Modulation of the chromatin phosphoproteome by the Haspin protein kinase

Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular & cellular proteomics Ročník 13; číslo 7; s. 1724
Hlavní autoři: Maiolica, Alessio, de Medina-Redondo, Maria, Schoof, Erwin M, Chaikuad, Apirat, Villa, Fabrizio, Gatti, Marco, Jeganathan, Siva, Lou, Hua Jane, Novy, Karel, Hauri, Simon, Toprak, Umut H, Herzog, Franz, Meraldi, Patrick, Penengo, Lorenza, Turk, Benjamin E, Knapp, Stefan, Linding, Rune, Aebersold, Ruedi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.07.2014
Témata:
ISSN:1535-9484, 1535-9484
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.
AbstractList Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.
Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.
Author Knapp, Stefan
de Medina-Redondo, Maria
Turk, Benjamin E
Toprak, Umut H
Schoof, Erwin M
Aebersold, Ruedi
Maiolica, Alessio
Gatti, Marco
Novy, Karel
Jeganathan, Siva
Penengo, Lorenza
Linding, Rune
Chaikuad, Apirat
Villa, Fabrizio
Lou, Hua Jane
Herzog, Franz
Hauri, Simon
Meraldi, Patrick
Author_xml – sequence: 1
  givenname: Alessio
  surname: Maiolica
  fullname: Maiolica, Alessio
  organization: From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Maria
  surname: de Medina-Redondo
  fullname: de Medina-Redondo, Maria
  organization: §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
– sequence: 3
  givenname: Erwin M
  surname: Schoof
  fullname: Schoof, Erwin M
  organization: ¶Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
– sequence: 4
  givenname: Apirat
  surname: Chaikuad
  fullname: Chaikuad, Apirat
  organization: ‖Oxford University, Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), Oxford OX3 7FZ, United Kingdom
– sequence: 5
  givenname: Fabrizio
  surname: Villa
  fullname: Villa, Fabrizio
  organization: Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
– sequence: 6
  givenname: Marco
  surname: Gatti
  fullname: Gatti, Marco
  organization: ‡‡Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro" Novara, Italy
– sequence: 7
  givenname: Siva
  surname: Jeganathan
  fullname: Jeganathan, Siva
  organization: §§Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
– sequence: 8
  givenname: Hua Jane
  surname: Lou
  fullname: Lou, Hua Jane
  organization: ¶¶Yale University School of Medicine, Department of Pharmacology, New Haven, Connecticut 06520, USA
– sequence: 9
  givenname: Karel
  surname: Novy
  fullname: Novy, Karel
  organization: From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 10
  givenname: Simon
  surname: Hauri
  fullname: Hauri, Simon
  organization: From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
– sequence: 11
  givenname: Umut H
  surname: Toprak
  fullname: Toprak, Umut H
  organization: §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
– sequence: 12
  givenname: Franz
  surname: Herzog
  fullname: Herzog, Franz
  organization: ‖‖Gene Center Munich Ludwig-Maximilians-Universität München, Munich, Germany
– sequence: 13
  givenname: Patrick
  surname: Meraldi
  fullname: Meraldi, Patrick
  organization: §Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
– sequence: 14
  givenname: Lorenza
  surname: Penengo
  fullname: Penengo, Lorenza
  organization: ‡‡Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro" Novara, Italy
– sequence: 15
  givenname: Benjamin E
  surname: Turk
  fullname: Turk, Benjamin E
  organization: ¶¶Yale University School of Medicine, Department of Pharmacology, New Haven, Connecticut 06520, USA
– sequence: 16
  givenname: Stefan
  surname: Knapp
  fullname: Knapp, Stefan
  organization: ‖Oxford University, Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), Oxford OX3 7FZ, United Kingdom
– sequence: 17
  givenname: Rune
  surname: Linding
  fullname: Linding, Rune
  organization: ¶Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS), Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
– sequence: 18
  givenname: Ruedi
  surname: Aebersold
  fullname: Aebersold, Ruedi
  email: aebersold@imsb.biol.ethz.ch
  organization: From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland aebersold@imsb.biol.ethz.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24732914$$D View this record in MEDLINE/PubMed
BookMark eNpNj71PwzAQxS1URD9gZkMZWRL8KftGVEGL1IoF5sh2LmogiUOcDP3vSaFIDKd3evfTe7olmbWhRUJuGc0Y1fKh8V22Z0xkVEjD4IIsmBIqBWnk7N8-J8sYPyjllGl1ReZcasGByQXZ7kMx1naoQpuEMhkOmPhDH5rJaZPuEOI0XR8GDA0m7vgDbG3sTteTPeln1dqI1-SytHXEm7OuyPvz09t6m-5eNy_rx13qleRDqrim2hsHYEpjgTlfCm8LNJ47io5yYRCo0ApkAVx6A6agpbcaJLeidHxF7n9zp_qvEeOQN1X0WNe2xTDGnCmpDQdFYULvzujoGizyrq8a2x_zv-_5N9J_Xp8
