0R M0S M0T M1P M2O M2P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U S0X 7S9 L.6 7X8 |
| DOI | 10.2337/dc06-2637 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Agriculture Science Database ProQuest Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database PML(ProQuest Medical Library) Research Library Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Health Research Premium Collection Natural Science Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Family Health ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals British Nursing Index with Full Text ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Agricultural Science Database CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1935-5548 |
| EndPage | 1994 |
| ExternalDocumentID | 1313818851 A167625308 17536079 18977180 10_2337_dc06_2637 diacare_30_8_1988 US201300793463 |
| Genre | Journal Article |
| GeographicLocations | France |
| GeographicLocations_xml | – name: France |
| GroupedDBID | --- -ET ..I .55 .GJ .XZ 08P 0R~ 18M 29F 2WC 3O- 4.4 41~ 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X2 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAIKC AAKAS AAMNW AAQOH AAQQT AAWTL AAYEP AAYJJ ABOCM ABPPZ ABUWG ACGFO ACGOD ADBBV ADZCM AEGXH AENEX AERZD AFFNX AFKRA AFOSN AFRAH AHMBA AI. AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 AQUVI ATCPS AZQEC BAWUL BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BNQBC BPHCQ BTFSW BVXVI C1A CCPQU CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EMOBN EX3 F5P FBQ FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ IAG IAO IEA IHR INH INR IOF IPO ITC J5H K9- KQ8 L7B M0K M0R M0T M1P M2O M2P M2Q M5~ N4W NAPCQ O5R O5S O9- OK1 OVD P2P PCD PEA PHGZT PQQKQ PROAC PSQYO Q2X RHI S0X SJFOW SV3 TDI TEORI TR2 TWZ UKHRP VH1 VVN W8F WH7 WHG WOQ WOW X7M YHG YOC ZCG ZGI ZXP ~KM - 0R 1AW 3V. 55 AASXA ABFLS ABPTK ACJLH ACVYA ADACO ADBIT AFDAS BBAFP ET GJ HZ IGG KM M5 MBDVC O0- PADUT PQEST PQUKI PRINS RHF XZ ZA5 AAFWJ AAYXX AFFHD CITATION PHGZM PJZUB PPXIY IQODW CGR CUY CVF ECM EIF NPM VXZ 7XB 8FK K9. PKEHL Q9U 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c542t-7e982da170ca199f9e191a49f5fff93ae17e7089b665340bfb7f6d536ca02b83 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248570200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0149-5992 1935-5548 |
| IngestDate | Tue Oct 21 14:08:01 EDT 2025 Sun Nov 09 11:48:46 EST 2025 Tue Oct 07 05:31:42 EDT 2025 Sat Nov 29 11:57:00 EST 2025 Tue Nov 04 18:40:41 EST 2025 Wed Feb 19 02:10:52 EST 2025 Mon Jul 21 09:16:54 EDT 2025 Tue Nov 18 19:47:19 EST 2025 Sat Nov 29 06:27:15 EST 2025 Fri Jan 15 19:48:06 EST 2021 Thu Apr 03 09:45:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Endocrinopathy Human Improvement Renal function Nutrition Surveillance Diabetes mellitus Predictive value Patient Metabolic diseases Mathematical model Endocrinology |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c542t-7e982da170ca199f9e191a49f5fff93ae17e7089b665340bfb7f6d536ca02b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://diabetesjournals.org/care/article-pdf/30/8/1988/596552/zdc00807001988.pdf |
| PMID | 17536079 |
| PQID | 223027520 |
| PQPubID | 47715 |
| PageCount | 7 |
| ParticipantIDs | gale_infotracgeneralonefile_A167625308 gale_infotracacademiconefile_A167625308 proquest_miscellaneous_68273029 proquest_journals_223027520 pubmed_primary_17536079 highwire_diabetes_diacare_30_8_1988 fao_agris_US201300793463 crossref_primary_10_2337_dc06_2637 proquest_miscellaneous_47391584 pascalfrancis_primary_18977180 crossref_citationtrail_10_2337_dc06_2637 |
| ProviderPackageCode | RHF RHI |
| PublicationCentury | 2000 |
| PublicationDate | 2007-08-01 |
| PublicationDateYYYYMMDD | 2007-08-01 |
| PublicationDate_xml | – month: 08 year: 2007 text: 2007-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: Alexandria |
| PublicationTitle | Diabetes care |
| PublicationTitleAlternate | Diabetes Care |
| PublicationYear | 2007 |
| Publisher | American Diabetes Association |
| Publisher_xml | – name: American Diabetes Association |
| References | 2022031219230494000_R9 2022031219230494000_R19 2022031219230494000_R18 2022031219230494000_R22 2022031219230494000_R21 2022031219230494000_R24 2022031219230494000_R23 2022031219230494000_R26 2022031219230494000_R25 2022031219230494000_R28 2022031219230494000_R27 2022031219230494000_R20 2022031219230494000_R29 2022031219230494000_R11 2022031219230494000_R33 2022031219230494000_R10 2022031219230494000_R32 2022031219230494000_R13 2022031219230494000_R12 2022031219230494000_R15 2022031219230494000_R14 2022031219230494000_R17 2022031219230494000_R16 2022031219230494000_R1 2022031219230494000_R2 2022031219230494000_R3 2022031219230494000_R4 2022031219230494000_R5 2022031219230494000_R6 2022031219230494000_R7 2022031219230494000_R31 2022031219230494000_R8 2022031219230494000_R30 |
| References_xml | – ident: 2022031219230494000_R32 doi: 10.1016/j.clinbiochem.2006.10.014 – ident: 2022031219230494000_R8 doi: 10.1681/ASN.2004080692 – ident: 2022031219230494000_R1 – ident: 2022031219230494000_R5 doi: 10.1016/j.metabol.2005.07.014 – ident: 2022031219230494000_R6 doi: 10.2337/dc06-0407 – ident: 2022031219230494000_R14 doi: 10.1681/ASN.2004100854 – ident: 2022031219230494000_R26 doi: 10.1053/j.ajkd.2006.07.001 – ident: 2022031219230494000_R22 doi: 10.7326/0003-4819-130-6-199903160-00002 – ident: 2022031219230494000_R17 – ident: 2022031219230494000_R28 doi: 10.2337/dc06-0940 – ident: 2022031219230494000_R23 doi: 10.1093/ndt/gfg349 – ident: 2022031219230494000_R24 doi: 10.1001/archinte.1916.00080130010002 – ident: 2022031219230494000_R12 doi: 10.7326/0003-4819-141-12-200412210-00009 – ident: 2022031219230494000_R16 doi: 10.1515/CCLM.2006.239 – ident: 2022031219230494000_R18 doi: 10.2337/diacare.25.11.2004 – ident: 2022031219230494000_R31 doi: 10.1161/CIRCULATIONAHA.106.644286 – ident: 2022031219230494000_R2 doi: 10.7326/0003-4819-139-2-200307150-00013 – ident: 2022031219230494000_R4 doi: 10.2337/diacare.28.4.838 – ident: 2022031219230494000_R33 doi: 10.1111/j.1365-2796.2004.01414.x – ident: 2022031219230494000_R3 doi: 10.2337/diacare.29.s1.06.s4 – ident: 2022031219230494000_R21 doi: 10.1159/000180580 – ident: 2022031219230494000_R7 doi: 10.7326/0003-4819-145-4-200608150-00004 – ident: 2022031219230494000_R9 doi: 10.1681/ASN.2004070549 – ident: 2022031219230494000_R29 doi: 10.1681/ASN.2005111241 – ident: 2022031219230494000_R19 doi: 10.1007/s00125-006-0275-7 – ident: 2022031219230494000_R20 – ident: 2022031219230494000_R30 doi: 10.7326/0003-4819-144-1-200601030-00006 – ident: 2022031219230494000_R10 doi: 10.2337/dc05-2201 – ident: 2022031219230494000_R11 doi: 10.1093/ndt/gfl221 – ident: 2022031219230494000_R15 doi: 10.1038/sj.ki.5000073 – ident: 2022031219230494000_R13 doi: 10.1258/0004563021901847 – ident: 2022031219230494000_R27 doi: 10.2337/dc06-0887 – ident: 2022031219230494000_R25 doi: 10.1148/radiology.143.1.7063747 |