CitedBy_id crossref_primary_10_1016_j_isci_2023_108011
crossref_primary_10_1107_S2053230X16004611
crossref_primary_10_1242_jcs_189340
crossref_primary_10_3390_biology10070659
crossref_primary_10_15252_embr_201744737
crossref_primary_10_1242_jcs_158840
crossref_primary_10_1007_s00412_017_0638_5
crossref_primary_10_1002_cbic_201600697
crossref_primary_10_1016_j_bneo_2025_100107
crossref_primary_10_3390_cells9040898
crossref_primary_10_1016_j_tibs_2018_02_009
crossref_primary_10_3390_ijms22147753
crossref_primary_10_1002_jcp_29328
crossref_primary_10_3389_fcell_2018_00006
crossref_primary_10_1038_s41594_025_01502_y
crossref_primary_10_3390_ijms25094874
crossref_primary_10_1016_j_bbrc_2022_07_093
crossref_primary_10_3892_ijo_2020_5043
crossref_primary_10_3390_cancers10030059
crossref_primary_10_1242_bio_059277
crossref_primary_10_1042_BST20210837
crossref_primary_10_1016_j_intimp_2024_112196
crossref_primary_10_1530_REP_18_0447
crossref_primary_10_3389_fcell_2018_00030
crossref_primary_10_1096_fj_202100099R
crossref_primary_10_1016_j_ejmech_2021_113318
crossref_primary_10_1038_s41467_023_43115_3
crossref_primary_10_1242_jcs_259546
crossref_primary_10_1093_nar_gkw193
ContentType Journal Article
Copyright 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1074/mcp.M113.034819
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1535-9484
ExternalDocumentID 24732914
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 092809/Z/10/Z
– fundername: Wellcome Trust
  grantid: 092809
GroupedDBID ---
0R~
123
18M
29M
2WC
34G
39C
4.4
53G
5VS
AAEDW
AAFWJ
AALRI
AAXUO
AAYWO
ABDNZ
ACGFO
ACIWK
ACPRK
ACVFH
ACYGS
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AEXQZ
AFPKN
AFPUW
AFRAH
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
KQ8
NPM
OK1
P2P
RHI
RNS
ROL
RPM
TBC
TR2
W8F
WOQ
7X8
ID FETCH-LOGICAL-c542t-52707c8b998f8a91bcf3cade8c2b0eb0238e9037594d924c898d0fca7942a3fb2
IEDL.DBID 7X8
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339251300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1535-9484
IngestDate Sun Nov 09 09:29:52 EST 2025
Mon Jul 21 06:05:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-52707c8b998f8a91bcf3cade8c2b0eb0238e9037594d924c898d0fca7942a3fb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/mcp.M113.034819
PMID 24732914
PQID 1547829509
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1547829509
pubmed_primary_24732914
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular & cellular proteomics
PublicationTitleAlternate Mol Cell Proteomics
PublicationYear 2014
SSID ssj0020175
Score 2.3201265
Snippet Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1724
SubjectTerms Amino Acid Sequence
Aurora Kinase B - metabolism
Cell Line, Tumor
Chromatin - genetics
Chromatin - metabolism
Gene Expression Regulation - genetics
HEK293 Cells
HeLa Cells
Histones - genetics
Histones - metabolism
Humans
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - metabolism
Methylation
Mitosis - genetics
Nuclear Proteins - metabolism
Phosphoproteins - metabolism
Phosphorylation
Protein Interaction Maps - genetics
Protein Serine-Threonine Kinases - antagonists & inhibitors
Protein Serine-Threonine Kinases - metabolism
RNA-Binding Proteins - metabolism
Serine-Arginine Splicing Factors
Transcription, Genetic - genetics
Title Modulation of the chromatin phosphoproteome by the Haspin protein kinase
URI https://www.ncbi.nlm.nih.gov/pubmed/24732914
https://www.proquest.com/docview/1547829509
Volume 13
WOSCitedRecordID wos000339251300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxsnmZNyKIb92aJm2TJxni2IMbe1DY22jShA1ZW9cp7N97knb6JoIPbaEXKCcn-c4t30HojlBNQiWUB1BMPWYU82TIpSf81FAeKUOV2yj8HI9GfDIR4zrgVtZllZs10S3Uaa5sjLxLLPFUIADfHop3z3aNstnVuoXGNmpQMGVsSVc8-c4iALY5ol2Y1KEnGGcbap-YdReq6AwJoR3f7kT9xb50ONM__O8fHqGD2sLEvUoljtGWzpqo1cvAu16s8T12NZ8umN5Ee1UrynULDYZ5WnfywrnBYBZiNVvm1p7NcDHLSzgcp0O-0Fiu3QuDpCzsU3sbrm_zDCDxBL32n14eB17dZcFTIQtW4InGfqy4BL_L8EQQaccnSTVXgfS1tJiuhe2UK1gKzprigqe-UQlM5CChRganaCfLM32OMKdGqEgTo6OEGaKEBvfTj3xh6dCJZG10u5HcFLTYpiaSTOcf5fRHdm10Vol_WlR0G9OAxTQQhF384etLtA-jzqp62ivUMDCH9TXaVZ-rebm8ceoB59F4-AUJ_MT3
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+the+chromatin+phosphoproteome+by+the+Haspin+protein+kinase&rft.jtitle=Molecular+%26+cellular+proteomics&rft.au=Maiolica%2C+Alessio&rft.au=de+Medina-Redondo%2C+Maria&rft.au=Schoof%2C+Erwin+M&rft.au=Chaikuad%2C+Apirat&rft.date=2014-07-01&rft.issn=1535-9484&rft.eissn=1535-9484&rft.volume=13&rft.issue=7&rft.spage=1724&rft_id=info:doi/10.1074%2Fmcp.M113.034819&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9484&client=summon