| SSID | ssj0004488 |
| Score | 2.1511185 |
| Snippet | OBJECTIVE:--The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic... New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes Marie-Christine Beauvieux , PHD 1 , Françoise Le Moigne , PD 1 ,... OBJECTIVE—The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic... The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) equations poorly predict glomerular filtration rate (GFR) decline in diabetic patients. We... |
| SourceID | proquest gale pubmed pascalfrancis crossref highwire fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1988 |
| SubjectTerms | Adult African Americans Aged Aged, 80 and over Albuminuria Biological and medical sciences blood blood serum Care and treatment Changes creatinine Creatinine - blood Cystatin C Cystatins Diabetes Diabetes Mellitus Diabetes Mellitus - physiopathology Diabetes. Impaired glucose tolerance Diabetic Nephropathies Diabetic Nephropathies - physiopathology Diabetic Nephropathies - prevention & control Diet Endocrine pancreas. Apud cells (diseases) Endocrinopathies equations Etiopathogenesis. Screening. Investigations. Target tissue resistance Feeding. Feeding behavior Female Fundamental and applied biological sciences. Psychology Glomerular Filtration Rate Humans Kidney diseases Kidney Function Tests Male Medical sciences Methods Middle Aged monitoring Monitoring, Physiologic Organized crime patients physiopathology Predictive Value of Tests prevention & control Risk factors Vertebrates: anatomy and physiology, studies on body, several organs or systems Vertebrates: endocrinology |
| Title | New Predictive Equations Improve Monitoring of Kidney Function in Patients With Diabetes |
| URI | http://care.diabetesjournals.org/content/30/8/1988.abstract https://www.ncbi.nlm.nih.gov/pubmed/17536079 https://www.proquest.com/docview/223027520 https://www.proquest.com/docview/47391584 https://www.proquest.com/docview/68273029 |
| Volume | 30 |
| WOSCitedRecordID | wos000248570200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: M0K dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Consumer Health Database customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: M0R dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/familyhealth providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: 7X7 dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: M0T dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: 7RV dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: BENPR dateStart: 19960701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest Medical & Health Databases) customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: 8C1 dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: M2O dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1935-5548 dateEnd: 20130731 omitProxy: false ssIdentifier: ssj0004488 issn: 0149-5992 databaseCode: M2P dateStart: 19960701 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhhAvfMPCoFiAYC_RHDvxxxMa0yqksVKNMvpmuYk9KqF0azok_nvu4rRl0sYLL6dEOclJ7nLn-8jvCHkrcyO850XKQoEBSmVSXRRlWphSslCCl23Bqk8_q8FAj8dm2PXmNF1b5dImtoa6mpWYI98DN4YVNs4-nF-kODQKi6vdBI0NspWh6wZ1Vien698i83bsJAYBsLbhEViIC6H2qhICaS5x-vlf7mgjuNnaNC_xgrFd0jXwxkIcdXHzXrT1Sf37__k0D8i9bjNK96P2PCS3fP2I3Dnuyu2PyRhMIB3O8RytIj28iMDgDY25CE-jScDcIJ0FejStav-b9sFXIhud1nQYcVsb-n26-EG7_pvmCRn1D0cHn9JuFENaFjlfpMobzSuXKVa6zJhgPMR5LjehCCEY4XymvGLaTKQsRM4mYaKCrAohS8f4RIunZLOe1X6bUIhncpnJiTAVbIY4c8ppiLoKYTQLTuUJ2V0KxJYdTDlOy_hpIVxB2VmUnUXZJeT1ivU8YnNcx7QNUrXuDGym_faVY6UWQQFzKRLyHkVt8VOGJUrX_ZEAN4qgWHY_k-AqCsF0Qt5d4TyLkODXMb5Zqo1dJs_xANv4rGBW28xo4Opd0aj13WvYjmeaJWRnqTa2symNXelMQl6troIxwAqPq_3ssrG5Qrx_nd_MITXsVxk3CXkWNXe9NgSuEt7M83-uvUPuxuw2tkC-IJuL-aV_SW6XvxbTZt5rvz-kY9VSDVQfZD2y9fFwMDyBs2N21NJ4PELKv7R0-AeDZj0r |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2gYAX7rAw2CzuL9EcJ_HlAaEJVm1qV1VijL5ZbmKPSijdmg60_8SP5Jw6aZm08bYH3lLlqE7iz-fic_wdQl6LTKfO8TxmPscApdSxyvMiznUhmC_Ays7Jqo96st9Xw6EerJDf7VkYLKtsdeJcUZeTAvfIt8GMYYaNs48npzE2jcLkattBI6Ci685_QcRWf9j_DNP7hvPO7uGnvbhpKhAXecZnsXRa8dImkhU20dprBxGLzbTPvfc6tS6RTjKlR0LkacZGfiS9KPNUFJbxkUrhb1fJDdDiEgvI5FAuT2Fm8y6XGHPAq2oeeIx4msrtsoC4nQtstv6X9Vv1drK0BC09MVZn2homyIfOGle7vnMT2Ln3f328--Ru42rTnbA2HpAVVz0ktw6aYoJHZAgKng6m-Bt1Pt09DbTnNQ07LY4GhYc7n3TiaXdcVu6cdsATQDE6ruggsNLW9Nt49p021UX1Y3J4Ha_1hKxVk8qtEwrRWiYSMUp1Ca4eZ1ZaBTFlnmrFvJVZRN6382-KhoQde4H8MBCMIVQMQsUgVCLyciF6EphHLhNaBxAZewwWwXz9wjEPjZSHmUgj8g6RZVBRwRCFbc5bwIMi5ZfZSQQYwjxlKiJvL0geB8LzywRftSg1bWoAL7BI0aTMKJNoBVKbFwC8fHoFwUaiWEQ2WpSaRmPWZgHRiGwt7oKqw_yVrdzkrDaZxG4GKrtaQijwxhnXEXkaFspybAjLBXyZZ_8ce4vc3js86Jnefr-7Qe6EfXws9nxO1mbTM_eC3Cx-zsb1dHO-9Ckx17xa_gC2F5B0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELbagiouvKFLobV4X1bx2rte-4BQRRtRpY0iEWhulrNrl0ho02ZTUP8ZP4-ZeLehUsutB26JMor38XnGn2f8DSGvZaqFczyLmc-QoJQ6VllWxJkuJPMFRNmFWPW3g7zfV6ORHqyQ3-1ZGCyrbH3iwlGX0wL3yDsQxjDDxlnHN1URg93ux5PTGBtIYaK17aYRENJz57-AvdUf9nfhVb_hvLs3_PQ5bhoMxEWW8nmcO614aZOcFTbR2msH7MWm2mfeey2sS3KXM6XHUmYiZWM_zr0sMyELy_hYCfjbVXIrTzOOxWSHbLg8kZkuOl4i_4Db1jxoGnEh8k5ZAIfnEhuv_xUJV72dLqNCK1WMlZq2hpflQ5eN65fBi3DYvff_Psj75G6zBKc7Yc48ICuuekjWD5sig0dkBI6fDmb4HWMB3TsNcug1DTswjgZHiDuidOppb1JW7px2YYWAZnRS0UFQq63p0WT-nTZVR_VjMryJ23pC1qpp5TYIBRaXykSOhS5hCciZza0CrpkJrZi3eRqR9y0WTNGIs2OPkB8GSBrCxiBsDMImIi8vTE-CIslVRhsAKGOPIVKYr1845qdRCjGVIiLvEGUGHRgMUdjmHAZcKEqBmZ1EQoDMBFMReXvJ8jgIoV9l-KpFrGlTBvgBixeNYEaZRCuw2roE5uXVKyAhiWIR2WwRaxpPWpsLuEZk--JXcIGY17KVm57VJs2xy4FKr7eQClbpjOuIPA2TZjk20HUJT-bZP8feJuswSczBfr-3Se6E7X2sAX1O1uazM_eC3C5-zif1bGvhBSgxNzxZ_gBzEplE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+predictive+equations+improve+monitoring+of+kidney+function+in+patients+with+diabetes&rft.jtitle=Diabetes+care&rft.au=BEAUVIEUX%2C+Marie-Christine&rft.au=LE+MOIGNE%2C+Francoise&rft.au=LASSEUR%2C+Catherine&rft.au=RAFFAITIN%2C+Christelle&rft.date=2007-08-01&rft.pub=American+Diabetes+Association&rft.issn=0149-5992&rft.volume=30&rft.issue=8&rft.spage=1988&rft.epage=1994&rft_id=info:doi/10.2337%2Fdc06-2637&rft.externalDBID=n%2Fa&rft.externalDocID=18977180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon |